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Hypothesis

�A hypothesis is a certain function that we believe (or hope) is 
similar to the true function, the target function that we want 
to model. 

� In context of email spam classification, it would be 
the rule we came up with that allows us to separate spam 
from non-spam emails
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Introduction
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Introduction..(2)
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Introduction..(3)
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(e.g., hypotheses such as 
"this pneumonia patient 
has a 93% chance of 
complete recovery").
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Basics of  Probability

�Prior probability

� Joint Probability

�Conditional Probability

�Example :Tossing 2 coins randomly……..

�P(Getting a tail)= ?

�P(Getting a head on first and head on second)=

�P(Getting a head on first given second is tail)=
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Some definitions
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Bayes Theorem
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Bayes Theorem
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Evidence

PriorLikelihood
Posterior

×=
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Evidence

PriorLikelihood
Posterior

×=
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MAP hypothesis
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ML Hypothesis
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Example
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Example
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We know:

P(A) = .001        P(Ac) =.999  

P(B|A) =  .99      P(B|Ac) =.02  

Example-2

Define A: has the disease     B: test positive
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We want to know P(A|B)=?
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Example-3
There is a 40% chance of it raining on Sunday. If it rains on Sunday, there is a 
10% chance it will rain on Monday. If it didn't rain on Sunday, there's an 80% 
chance it will rain on Monday.

"Raining on Sunday" is event A, "Raining on Monday" is event B.

P( A ) = 0.40 = Probability of Raining on Sunday.

P( A’ ) = 0.60 = Probability of not raining on Sunday.

P(B|A ) = 0.10 = Probability of it raining on Monday, if it rained on Sunday.

P(B’|A) = 0.90 = Probability of it not raining on Monday, if it rained on Sunday.

P(B|A’ ) = 0.80 = Probability of it raining on Monday, if it did not rain on Sunday.

P(B’|A’ ) = 0.20 = Probability of it not raining on Monday, if it did not rain on Sunday.

� What is the probability of it raining on Monday? - P(B)

� This would be the sum of the probability of "Raining on Sunday and raining on 
Monday" and "Not raining on Sunday and raining on Monday“
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Example-3…

"It rained on Monday. What is the probability it rained on Sunday?" 

� This is where Bayes' theorem comes in. 

� It allows us to calculate the probability of an earlier event, given the result of a 
later event.

� The equation used is:

� P(B|A) = 0.10 = Probability of it raining on Monday, if it rained on Sunday.

� P(A) = 0.40 = Probability of Raining on Sunday.

� P(B) = 0.52 = Probability of Raining on Monday.

� So, to calculate the probability it rained on Sunday, given that it rained on 
Monday:

19

i.e. if it rained on Monday, there's a 
7.69% chance it rained on Sunday.

15CS73 - Machine Learning                                             Harivinod N

Module 4- Outline 

Bayesian Learning

1. Introduction

2. Bayes Theorem

3. Bayes Theorem and Concept Learning

4. Maximum Likelihood and Least Square Hypothesis

5. Maximum Likelihood Hypothesis for Predicting Probabilities

6. Minimum Description Length Principle

7. Naïve Bayes Classifier

8. Bayesian Belief Networks

9. EM Algorithm

10. Summary

20



15CS73 - Machine Learning                                             Harivinod N

Bayes Theorem and Concept Learning
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Brute-Force MAP Learning
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Brute-Force MAP Learning..(2)
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Brute-Force MAP learning..(3)

�Proof for derivation of P(D)

�To summarize, Bayes theorem implies that the posterior 
probability P(h|D) under our assumed P(h) and P(D|h) is

�Every consistent hypothesis is, therefore, a MAP hypothesis.

24



15CS73 - Machine Learning                                             Harivinod N

Brute-Force MAP Learning..(4)
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Consistent Learner

�We will say that a learning algorithm is a consistent learner
provided it outputs a hypothesis that commits zero errors 
over the training examples. 

�Every consistent learner outputs a MAP hypothesis, 

• if we assume a uniform prior probability distribution over 
H (i.e., P(hi) = P(hj) for all i, j), and 

• if we assume deterministic, noise free training data. 
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Consistent Learners
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Maximum Likelihood and 
Least-Squared Error
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Maximum Likelihood and 
Least-Squared Error
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Maximum Likelihood and 
Least-Squared Error
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Maximum Likelihood and 
Least-Squared Error
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Maximum Likelihood and 
Least-Squared Error
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Minimum Description Length Principle
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Minimum Description Length Principle
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Minimum Description Length Principle
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Minimum Description Length Principle

�MDL principle provides a way for trading off hypothesis 
complexity for the number of errors committed by the 
hypothesis

� It is one way of dealing with the issue of overfitting
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Naïve Bayesian Classifier
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Naïve Bayesian Classifier
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NBC-Illustrative Example
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NBC-Illustrative Example
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NBC-Illustrative Example

45

15CS73 - Machine Learning                                             Harivinod N

Estimating probabilities
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Estimating probabilities
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Bayesian Belief  Networks
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Notation
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Representation
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Bayesian networks (BN) are represented by directed acyclic graphs.
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Representation
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Inference
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Example
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Compactness
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Conditional Probability Table(CPT)
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Categorizations of  Algorithms
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Quiz
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Quiz
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Motivation

� In many practical learning settings, only a subset of the relevant instance 
features might be observable. 

