
 

 

 VIVEKANANDA  
College of Engineering & Technology 

Nehrunagar post, Puttur, D.K. 574203 

 
 

 

Lecture Notes  

on 

 

 
 

Subject Code: 15CS73  

(CBCS Scheme) 
 

 

Prepared by 

Mr. Harivinod N  
Dept. of Computer Science and Engineering,  

VCET Puttur 
 

 

 

 
 

 

 

 

 

Course website:  

www.techjourney.in  

Module-4 

Bayesian Learning 

http://www.techjourney.in/


Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.2 

 

Module-3: Bayesian Learning 

1.1 Introduction 

Bayesian reasoning provides a probabilistic approach to inference. It assumes that the 

quantities of interest are governed by probability distributions and that optimal decisions can 

be made by reasoning about these probabilities together with observed data. It is important to 

machine learning because it provides a quantitative approach to weighing the evidence 

supporting alternative hypotheses.  

Bayesian learning methods are relevant to our study of machine learning for two different 

reasons.  

• First, Bayesian learning algorithms that calculate explicit probabilities for hypotheses, 

such as the naive Bayes classifier, are among the most practical approaches to certain 

types of learning problems.  

• The second reason that Bayesian methods are important to our study of machine 

learning is that they provide a useful perspective for understanding many learning 

algorithms that do not explicitly manipulate probabilities.  

Features of Bayesian learning methods include: 

• Each observed training example can incrementally decrease or increase the estimated 

probability that a hypothesis is correct. This provides a more flexible approach to 

learning than algorithms that completely eliminate a hypothesis if it is found to be 

inconsistent with any single example. 

• Prior knowledge can be combined with observed data to determine the final probability 

of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a 

prior probability for each candidate hypothesis, and (2) a probability distribution over 

observed data for each possible hypothesis. 

• Bayesian methods can accommodate hypotheses that make probabilistic predictions 

(e.g., hypotheses such as "this pneumonia patient has a 93% chance of complete 

recovery"). 

• New instances can be classified by combining the predictions of multiple hypotheses, 

weighted by their probabilities. 

• Even in cases where Bayesian methods prove computationally intractable, they can 

provide a standard of optimal decision making against which other practical methods 

can be measured. 

One practical difficulty in applying Bayesian methods is that they typically require initial 

knowledge of many probabilities. When these probabilities are not known in advance they are 

often estimated based on background knowledge, previously available data, and assumptions 

about the form of the underlying distributions. A second practical difficulty is the significant 

computational cost required to determine the Bayes optimal hypothesis in the general case 

(linear in the number of candidate hypotheses). In certain specialized situations, this 

computational cost can be significantly reduced.  



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.3 

 

2. Bayes Theorem 

In machine learning we are often interested in determining the best hypothesis from some space 

H, given the observed training data D.  Bayes theorem provides a way to calculate the 

probability of a hypothesis based on its prior probability, the probabilities of observing various 

data given the hypothesis, and the observed data itself. 

To define Bayes theorem precisely, let us first introduce a little notation.  

• We shall write P(h) to denote the initial probability that hypothesis h holds, before we 

have observed the training data. P(h) is often called the prior-probability of h and may 

reflect any background knowledge we have about the chance that h is a correct 

hypothesis. 

• Similarly, we will write P(D) to denote the prior probability that training data D will 

be observed  

• Next, we will write P(D|h) to denote the probability of observing data D given some 

world in which hypothesis h holds. In general, we write P(x|y) to denote the probability 

of x given y. In machine learning problems we are interested in the probability P(h|D) 

that h holds given the observed training data D. P(h|D) is called the posterior-

probability of h, because it reflects our confidence that h holds after we have seen the 

training data D. Notice the posterior probability P(h|D) reflects the influence of the 

training data D, in contrast to the prior probability P(h), which is independent of D. 

Bayes theorem provides a way to calculate the posterior probability P(h|D), from the prior 

probability P(h), together with P(D) and P(D|h). 

                  Bayes theorem:        …(1) 

 

As one might intuitively expect, P(h|D) increases with P(h) and with P(D|h) according to Bayes 

theorem. It is also reasonable to see that P(h|D) decreases as P(D) increases, because the more 

probable it is that D will be observed independent of h, the less evidence D provides in support 

of h. 

