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Hypothesis g tome,

= A hypothesis is a certain function that we believe (or hope) is
similar to the true function, the target function that we want
to model.

" |n context of email spam classification, it would be
the rule we came up with that allows us to separate spam
from non-spam emails
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Introduction C]) MACHINE

#® probabilistic approach to inference

# Dbasic assumption:
# (quantities of interest are governed by probability distributions

# optimal decisions can be made by reasoning about these
probabilities together with observed training data

#® Bayesian Learning is relevant for two reasons

# first reason: explicit manipulation of probabilities
& among the most practical approaches to certain types of
learning problems
& e.g. Bayes classifier is competitive with decision tree and
neural network learning
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Introduction..(2) w\/_ﬁ;‘pwﬁs

#® Bayesian Learning is relevant for two reasons (cont.)

# second reason: useful perspective for understanding learning
methods that do not explicitly manipulate probabilites
& determine conditions under which algorithms output the
most probable hypothesis
& e.g. justification of the error functions in ANNs
& e.g. justification of the inductive bias of decision trees

# features of Bayesian Learning methods:
# each observed training example can incrementally decrease or
increase the estimated probability that a hypothesis is correct
# prior knowledge can be combined with observed data to
determine the final probability of a hypothesis

15CS73 - Machine Learning Harivinod N
Introduction..(3) @ m‘ﬂ"wﬁﬁ

(e.g., hypotheses such as
"this pneumonia patient
has a 93% chance of
complete recovery").

# features of Bayesian Learning methods (cont.):
# hypotheses make probabilistaic predictions
# new instances can be classified by combining the predictions of
multiple hypotheses, weighted by their probabilites

» standard of optimal decision making against which other
practical measures can be measured

# practical difficulties:
# initial knowledge of many probabilities is required
# significant computational costs required
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= Prior probability
= Joint Probability
= Conditional Probability

= Example :Tossing 2 coins randomly........
= P(Getting a tail)="?
= P(Getting a head on first and head on second)=

= P(Getting a head on first given second is tail)=

15CS73 - Machine Learning Harivinod N 8




Some definitions @ m{:m,fg

o Product rule. probability P(A A B) of a conjunction of two events A and B
P(A A B) = P(A|B)P(B) = P(B|A)P(A)
o SM rule: probability of a disjunction of two events A and B
P(AV B) = P(A) + P(B)— P(AA B)

e Bayes theorem: the posterior probability P(k|D) of h given D

P(DIh)P(h)

P(HID) = =

o Theorem of total probability: if events Ay,..., A, are mutually exclusive with }:;;1 P(A) =1,
then i
P(B) = ) P(BIA)P(A))

i=1
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Bayes Theorem @ LEARNING

# machine learning is interested in the best hypothesis h from some
space H, given observed training data D

best hypothesis ~ most probable hypothesis
#® Bayes Theorem provides a direct method of calculating the
probability of such a hypothesis based on its prior probability, the

probabilites of observing various data given the hypothesis, and the
observed data itself
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Bayes Theorem mfmﬁﬁ

» more formal:

# P(h) prior probability of h, reflects any background knowledge
about the chance that £ is correct

# P(D) prior probability of D, probability that D will be observed

o P(D|h) probability of observing D given a world in which A
holds

# P(h|D) posterior probability of h, reflects confidence that &
holds after D has been observed

#® Bayes Theorem:

P(h|D) = P(D|h)P(h) Posterior = Liketihood x Prior
(R o P(D) Evidence
15CS73 - Machine Learning Harivinod N 11
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Other Forms of Bayes Rule p@lB) = el

P(B)
P . _ Likelihood % Prior
P(B| A)P(A) OSterIOr = = idence
P(A|B) =
P(B| A)P(A) + P(B |~ A)P(~ A)
POAIE ) < PBIANOPANX)

P(BAX)
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MAP hypothesis LEARNNG

# in many learning scenarios, the learner considers some set of
candidate hypotheses H and is interested in finding the most
probable hypothesis h € H given the observed training data D

# any maximally probable hypothesis is called maximum a posteriori
(MAP) hypotheses

hyrap = argmax P(h|D)
heH

= argmazx P(D|h)P(h)
her  P(D)

= argmax P(D|h)P(h)
heH

note that P(D) can be dropped, because it is a constant
independent of A

15CS73 - Machine Learning Harivinod N 13

ML Hypothesis QD LEmaNing

» sometimes it is assumed that every hypothesis is equally probable a
priori

in this case, the equation above can be simplified

because P(D|H) is often called the likelihood of D given h, any
hypothesis that maximizes P(D|h) is called maximum likelihood
(ML) hypothesis

harr, = argmax P(D|h)
heH

note that in this case P(h) can be dropped, because it is equal for
eachhe H
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® consider a medical diagnosis problem in which there are two alternative hypotheses
# the patient has a particular form of cancer (denoted by cancer)
# the patient does not (denoted ny —cancer)