� For example, among many Storm, Lightning, Thunder, ForestFire, Campfire, 
and BusTourGroup have been observed. (In BBN example)

� If some variable is sometimes observed and sometimes not, then we can 
use the cases for which it has been observed to learn to predict its values 
when it is not. 

� Many approaches have been proposed to handle the problem of learning in 
the presence of unobserved variables. 

� EM algorithm (Dempster et al. 1977), a widely used approach to learning in 
the presence of unobserved variables. 

� The EM algorithm can be used 

• even for variables whose value is never directly observed,

• provided the general form of the probability distribution governing 
these variables is known. 
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Estimating Means of  k Gaussians

� Consider a problem in which the data D is a set of instances are - a 
mixture of k distinct Normal distributions. 

� This problem setting is illustrated in Figure for the case where k = 2 and 
where the instances are the points shown along the x axis. 

� Each instance is generated using a two-step process. 

• First, one of the k Normal distributions is selected at random.

• Second, a single random instance xi is generated according to this 
selected distribution. 

� This process is repeated to generate a set of data points as shown in the 
figure. 
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Estimating Means of  k Gaussians

� To simplify our discussion, we consider the special case 

• where the selection of the single Normal distribution at each step is 
based on choosing each with uniform probability, 

• where each of the k Normal distributions has the same variance σ2, 
known value. 

� The learning task is to output a hypothesis h = (μ1, . . . ,μk) that describes 
the means of each of the k distributions. 

� We would like to find a maximum likelihood hypothesis for these means; 
that is, a hypothesis h that maximizes p(D |h).
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Estimating Means of  k Gaussians

� Our problem here, however, involves a mixture of k different Normal 
distributions, and we cannot observe which instances were generated by 
which distribution. 

� we can think  full description of each instance as the triple (xi, zi1, zi2), 

• where xi is the observed value of the ith instance and 

• where zi1 and zi2 indicate which of the two Normal distributions was 
used to generate the value xi. 

� In particular, zij has the value 1 if xi was created by the jth Normal 
distribution and 0 otherwise. 

� Here xi is the observed variable in the description of the instance, and zil

and zi2 are hidden variables. 

• If the values of zil and zi2 were observed, we could use following 
Equation to solve for the means p1 and p2. 

• Because they are not, we will instead use the EM algorithm.
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EM algorithm

71

Step 1
Step 2

The current hypothesis is used to estimate the unobserved 
variables, and the expected values of these variables are then used 

to calculate an improved hypothesis. 
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EM 1-d example
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Mixture models in 1D
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EM Algorithm
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Summary

� Bayesian methods provide the basis for probabilistic learning methods 
that accommodate (and require) knowledge about the prior probabilities 
of alternative hypotheses and about the probability of observing various 
data given the hypothesis. 

� Bayesian methods allow assigning a posterior probability to each 
candidate hypothesis, based on these assumed priors and the observed 
data.

� Bayesian methods can be used to determine the most probable 
hypothesis given the data-the maximum a posteriori (MAP) hypothesis. 

• This is the optimal hypothesis in the sense that no other hypothesis is 
more likely.

85

15CS73 - Machine Learning                                             Harivinod N

Summary

� The framework of Bayesian reasoning can provide a useful basis for 
analyzing certain learning methods that do not directly apply Bayes 
theorem. 

• For example, under certain conditions it can be shown that minimizing 
the squared error when learning a real-valued target function 
corresponds to computing the maximum likelihood hypothesis.

� The Minimum Description Length principle recommends choosing the 
hypothesis that minimizes the description length of the hypothesis plus 
the description length of the data given the hypothesis. 

• Bayes theorem and basic results from information theory can be used 
to provide a rationale for this principle.
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Summary

� The naive Bayes classifier is a Bayesian learning method that has been 
found to be useful in many practical applications. 

� It is called "naive" because it incorporates the simplifying assumption that 
attribute values are conditionally independent, given the classification of 
the instance. 

� When this assumption is met, the naive Bayes classifier outputs the MAP 
classification. 

� Even when this assumption is not met, as in the case of learning to classify 
text, the naive Bayes classifier is often quite effective. 

� Bayesian belief networks provide a more expressive representation for 
sets of conditional independence assumptions among subsets of the 
attributes.
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Summary

� In many practical learning tasks, some of the relevant instance variables 
may be unobservable. 

� The EM algorithm provides a quite general approach to learning in the 
presence of unobservable variables. 

• This algorithm begins with an arbitrary initial hypothesis. 

• It then repeatedly calculates the expected values of the hidden 
variables (assuming the current hypothesis is correct), and then 
recalculates the maximum likelihood hypothesis (assuming the hidden 
variables have the expected values calculated by the first step). 

� This procedure converges to a local maximum likelihood hypothesis, along 
with estimated values for the hidden variables.
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