In many learning scenarios, the learner considers some set of candidate hypotheses H and is 

interested in finding the most probable hypothesis h ∈ H given the observed data D (or at least 

one of the maximally probable if there are several). Any such maximally probable hypothesis 

is called a maximum a posteriori (MAP) hypothesis. We can determine the MAP hypotheses 

by using Bayes theorem to calculate the posterior probability of each candidate hypothesis. 

More precisely, we will say that hMAP is a MAP hypothesis provided, 

…(2) 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.4 

 

Notice in the final step above we dropped the term P(D) because it is a constant independent 

of h. In some cases, we will assume that every hypothesis in H is equally probable a priori          

( P(hi) = P(hj) for all hi and hj in H). In this case we can further above equation and need only 

consider the term P(D|h) to find the most probable hypothesis. P(D|h) is often called the 

likelihood of the data D given h, and any hypothesis that maximizes P(D|h) is called a 

maximum likelihood (ML) hypothesis, hML 

   …(3) 

In order to make clear the connection to machine learning problems, we introduced Bayes 

theorem above by referring to the data D as training examples of some target function and 

referring to H as the space of candidate target functions. 

 

Summary of basic probability formulas. 

 

Example:  To illustrate Bayes rule, consider a medical diagnosis problem in which there are 

two alternative hypotheses: (1) that the patient has a particular form of cancer, and (2) that 

the patient does not. The available data is from a particular laboratory test with two possible 

outcomes: ⊕ (positive) and ⊖ (negative). We have prior knowledge that over the entire 

population of people only .008 have this disease. Furthermore, the lab test is only an imperfect 

indicator of the disease. The test returns a correct positive result in only 98% of the cases in 

which the disease is actually present and a correct negative result in only 97% of the cases in 

which the disease is not present. In other cases, the test returns the opposite result.  

Suppose we now observe a new patient for whom the lab test returns a positive result. Should 

we diagnose the patient as having cancer or not?  

Solution: The above situation can be summarized by the following probabilities: 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.5 

 

The maximum a posteriori hypothesis can be found using Equation (2): 

 

Thus, hmap= ¬ cancer. ( No Cancer) 

Note: The exact posterior probabilities can also be determined by normalizing the above 

quantities so that they sum to 1.  

 

This step is warranted because Bayes theorem states that the posterior probabilities are just the 

above quantities divided by the probability of the data, P(⊕). Although P(⊕) was not provided 

directly as part of the problem statement, we can calculate it in this fashion because we know 

that P(cancer|⊕) and P(¬cancer|⊕) must sum to 1.   

Notice that while the posterior probability of cancer is significantly higher than its prior 

probability, the most probable hypothesis is still that the patient does not have cancer. 

As this example illustrates, the result of Bayesian inference depends strongly on the prior 

probabilities, which must be available in order to apply the method directly. Note also that in 

this example the hypotheses are not completely accepted or rejected, but rather become more 

or less probable as more data is observed. 

 

3. Bayes theorem and Concept Learning 

What is the relationship between Bayes theorem and the problem of concept learning? Since 

Bayes theorem provides a principled way to calculate the posterior probability of each 

hypothesis given the training data, we can use it as the basis for a straightforward learning 

algorithm that calculates the probability for each possible hypothesis, then outputs the most 

probable. 

3.1 Brute-Force Bayes Concept Learning 

Consider the concept learning problem first introduced in Module-1. Assume the learner 

considers some finite hypothesis space H defined over the instance space X, in which the task 

is to learn some target concept c : X → {0,1}. As usual, we assume that the learner is given 

some sequence of training examples ((x1, d1 ) . . . (xm, dm)) where xi is some instance from X 

and where di is the target value of xi (i.e., di = c(xi)). To simplify the discussion in this section, 

we assume the sequence of instances (xl . . . xm) is held fixed, so that the training data D can be 

written simply as the sequence of target values D = (dl . . . dm) 

We can design a straightforward concept learning algorithm to output the maximum a posteriori 

hypothesis, based on Bayes theorem, as follows: 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.6 

 

Brute-Force Map Learning Algorithm 

 

This algorithm may require significant computation, because it applies Bayes theorem to each 

hypothesis in H to calculate P(h|D ). While this may prove impractical for large hypothesis 

spaces, the algorithm is still of interest because it provides a standard against which we may 

judge the performance of other concept learning algorithms. 