® the available data is from a particular laboratory with two possible outcomes:
¢ (positive) and < (negative)
P(cancer) = .008 P(—cancer) = 0.992

P(®|cancer) = .98 P(S|cancer) = .02

P(®|-cancer) = .03 P(8|-cancer) = .97
® suppose a new patient is observed for whom the lab test returns a positive (&) result

® Should we diagnose the patient as having cancer or not?

P(&|cancer)P(cancer) = (.98).008 = .0078
P(&|—-cancer)P(—cancer) = (.03).992 = .0298

15CS73 - Machine Learning == h‘”AP = Tcancer
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® the exact posterior probabilites can be determined by normalizing
the above properties to 1

.0078
P(cancer|®) = m =21
P(—cancer|®) = .()07"80-2% =.79

= the result of Bayesian inference depends strongly on the prior
probabilities, which must be available in order to apply the method
directly

15CS73 - Machine Learning Harivinod N 16




Example-2 QD e

Define A: has the disease  B: test positive

We know:
P(A) =.001 P(A¢) =.999
P(B|A)= .99 P(B|Ac) =.02

We want to know P(A|B)="?

P(A)P(B|A) .1fe gonna be okay,
P(A | B) - juct gotfa sy calm...
P(A)P(B|A)+P(A°)P(B|A)
_ 001 x .99 _ o
~ 001 x .99 + 999 x 02
15CS73 - Machine Learning Harivinod N

Example-3 QD Lenahing

There is a 40% chance of it raining on Sunday. If it rains on Sunday, there is a
10% chance it will rain on Monday. If it didn't rain on Sunday, there's an 80%
chance it will rain on Monday.

"Raining on Sunday" is event A, "Raining on Monday" is event B.

P( A ) = 0.40 = Probability of Raining on Sunday.

P( A’ ) = 0.60 = Probability of not raining on Sunday.

P(B|A) = 0.10 = Probability of it raining on Monday, if it rained on Sunday.

P(B’|A) = 0.90 = Probability of it not raining on Monday, if it rained on Sunday.
P(B|A’ ) = 0.80 = Probability of it raining on Monday, if it did not rain on Sunday.
P(B’|A’ ) = 0.20 = Probability of it not raining on Monday, if it did not rain on Sunday.

= What is the probability of it raining on Monday? - P(B)

= This would be the sum of the probability of "Raining on Sunday and raining on
Monday" and "Not raining on Sunday and raining on Monday*“

0.40 x 0.10 + 0.60 x 0.80 = 0.52 = 52% chance

15CS73 - Machine Learning Harivinod N 18




Example-3... QD LemaNing

"It rained on Monday. What is the probability it rained on Sunday?"
» This is where Bayes' theorem comes in.

= |t allows us to calculate the probability of an earlier event, given the result of a

later event.
P(B|A) P(A)

* The equation used is: P(A|B) = P(B)

= P(B|A) = 0.10 = Probability of it raining on Monday, if it rained on Sunday.
= P(A) = 0.40 = Probability of Raining on Sunday.
= P(B) = 0.52 = Probability of Raining on Monday.

= So, to calculate the probability it rained on Sunday, given that it rained on
Monday:

0.10 * 0.40 i.e. if it rained on Monday, there's a
P(A|B) = ——— = .0769 " ’
(4|B) 0.52 7.69% chance it rained on Sunday.
15CS73 - Machine Learning Harivinod N 19
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Bayes Theorem and Concept Learning % mﬂmfs

# \What is the relationship between Bayes theorem and the problem of
concept learning?

it can be used for designing a straightforward learning algorithm
#® Brute-Force MAP LEARNING algorithm

1. For each hypothesis h € H, calculate the posterior probability

P(D|h)P(h)

P(h|D) = PEES

2. Output hypothesis hjs 4 p With the highest posterior probability

harap = argmaz P(h|D)
he H

15CS73 - Machine Learning Harivinod N 21
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Brute-Force MAP Learning @ LEARNING

® in order to specify a learning problem for the algorithm, values for P(h) and P(D|h)
must be specified

®  assumptions
1. training data D is noise free (i.e., d; = ¢(z;))
2. target concept c is contained in H (i.e. (3h € H)[(Vz € X)[h(z) = c(z)]])
3. no reason to believe that any hypothesis is more probable than any other

1
=% Plh)— il forallh ¢ H

1 ifd; =h(z;)foralld;, € D
0 otherwise

15CS73 - Machine Learning Harivinod N 22




Brute-Force MAP Learning..(2) (] )MACHINE

® now the problem for the learning algorithms is fully-defined

® in afirst step, we have to determine the probabilites for P(h|D)

#® his inconsistent with training data D

0-P(h)
P(h|D) = —
(h|D) P(D)
# his consistent with training data D
([ |
PhD)=—H _ ___1H _ 1
P(D) VSu.p \VSu,pl

= this analysis implies that, under these assumptions, each consistent hypothesis is a
MAP hypothesis, because for each consistent hypothesis P(h|D) = 1

~ |VSH, D]
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Brute-Force MAP learning..(3) (] ) MACHINE

= Proof for derivation of P(D)

PD) =Y POWPE) = 3 1.—+ 3 0.~

hicH hieVSup | H] hi¢VSu, p A
— Z 1- 1 _ VSupl
hieVSunp 'HI |H|

= To summarize, Bayes theorem implies that the posterior

probability P(h|D) under our assumed P(h) and P(D|h) is
| m if h is consistent with D
P(h|D) = ‘

0 otherwise

= Every consistent hypothesis is, therefore, a MAP hypothesis.

15CS73 - Machine Learning Harivinod N 24




Brute-Force MAP Learning..(4) @ wﬂ',wﬁﬁ

i f
P(h) P(hD1) P(h|D1,D2)

B

hypotheses hypotheses hypotheses
(@) () (©)

# evolution of probabilities
(a) all hypotheses have the same probability
(b) + (¢) as training data accumulates, the posterior probability
of inconsistent hypotheses becomes zero while the total

probability summing to 1 is shared equally among the
remaining consistent hypotheses

15CS73 - Machine Learning Harivinod N 25
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Consistent Learner @ LEARNING

= We will say that a learning algorithm is a consistent learner
provided it outputs a hypothesis that commits zero errors
over the training examples.

= Every consistent learner outputs a MAP hypothesis,

* if we assume a uniform prior probability distribution over
H (i.e., P(h;) = P(h)) for all i, j), and
* if we assume deterministic, noise free training data.
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A MACHINE
" LEARNING

Consistent Learners
®» FIND-S

# outputs a consistent hypothesis and therefore a MAP hypothesis under the
probability distributions P(kh) and P(D|h) defined above

# i.e. for each P(h) that favors more specific hypotheses, FIND-S outputs a MAP
hypotheses

= Bayesian framework is a way to characterize the behaviour of learning algorithms

= by identifying probability distributions P(h) and P(D|h) under which the outputis a
optimal hypothesis, implicit assumptions of the algorithm can be characterized
(Inductive Bias)

= inductive inference is modeled by an equivalent probabilistic reasoning system based
on Bayes theorem

15CS73 - Machine Learning Harivinod N 27
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Maximum Likelihood and @ MACHINE
Least-Squared Error &

LEARNING

FIGURE 6.2
Learning a real-valued function. The target
function f corresponds to the solid lLine.
~ The training examples (x;,d;) are assumed
to have Normally distributed noise e; with
zero mean added to the true target value
f(x;). The dashed line corresponds to the
linear function that minimizes the sum of
squared errors. Therefore, it is the maximum
- likelihood hypothesis Az, given these five
x training examples.
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Maximum Likelihood and
Least-Squared Error

® problem: learning continuous-valued target functions (e.g. neural networks, linear
regression, etfc.)

® under certain assumptions any learning algorithm that minimizes the squared error
between the output hypothesis and the training data, will output a ML hypothesis

® problem setting:
# (Yh e H)h: X — R] and training examples of the form < z;,d; >
# unknown target function f: X — R

& mtraining examples, where the target value of each example is corrupted by
random noise drawn according to a Normal probability distribution with zero

mean (d; = f(x:i) + i)
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Maximum Likelihood and @. MACHINE
Least-Squared Error &/ LEARNING

har = argmaz p(D|h)
heH

The training examples are assumed to be mutually independent given k.

harr = argmax p(d; h)
heH H

Given the noise e; obeys a Normal distribution with zero mean and unknown variance o2,
each d; must also obey a Normal distribution around the true targetvalue f(x;).