We assume the following.  

1. The training data D is noise free (i.e., di = c(xi)). 

2. The target concept c is contained in the hypothesis space H 

3. We have no a priori reason to believe that any hypothesis is more probable than any 

other. 

Given no prior knowledge ( i.e. P(h) is not given) that one hypothesis is more likely than 

another, it is reasonable to assign the same prior probability to every hypothesis h in H. 

 

Now, P(D|h) is the probability of observing the target values D = (dl . . .dm) for the fixed set of 

instances (x1 . . . xm), given a world in which hypothesis h holds (i.e., given a world in which 

h is the correct description of the target concept c). Since we assume noise-free training data, 

the probability of observing classification di given h is just 1 if di = h(xi) and 0 if di ≠ h(xi). 

Therefore,       

                                                                                                                              ..(4) 

 

In other words, the probability of data D given hypothesis h is 1 if D is consistent with h, and 

0 otherwise. Recalling Bayes theorem, we have, 

 

First consider the case where h is inconsistent with the training data D. Here P(D|h) = 0 due to 

Equation (4). Thus, the posterior probability of hypothesis is  

 

 

Now consider the case where h is consistent with D. Since Equation (4) defines P(D|h) = 1 

when h is consistent with D, we have 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.7 

 

 

where VSH,D is the Version Space (subset of hypotheses) from H that are consistent with D. 

The derivation for P(D) is as follows 

 

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed 

P(h) and P(D|h) is 

 

 

Every consistent hypothesis is, therefore, a MAP hypothesis. 

The evolution of probabilities associated with hypotheses is depicted schematically in Figure 

given below.  Initially (Figure 6.1a) all hypotheses have the same probability. As training data 

accumulates (Figures 6.1b and 6.lc), the posterior probability for inconsistent hypotheses 

becomes zero while the total probability summing to one is shared equally among the 

remaining consistent hypotheses. 

 

3.2 MAP Hypotheses and Consistent Learners 

The above analysis shows that in the given setting, every hypothesis consistent with D is a 

MAP hypothesis. We will say that a learning algorithm is a consistent learner provided it 

outputs a hypothesis that commits zero errors over the training examples. Given the above 

analysis, we can conclude that every consistent learner outputs a MAP hypothesis, if we assume 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.8 

 

a uniform prior probability distribution over H (i.e., P(hi) = P(hj) for all i, j), and if we assume 

deterministic, noise free training data.  

The Bayesian framework allows one way to characterize the behavior of learning algorithms 

(e.g., FIND-S), even when the learning algorithm does not explicitly manipulate probabilities. 

By identifying probability distributions P(h) and P(D|h) under which the algorithm outputs 

optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions, under which this 

algorithm behaves optimally. Thus, Bayesian analysis can be used to show that a particular 

learning algorithm outputs MAP hypothesis even though it may not explicitly use Bayes rule 

or calculate probabilities in any form. 

So far we discussed a special case of Bayesian reasoning, where P(D|h) takes on values of only 

0 and 1, reflecting the deterministic predictions of hypotheses and the assumption of noise-free 

training data. In the next section, we model learning from noisy training data, by allowing 

P(D|h) to take on values other than 0 and 1, and by introducing into P(D|h) additional 

assumptions about the probability distributions that govern the noise. 

 

4. Maximum Likelihood and Least-Squared Error Hypotheses 

In this section we consider the problem of learning a continuous-valued target function. This 

is a problem faced by many learning approaches such as neural network learning, linear 

regression, and polynomial curve fitting. A straightforward Bayesian analysis will show that 

under certain assumptions any learning algorithm that minimizes the squared error between the 

output hypothesis predictions and the training data will output a maximum likelihood 

hypothesis.  

Consider the following problem. Learner L considers an instance space X and a hypothesis 

space H consisting of some class of real-valued functions defined over X (i.e., each h in H is a 

function of the form h : X→R, where R represents the set of real numbers). The problem faced 

by L is to learn an unknown target function f : X→R drawn from H.  A set of m training 

examples is provided, where the target value of each example is corrupted by random noise 

drawn according to a Normal probability distribution. More precisely, each training example 

is a pair of the form (xi, di) where di = f (xi) + ei. Here f (xi) is the noise-free value of the target 

function and ei is a random variable representing the noise. It is assumed that the values of the 

ei are drawn independently and that they are distributed according to a Normal distribution with 

zero mean. The task of the learner is to output a maximum likelihood hypothesis, or, 

equivalently, a MAP hypothesis assuming all hypotheses are equally probable a priori. 

Example: A simple example of such a problem is learning a linear function, though our 

analysis applies to learning arbitrary real-valued functions. Figure 6.2 illustrates the whole 

scenario. Here notice that the maximum likelihood hypothesis is not necessarily identical to 

the correct hypothesis, f, because it is inferred from only a limited sample of noisy training 

data. 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.9 

 

 

 

Before showing why a hypothesis that minimizes the sum of squared errors in this setting is 

also a maximum likelihood hypothesis, let us quickly review two basic concepts from 

probability theory: probability densities and Normal distributions. 

Probability densities: 

First, in order to discuss probabilities over continuous variables such as e, we must introduce 

probability densities. The reason, roughly, is that we wish for the total probability over all 

possible values of the random variable to sum to one. In the case of continuous variables we 

cannot achieve this by assigning a finite probability to each of the infinite set of possible values 

for the random variable. Instead, we speak of a probability density for continuous variables 

such as e and require that the integral of this probability density over all possible values be one. 

In general, we will use lower case p to refer to the probability density function, to distinguish 

it from a finite probability P (which we will sometimes refer to as a probability mass). The 

probability density p(x0) is the limit as E goes to zero, of times the probability that x will take 

on a value in the interval [x0, x0 + 6). 

Probability density function:  

 

Normal Distribution: Random noise variable e is generated by a Normal probability 

distribution. A Normal distribution (also called a Gaussian distribution) is a smooth, bell-

shaped distribution that can be completely characterized by its mean μ and its standard 

deviation σ. It can be defined by the probability density function.  

 

 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.10 

 

A Normal distribution is fully determined by two parameters in the above formula: μ and σ. If 

the random variable X follows a normal distribution, then: 

• The probability that X will fall into the interval (a, b) is given by 

• The expected, or mean value of X, E[X], is E[X] = μ 

• The variance of X, Var(X), is Var(X) = σ2 

• The standard deviation of X, σx, is σx = σ 

The Central Limit Theorem states that the sum of a large number of independent, identically 

distributed random variables follows a distribution that is approximately Normal. 

Prove: Maximum likelihood hypothesis hML minimizes the sum of the squared errors between 

the observed training values di and the hypothesis predictions h(xi) 

Proof:  From equation (3) we have 

 

Let set of training instances be (x1 , … ,  xm) and therefore consider the data D to be the 

corresponding sequence of target values D = (dl , …  , dm). Here di = f(xi) + ei. Assuming the 

training examples are mutually independent given h, we can write P(D|h) as the product of the 

various p(di|h) 

 

Given that the noise ei obeys a Normal distribution with zero mean and unknown variance σ2, 

each di must also obey a Normal distribution with variance σ2 centered around the true target 

value f(xi) rather than 0. Therefore p(di|h) can be written as a Normal distribution with variance 

σ2 and mean p = f (xi). Let us write the formula for this Normal distribution to describe p(di 

|h), using  general formula for a Normal distribution and substituting the appropriate μ and σ2. 

Because we are writing the expression for the probability of di given that h is the correct 

description of the target function f, we will also substitute μ = f (xi) = h(xi), yielding 

 

We now apply a transformation that is common in maximum likelihood calculations: Rather 

than maximizing the above complicated expression we shall choose to maximize its (less 

complicated) logarithm. This is justified because ln p is a monotonic function of p. Therefore, 

maximizing ln p also maximizes p. 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.11 

 

The first term in this expression is a constant independent of h, and can therefore be discarded, 

yielding, 

 

 

Maximizing this negative quantity is equivalent to minimizing the corresponding positive 

quantity. 

 

Finally, we can again discard constants that are independent of h. 

 

Above equation shows that the maximum likelihood hypothesis hML is the one that minimizes 

the sum of the squared errors between the observed training values di and the hypothesis 

predictions h(xi). 