Because we are writing the the expression for P(D|h), we assume h is the correct

description of f. Hence, p = f(x;) = h(z;)

m

1 : _
hyr = argmaz — e m(di—h(=))°
heH ;- V2mo?
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Maximum Likelihood and MACHINE
Least-Squared Error &/ LEARNING

It is common to maximize the less complicated logarithm, which is justified because of the

monotonicity of this function.

hayrp = argmazx Zlﬂ ! L (d; — h(z;))?

heH ‘= V2mo? 202

The first term in this expression is a constant independent of & and can therefore be
discarded.

1
harr, = argmazx (d; — h(z;))?
ML g tz: 992

Maximizing this negative term is equivalent to minimizing the corresponding positive term.

harr = argmin Z ;. — hiz;))?
hel 32




Maximum Likelihood and @ MACHINE
Least-Squared Error &/ LEARNING

Finally, all constants independent of i can be discarded.
T

harr = argmin d; — h(z;))*
ML am ;{ (i)

= the hjyy is one that minimizes the sum of the squared errars

® Why is it reasonable to choose the Normal distribution to
characterize noise?
# good approximation of many types of noise in physical systems
# Central Limit Theorem shows that the sum of a sufficiently large
number of independent, identically distributed random variables
itself obeys a Normal distribution

® only noise in the target value is considered, not in the attributes
describing the instances themselvs
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Minimum Description Length Principle @ mﬂ'rmfs

# recall Occam’s razor: choose the shortest explanation for the observed data

® here, we consider a Bayesian perspective on this issue and a closely related principle

# Minimum Description Length (MDL) Principle
£ motivated by interpreting the definition of ks 4 p in the light from information
theory

hayap = argmax P(D|h)P(h)
heH

harap = argmaz logs P(Dh) + log; P(h)
heH

harap = argmin — log, P(Dlh) — log, P(h)
heH

& this equation can be interpreted as a statement that short hypotheses are
preferred, assuming a particular representation scheme for encoding
hypotheses and data
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Minimum Description Length Principle @ MEAI-{:I;II:TNEG

$ introduction to a basic result of information theory

& consider the problem of designing a code C' to transmit messages drawn at
random

& probability of encountering message i is p;
# interested in the most compact code C

# Shannon and Weaver (1949) showed that the optimal code assigns — log, p;
bits to encode message @

# L (i) = description length of message i with respect to C

L¢y, (h) = —log, P(h), where Cy is the optimal code for hypothesis space H

L

Ley,,, (Dlh) = —log, P(D|h), where Cp|;, is the optimal code for describing data
D) assuming that both the sender and receiver know hypothesis &

= Minimum description length principle

hayrap = argmin Loy, (R) + Loy, (D]R)
heH '

15CS73 - Machine Learning Harivinod N 37

Minimum Description Length Principle @ ré\l_{:;l,wﬁﬁ

B to apply this principle in practice, specific encodings or representations appropriate
for the given learning task must be chosen

B application to decision tree learning

& 'y might be some obvious encoding, in which the description length grows
with the number of nodes and with the number of edges
# choice of C'pp?
& sequence ofinstances < 4, ..., 7, > IS known to the transmitter and the
receiver
& we need only to transmit the classifications < f(z), ..., f(zm) >
& if h correctly predicts the classification, no transmission is neccessary
(Leyy, (DIR) = 0)
£ in case of misclassified examples, for each missclassification a message
has to be sent that identifies this example (at most log,, m bits) as well as
its correct classification (at most log, k bits, where k is the number of
possible classifications)
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Minimum Description Length Principle @ MEAI-{:I;IIIITNEG

= MDL principle provides a way for trading off hypothesis
complexity for the number of errors committed by the
hypothesis

" |t is one way of dealing with the issue of overfitting
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Naive Bayesian Classifier @ MACHINE

X

LEARNING

applies to learning tasks where each instance x is described by a
conjunction of attribute values and where the target function f(z)
can take on any value from some finite set VV

training examples are described by < a;.as,....,a, >

Bayesian approach

vpap = argmaz P(vjlay,as, ..., an)
v; EV

Pldiag, ..., a,]0:)P(0;)
— argmax
viEV Pldt;aoy..0)

= argmaxr P(al. g, ..., 0, |PJ')P(1'1J}
l’jEIf’
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Naive Bayesian Classifier @ MACHINE

LEARNING

P(v;) can be estimated by counting the frequency of v; in D

P(ai,as, ..., a,|v;) cannot by estimated in this fashion
& number of these terms is | X| - |V

simplification of naive Bayes classifier
# attribute values are conditionally independent
# hence, P(a,aq,...,a,|v;) = []; P(a:|v;)
# hence, number terms is |distinct attributes| - |distinct target
values| + |distrinct target values|