Limitations: The above analysis considers noise only in the target value of the training 

example and does not consider noise in the attributes describing the instances themselves. 

 

5. Maximum Likelihood Hypotheses for Predicting Probabilities 

In the problem setting of the previous section we determined that the maximum likelihood 

hypothesis is the one that minimizes the sum of squared errors over the training examples. In 

this section we derive an analogous criterion for a second setting that is common in neural 

network learning: learning to predict probabilities. 

Consider the setting in which we wish to learn a nondeterministic (probabilistic) function              

f : X →{0, 1}, which has two discrete output values. For example, the instance space X might 

represent medical patients in terms of their symptoms, and the target function f (x) might be 1 

if the patient survives the disease and 0 if not. Alternatively, X might represent loan applicants 

in terms of their past credit history, and f (x) might be 1 if the applicant successfully repays 

their next loan and 0 if not. In both of these cases we might well expect f to be probabilistic. 

For example, among a collection of patients exhibiting the same set of observable symptoms, 

we might find that 92% survive, and 8% do not. This unpredictability could arise from our 

inability to observe all the important distinguishing features of the patients, or from some 

genuinely probabilistic mechanism in the evolution of the disease. Whatever the source of the 

problem, the effect is that we have a target function f (x) whose output is a probabilistic function 

of the input. 

Given this problem setting, we might wish to learn a neural network (or other real-valued 

unction approximator) whose output is the probability that f (x) = 1. In other words, we seek 

to learn the target function, f ’ : X →{0, 1}, such that f '(x) = P( f (x) = 1). In the above medical 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.12 

 

patient example, if x is one of those indistinguishable patients of which 92% survive, then f'(x) 

= 0.92 whereas the probabilistic function f (x) will be equal to 1 in 92% of cases and equal to 

0 in the remaining 8%. 

How can we learn f ‘ using, say, a neural network? One obvious, bruteforce way would be to 

first collect the observed frequencies of 1's and 0's for each possible value of x and to then train 

the neural network to output the target frequency for each x. As we shall see below, we can 

instead train a neural network directly from the observed training examples of f, yet still derive 

a maximum likelihood hypothesis for f '. 

What criterion should we optimize in order to find a maximum likelihood hypothesis for f' in 

this setting? To answer this question, we must first obtain an expression for P(D1h). Let us 

assume the training data D is of the form D = {(xl, dl) . . . (xm, dm)}, where di is the observed 0 

or 1 value for f (xi). Recall that in the maximum likelihood, least-squared error analysis of the 

previous section, we made the simplifying assumption that the instances (xl . . . xm) were fixed. 

This enabled us to characterize the data by considering only the target values di. Although we 

could make a similar simplifying assumption in this case, let us avoid it here in order to 

demonstrate that it has no impact on the final outcome. Thus, treating both xi and di as random 

variables, and assuming that each training example is drawn independently, we can write 

P(D|h) as 

 

It is reasonable to assume, furthermore, that the probability of encountering any particular 

instance xi is independent of the hypothesis h. For example, the probability that our training set 

contains a particular patient xi is independent of our hypothesis about survival rates (though of 

course the survival d, of the patient does depend strongly on h). When x is independent of h we 

can rewrite the above expression as 

…(8) 

Now what is the probability P(di | h, xi) of observing di = 1 for a single instance xi, given a 

world in which hypothesis h holds? Recall that h is our hypothesis regarding the target function, 

which computes this very probability.  

Therefore, P(di = 1 | h, xi) = h(xi), and in general 

             ….(9) 

In order to substitute for P(D|h) in (8), let us first "re-express it in a more mathematically 

manipulable form, as 

…(10) 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.13 

 

 

The expression on the right side of Equation (12) can be seen as a generalization of the 

Binomial distribution. The expression in Equation (12) describes the probability that flipping 

each of m distinct coins will produce the outcome (dl . . .dm), assuming that each coin xi has 

probability h(xi) of producing a heads. Note the Binomial distribution is similar, but makes the 

additional assumption that the coins have identical probabilities of turning up heads (i.e., that 

h(xi) = h(xj), for every i, j). In both cases we assume the outcomes of the coin flips are mutually 

independent-an assumption that fits our current setting. 