#» no explicit search through H, just counting frequencies

= Naive Bayes Classifier

v; EV

vyp = argmazx P(v;) HP(&,;I-UJ-)
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NBC-lllustrative Example @ w&m&s

Day Sunny Temp. Humidity Wind  PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
BE] Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12  Overcast Mild High Strong Yes
D13  Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
15CS73 - Machine Learning Harivinod N 43

NBC-lllustrative Example @ mfmﬁﬁ

» novel instance:

< Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = Strong >
$ nstantiation of the Naive Bayes Classifier

vyg = argmazr P(v;) HP(azh )

vyclyesino)

where

H P(a;|v;) =P(Outlook = sunny|v;) - P(Temperature = cool|v;)-
P(Humidity = high|v;) - P(Wind = strong|v;)

$ estimation of probabilities

P(PlayT ennis = yes) = % .64 P(PlayTennis = no) = % = .36

15CS73 - Machine Learning Harivinod N 44




NBC-lllustrative Example @ w&m&s

# similarly, conditional probabilites can be estimated (e.g.
Wind = Strong)

P(Wind = Strong|PlayT ennis = yes) =

P(Wind = Strong|PlayT ennis = no) =

= .33
= .60

ol

e 1)5]

$ calculation of vy 5
Plyes)P(sunny|yes) P(cool|yes) P(high|yes) P(strong|yes) = .0053
P(no)P(sunny|no)P(cool|no)P{high|no) P(strong|no) = .0206

= Uy g = No

» normalization

0206 _ 7QE
0306.+.0053 — 199
15CS73 - Machine Learning Harivinod N 45

Estimating probabilities @ wﬂm‘ﬁg

#$ normally, probabilites are estimated by the fraction of times the event is observed to
occur over the total number of opportunities (== )

in most cases, this method is a good estimate

L 8

but if n. is very small, it provides poor results
# biased underestimate of the probability
& if this estimate equals zero, it will dominate the Bayes classifier

® Bayesian approach: m-estimate

e + Mp
n-+m
where p is a prior estimate of the probability we wish to determine, and mis a
constant called the equivalent sample size which determines how heavily to weight p
relative to the observed data
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Estimating probabilities MACHINE

LEARNING

#® in the absence of information, it is common to assume a uniform distribution for p
$ hence p= % where k is the number of possible attribute values
® ifm =0, the m-estimate is equivalent to 2=
® 1 can be interpreted as the number of virtual samples distributed according to p that
are added the n actual observed examples
15CS73 - Machine Learning Harivinod N 47
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Bayesian Belief Networks @ mﬂ',wﬁs

#® motivation
# naive Bayes classifier makes significant use of the assumption
of conditional independence

# this assumption dramatically reduces the complexity of the
learning task

» however, in many cases this assumption is overly restrictive

# Bayesian Belief Network

# describes probability distribution governing a set of variables by
specifying a set of conditional independence assumptions along
with a set of conditional probabilites

# conditional independence assumption applies only to subsets
of the variables

15CS73 - Machine Learning Harivinod N 49
@ MACHINE
&/ LEARNING
Probabhility
Theory
/ Probabilistic
| graphical
| models
A\
Graph \1| g
Theory
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Notation QD LemaNing

® Bayesian Belief Networks describe the probability distribution over a
set of variables

® arbitrary set of random variables Y3, ..., Y,, where V(Y;) is the set of
possible values for Y;

® joint space: V(Y1) x V(Ya) x ... x V(Y,)

® joint probability distribution specifies the probability for each of the
possible variable bindings for the tuple < ¥7.Y5,....Y,, >

15CS73 - Machine Learning Harivinod N 51

Representation @ m{:mpfg

Bayesian networks (BN) are represented by directed acyclic graphs.

SB S—-B —-5B —-5-B
C 04 01 08 0.2
- 06 09 02 0.8
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LEARNING

® joint probability distribution over the boolean variables Storm, Lighting, Thunder,
ForestFire, CampFire, and BusTourGroup

Representation @ MACHINE

#® set of conditional independence assumptions
# represented by a DAG
# node = variables in the joint space
# arcs = conditional dependence of the originator

#® for each node a conditional probability table is given

#$ describes probability distribution for the variable given the values of its
immediate precedessors

& the joint probability for any desired assignment of < y1,y2,...,yn > I8
computed by

T

P(y1,42, ) = | | Pws| Parents(Y3))
i=1

where Parents(Y;) denotes the set of immediate precedessors of Y;
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Inference QD e

® task: inference of the probability distribution for a target value, e.g.
ForestFire

® if values are known for all other variables in the network, the
inference is straightforward

# in the more general case, values are only known for a subset of the
network variables

# a Bayesian Network can be used to compute the the probability
distribution for any subset of network variables given the values or
distributions for any subsetof the remaining variables

# exactinference is NP-hard, even approximate inference can be
NP-hard
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Example

D

MACHINE
LEARNING

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a

burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call

15CS73 - Machine Learning Harivinod N 55
QD Lenmine
Caiarm D) p(AlBE)
P(J|A) \. P(M|A)
(ohncalls
56
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@ MACHINE
&/ LEARNING

P(B) P(E)
T F ) F
Burglary )| 0.001 0.999 | ( Earthquake ) 0.002 0.998
P(A|B,E)
/ BE| T F
T T | 0.95 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999
P(J|A) \ P(M|A)
Al T F Al T F
T|0.90 0.1 T|07 03
F]0.050.95 F|o0.01 0.99
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MACHINE
Compactness @ LEARNING

A CPT for Boolean X, with /i Boolean parents has
2" rows for the combinations of parent values

Each row requires one number p for X; =true
(the number for X, = false is just 1 — p)

If each variable has no more than £ parents,
the complete network requires O(n - 2) numbers

B (B
(A)

g W

l.e., grows linearly with 72, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 + 2 + 2=10 numbers (vs. 2° — 1 = 31)
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Conditional Probability Table(CPT) @ MACHINE

LEARNING
A Joint Distribution for a network with n Boolean nodes has
2" — 1 rows for the combinations of parent values.

B EA,JM|P
11 1 1 1/[[2
1 111 0/[2
1 110 1/[[2
1110 002 Total: 32 rows... Ok, 31.
1101 1/[[2
1 101 0/[?
AR - R P(A), P(B)
: P(ClAD)
0000 0 [? & Fiomd -

@ @ P(A.B.C,ME)'—'

25| =3\ WAM!OI ¢)-PEXC)

- G z 2
10
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“Global” semantics defines the full joint distribution @ MACHINE
as the product of the local conditional distributions: &/ LEARNING

BlEi, 0 epEn)= H_:-L 1 Plz;|parents(X;))
eg., P(jAmAan—-bA —e)

= P(jla)P(m|a)P(a|-b, ~e)P(—b)P(—e)
0.9 x 0.7 x 0.001 x 0.999 x 0.998
~ 0.00063

¢

P(B) P(E)
T F T F

Burglary )| 0.001 0.999 | { Earthquake ) |0.002 0.998

P(A[B,E)
T F

B E
T T 095 0.05
T F | 0.94 0.06
FT
F F

0.29 0.71

0.001 0.999

P(1|A) \ P(M|A)
Al T F B T F
T| 0.90 0.1 Tl07 03
F| 005 0.5 F| 001 099
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MACHINE
)/ LEARNING
I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor

earthquakes. Is there a burglar? ' P P©
Choose:
@ P(A|B,E)
Goal : argmaxpe(11yP(j = t,m=t,a=t,b,e =) SN
Gomncats

PU=t,m=La=Lb=e=N=Pj=la=NPAm=la=NHNa=tb=1Le=NPb=1Me=1)

Vi
Pi=t,m=ta=tb=lLe=N=Pj=Ha=NPAm=Ha=0NPa=1b=Le=NPb=NMNe=1T)
000628
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Categorizations of Algorithms @ réﬂ','f,‘,fﬁ

#» network structure: Known or unknown
® network variables: observable or partially observable
in case of known structure and fully observable variables, the

conditional probabilities can be estimated as for naive Bayes
classifier

# in case of known structure and partially observable variables, the
learning problem can be compared to learning weights for an ANN
(Russel et al., 1995)

# in case of unknown stucture, heuristic algorithms or scoring metric
have to be used (Cooper and Herskovits, 1992)
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™ MACHINE
-9

Quiz :, LEARNING

Dy e
® QD ® W vy PRRALITY \ALUES
ARE Geed T (pecipy
E) B TS WG ek 7

15CS73 - Machine Learning Harivinod N 63
Quiz @ MACHINE
&/ LEARNING

‘ P(a, b, c, d, e) =P(a)P(b)P(c|b)P(d]|a,c)P(e|d)
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P(a, b, c, d, e) =P(a)P(b)P(c|b)P(d|a,c)P(e|d)

Pla) Pibla) Fielb) Pid|c)

P(a, b, c, d) = P(a)P(b|a)P(c|b)P(d|c)
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MACHINE

Module 4- Outline é " L EARNING

Bayesian Learning

Introduction

Bayes Theorem

Bayes Theorem and Concept Learning
Maximum Likelihood and Least Square Hypothesis
Maximum Likelihood Hypothesis for Predicting Probabilities
Minimum Description Length Principle
Naive Bayes Classifier

Bayesian Belief Networks

EM Algorithm

10. Summary

o 0 N O Uk WN PR
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: : MACHINE
Motivation @
%/ LEARNING
® [n many practical learning settings, only a subset of the relevant instance
features might be observable.