As in earlier cases, we will find it easier to work with the log of the likelihood, yielding 

…(13) 

Equation (13) describes the quantity that must be maximized in order to obtain the maximum 

likelihood hypothesis in our current problem setting. This result is analogous to our earlier 

result showing that minimizing the sum of squared errors produces the maximum likelihood 

hypothesis in the earlier problem setting. Note the similarity between Equation (13) and the 

general form of the entropy function, -xi pi log pi, discussed in Chapter 3. Because of this 

similarity, the negation of the above quantity is sometimes called the cross entropy. 

 

6. Minimum Description Length Principle 

Recall from Module-3 the discussion of Occam's razor, a popular inductive bias that can be 

summarized as “choose the shortest explanation for the observed data”. There we discussed 

several arguments in the long-standing debate regarding Occam's razor. Here we consider a 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.14 

 

Bayesian perspective on this issue and a closely related principle called the Minimum 

Description Length (MDL) principle. 

The Minimum Description Length principle is motivated by interpreting the definition of hMAP 

light of basic concepts from information theory. Consider again the now familiar definition of 

MAP 

 

 

 

Above equation can be interpreted as a statement that short hypotheses are preferred, assuming 

a particular representation scheme for encoding hypotheses and data.  

To explain this, let us introduce a basic result from information theory: Consider the problem 

of designing a code to transmit messages drawn at random, where the probability of 

encountering message i is pi. We are interested here in the most compact code; that is, we are 

interested in the code that minimizes the expected number of bits we must transmit in order to 

encode a message drawn at random. Clearly, to minimize the expected code length we should 

assign shorter codes to messages that are more probable. Shannon and Weaver (1949) showed 

that the optimal code (i.e., the code that minimizes the message length) assigns -log2 pi bits to 

encode message i . We will refer to the number of bits required to encode message i using code 

C as the description length of message i with respect to C, which we denote by Lc(i). 

Let us interpret above equation in light of the above result from coding theory. 

 

 

 

The Minimum Description Length (MDL) principle recommends choosing the hypothesis that 

minimizes the sum of these two description lengths. Of course, to apply this principle in 

practice we must choose specific encodings or representations appropriate for the given 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.15 

 

learning task. Assuming we use the codes C1 and C2 to represent the hypothesis and the data 

given the hypothesis, we can state the MDL principle as 

 

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses CH, 

and if we choose C2 to be the optimal encoding CDlh then hMDL= hMAP. 

Intuitively, we can think of the MDL principle as recommending the shortest method for re-

encoding the training data, where we count both the size of the hypothesis and any additional 

cost of encoding the data given this hypothesis. 

MDL principle provides a way of trading off hypothesis complexity for the number of errors 

committed by the hypothesis. It might select a shorter hypothesis that makes a few errors over 

a longer hypothesis that perfectly classifies the training data. Viewed in this light, it provides 

one method for dealing with the issue of overfitting the data. 

7. Naive Bayes Classifier 

One highly practical Bayesian learning method is the naive Bayes learner, often called the naive 

Bayes classifier. In some domains its performance has been shown to be comparable to that of 

neural network and decision tree learning. 

The naive Bayes classifier applies to learning tasks where each instance x is described by a 

conjunction of attribute values and where the target function f (x) can take on any value from 

some finite set V. A set of training examples of the target function is provided, and a new 

instance is presented, described by the tuple of attribute values (al, a2, ... ,an). The learner is 

asked to predict the target value, or classification, for this new instance. 

The Bayesian approach to classifying the new instance is to assign the most probable target 

value, vMAP, given the attribute values (al, a2, ..., an) that describe the instance. 

 

We can use Bayes theorem to rewrite this expression as 

..(19) 

Now we could attempt to estimate the two terms in Equation (19) based on the training data. It 

is easy to estimate each of the P(vj) simply by counting the frequency with which each target 

value vj occurs in the training data. However, estimating the different P(al, a2, ... an | vj) terms 

in this fashion is not feasible unless we have a very, very large set of training data. (The problem 

is that the no. of these terms = no. of possible instances * no. of possible target values.) 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.16 

 

The naive Bayes classifier is based on the simplifying assumption that the attribute values are 

conditionally independent given the target value. In other words, the assumption is that given 

the target value of the instance, the probability of observing the conjunction al, a2, … , an, is 

just the product of the probabilities for the individual attributes: P(al, a2, … , an | vj) = Πi P(ai | 

vj). Substituting this into Equation (6.19), we have the approach used by the naive Bayes 

classifier. 