= For example, among many Storm, Lightning, Thunder, ForestFire, Campfire,
and BusTourGroup have been observed. (In BBN example)

= |f some variable is sometimes observed and sometimes not, then we can
use the cases for which it has been observed to learn to predict its values
when it is not.

= Many approaches have been proposed to handle the problem of learning in
the presence of unobserved variables.

= EM algorithm (Dempster et al. 1977), a widely used approach to learning in
the presence of unobserved variables.

= The EM algorithm can be used
* even for variables whose value is never directly observed,

* provided the general form of the probability distribution governing
these variables is known.

15CS73 - Machine Learning Harivinod N 67

Estimating Means of k Gaussians @ ["E"fﬁ'ﬁ'fﬁs

= Consider a problem in which the data D is a set of instances are - a
mixture of k distinct Normal distributions.

= This problem setting is illustrated in Figure for the case where k=2 and
where the instances are the points shown along the x axis.

= Each instance is generated using a two-step process.
* First, one of the k Normal distributions is selected at random.

* Second, a single random instance x; is generated according to this
selected distribution.

= This process is repeated to generate a set of data points as shown in the
figure. S —

plx)

FIGURE 6.4 ’ :
Instances generated by a mixture of two Normal distributions with identical variance . The instances
. . are shown by the points along the x axis. If the means of the Normal distributions are unknown, the
15CS73 - Machine Learning EM algorithm can be used to search for their maximum likelihood estimates.




Estimating Means of k Gaussians @ MEAIEF“MG

= To simplify our discussion, we consider the special case
* where the selection of the single Normal distribution at each step is
based on choosing each with uniform probability,
* where each of the k Normal distributions has the same variance ¢?,
known value.

* The learning task is to output a hypothesis h = (p,, . . . ,p,) that describes
the means of each of the k distributions.

= We would like to find a maximum likelihood hypothesis for these means;
that is, a hypothesis h that maximizes p(D |h).

m
e = argmin}

i=l

px)

FIGURE 6.4 :
Instances generated by a mixture of two Normal distributions with identical variance o. The instances
1r are shown by the points along the x axis. If the means of the Normal distributions are unknown, the 69
~ EM algorithm can be used to search for their maximum likelihood estimates.

Estimating Means of k Gaussians @ wﬂwﬁﬁ

= Qur problem here, however, involves a mixture of k different Normal
distributions, and we cannot observe which instances were generated by
which distribution.

» we can think full description of each instance as the triple (x;, z;;, z;,),
* where x. is the observed value of the it"instance and

* where z;; and z;, indicate which of the two Normal distributions was
used to generate the value x.

* In particular, z; has the value 1 if x; was created by the jt" Normal
distribution and 0 otherwise.

" Here x; is the observed variable in the description of the instance, and z;
and z, are hidden variables.

* If the values of z;, and z;, were observed, we could use following
Equation to solve for the means p, and p,.

* Because they are not, we will instead use the EM algorithm.
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EM algorithm Q0 LEaiing

Step 1: Calculate the expected value E{z;] of each hidden variable z;, assuming
the current hypothesis & = (u1, u2} holds.

Step 2: Calculate a new maximum likelithood hypothesis &' = {(u}, u53), assuming
the value taken on by each hidden variable z; is its expected value E[zy]
calculated in Step 1. Then replace the hypothesis & = (u1, u2) by the
new hypothesis 7’ = (u}, u5) and iterate.

pix = xilp = i)
Elz;] = =5 ( — | ~ ) Y, Elz;) x;
ep L —p? i=1 1]
e 5,7 i 1y
- 2 o~ o7 i)
The current hypothesis is used to estimate the unobserved
variables, and the expected values of these variables are then used
to calculate an improved hypothesis.
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EM 1-d example @ mﬂmfg

P |b)= 'r-l-—.ﬂ . j?:l]
\'28'0, oo,

P(x, | B)P(b)
Px | b)P(b)+ P(x | a)Pa)

a=Ma|x)=1-b

bx +bx,+ . .+bx

b =Pb|x)=

K

bo4b, +..4b,
g = b:{"‘-'. “'ﬂ;} ""*b:{xa "F,];
. boob, +..+b,
ax +ax, +.+ax,
#’ =n
a~a,v.ra,

‘= “s{x. "li}- . '".“4(’1 ﬂ‘)‘
a,4a,+..+a,

could also estimate priors:
P(b)=(b,+b,+..b)/n

_ A\ P(a) = 1 - P(b)
@ W " TITLL O-'b
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: : MACHINE
Mixture models in 1D @
LEARNING
* Observations x, ... x,, P o Ao
n

- = i i 2 . b .
K=2 Gaussians with unknown y, o oo ) e (=)

— estimation trivial if we know the ? n,

source of each observation
oo oo - .

* What if we don’t know the source?

* If we knew parameters of the Gaussians (i, 0?)
—~ can guess whether point is more likelytobe aorb

a—a do .A;.
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&b tErminG
Gaussian
Mixture
Example: ® <
Start ®

L
\\.‘ I."II
Advance apologies: in Black \ g L i
and White this example will be % e
incomprehensible = = s
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@ MACHINE
&/ LEARNING

After first ¥ 0@
iteration | ‘o 8
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After 2nd
iteration
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After 3rd
iteration
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After 4th
iteration
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After 5th
iteration
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After 6th
iteration
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@ MACHINE
&/ LEARNING
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After 20th
iteration
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&/ LEARNING
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. ®\ MACHINE
EM Algorithm @ LEARNING

* Chicken and egg problem
— need (u,, 0,°) and (p,, 0,%) to guess source of points
~ need to know source to estimate (u,, 0,?) and (u,, 0,7%)

* EM algorithm
— start with two randomly placed Gaussians (u,, 0,%), (K, 0,°)
— for each point: P(b|x,) = does it look like it came from b?
— adjust (p,, 0,%) and (u,, 0,7) to fit points assigned to them
— iterate until convergence
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MACHINE

AN
Module 4- Outline é |
LEARNING

Bayesian Learning

Introduction

Bayes Theorem

Bayes Theorem and Concept Learning
Maximum Likelihood and Least Square Hypothesis
Maximum Likelihood Hypothesis for Predicting Probabilities
Minimum Description Length Principle
Naive Bayes Classifier

Bayesian Belief Networks

EM Algorithm

10. Summary

W 0 N O U B~ W DN PRE
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MACHINE
Summary @ LEARNING

= Bayesian methods provide the basis for probabilistic learning methods
that accommodate (and require) knowledge about the prior probabilities
of alternative hypotheses and about the probability of observing various
data given the hypothesis.

= Bayesian methods allow assigning a posterior probability to each
candidate hypothesis, based on these assumed priors and the observed
data.

= Bayesian methods can be used to determine the most probable
hypothesis given the data-the maximum a posteriori (MAP) hypothesis.

* This is the optimal hypothesis in the sense that no other hypothesis is
more likely.
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MACHINE
Summary @ LEARNING

= The framework of Bayesian reasoning can provide a useful basis for
analyzing certain learning methods that do not directly apply Bayes
theorem.

* For example, under certain conditions it can be shown that minimizing
the squared error when learning a real-valued target function
corresponds to computing the maximum likelihood hypothesis.

= The Minimum Description Length principle recommends choosing the
hypothesis that minimizes the description length of the hypothesis plus
the description length of the data given the hypothesis.
* Bayes theorem and basic results from information theory can be used
to provide a rationale for this principle.
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Summary Q0 LEaiing

= The naive Bayes classifier is a Bayesian learning method that has been
found to be useful in many practical applications.

= |t is called "naive" because it incorporates the simplifying assumption that
attribute values are conditionally independent, given the classification of
the instance.

= When this assumption is met, the naive Bayes classifier outputs the MAP
classification.

= Even when this assumption is not met, as in the case of learning to classify
text, the naive Bayes classifier is often quite effective.

= Bayesian belief networks provide a more expressive representation for
sets of conditional independence assumptions among subsets of the
attributes.
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Summary QD e

® [n many practical learning tasks, some of the relevant instance variables
may be unobservable.

= The EM algorithm provides a quite general approach to learning in the
presence of unobservable variables.

* This algorithm begins with an arbitrary initial hypothesis.

* It then repeatedly calculates the expected values of the hidden
variables (assuming the current hypothesis is correct), and then
recalculates the maximum likelihood hypothesis (assuming the hidden
variables have the expected values calculated by the first step).

= This procedure converges to a local maximum likelihood hypothesis, along
with estimated values for the hidden variables.
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