Naive Bayes classifier:   …(20) 

where vNB denotes the target value output by the naive Bayes classifier. (Here total terms are 

only n) 

To summarize, the naive Bayes learning method involves a learning step in which the various 

P(vj) and P(ai|vj) terms are estimated, based on their frequencies over the training data. The set 

of these estimates corresponds to the learned hypothesis. This hypothesis is then used to 

classify each new instance by applying the rule in Equation (20). 

One interesting difference between the naive Bayes learning method and other learning 

methods we have considered is that there is no explicit search through the space of possible 

hypotheses.  Instead, the hypothesis is formed without searching, simply by counting the 

frequency of various data combinations within the training examples. 

Illustration: Consider the following data.  

Day Outlook Temp. Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Let us use the naive Bayes classifier and the training data from this table to classify the 

following novel instance:  

(Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong) 

Our task is to predict the target value (yes or no) of the target concept PlayTennis for this new 

instance. Instantiating Equation (20) to fit the current task, the target value vNB is given by  

 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.17 

 

The probabilities of the different target values can easily be estimated based on their 

frequencies over the 14 training examples 

 

.. and so on (remaining 10) 

We have 

 

 

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this new instance, 

based on the probability estimates learned from the training data.  

Furthermore, by normalizing the above quantities to sum to one we can calculate the 

conditional probability that the target value is no, given the observed attribute values. For the 

current example, this probability is 0.0206 / (0,0206+0.0053) = 0.795 

Estimating Probabilities: In the above computations, conditional fraction  

P(Wind = strong | PlayTennis = no) = 3/5 =  nc/n 

from the training samples provides a good estimate of the probability in many cases, but 

estimate is poor when n is very small or nc is 0. There are two difficulties. 1) First, nc/n produces 

a biased underestimate of the probability. 2) Second, when this probability estimate is zero, 

this probability term will dominate the Bayes classifier if the future query contains Wind = 

strong. The reason is that the quantity calculated in Equation (20) requires multiplying all the 

other probability terms by these zero values.  

To avoid this difficulty, we can adopt a Bayesian approach to estimating the probability, using 

the m-estimate defined as follows. 

m-estimate of probability:  ...(22) 

Here, nc, and n are defined as before, p is our prior estimate of the probability we wish to 

determine, and m is a constant called the equivalent sample size, which determines how heavily 

to weight p relative to the observed data.  

A typical method for choosing p in the absence of other information is to assume uniform 

priors; that is, if an attribute has k possible values we set p = 1/k. For example, in estimating 

P(Wind = strong | PlayTennis = no) we note the attribute Wind has two possible values, so 

uniform priors would correspond to choosing p = .5. Note that if m is zero, the m-estimate is 

equivalent to the simple fraction nc/n. If both n and m are nonzero, then the observed fraction 

nc/n and prior p will be combined according to the weight m. The reason m is called the 

equivalent sample size is that Equation (22) can be interpreted as augmenting the n actual 

observations by an additional m virtual samples distributed according to p. 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.18 

 

8. Bayesian Belief Networks 

The naive Bayes classifier makes significant use of the assumption that the values of the 

attributes a1, . . , an, are conditionally independent given the target value v. This assumption 

dramatically reduces the complexity of learning the target function. When it is met, the naive 

Bayes classifier outputs the optimal Bayes classification. However, in many cases this 

conditional independence assumption is clearly overly restrictive. 

A Bayesian belief network (or Bayesian network) describes the probability distribution 

governing a set of variables by specifying a set of conditional independence assumptions along 

with a set of conditional probabilities. Bayesian networks allow stating conditional 

independence assumptions that apply to subsets of the variables. They are an active focus of 

current research, and a variety of algorithms have been proposed for learning them and for 

using them for inference. 

Bayesian networks describes the probability distribution over a set of variables. The probability 

distribution over these joint variables are called the joint probability distribution. The joint 

probability distribution specifies the probability for each of the possible variable bindings for 

the tuple (Y1, . . . Y2). A Bayesian belief network describes the joint probability distribution 

for a set of variables. 

 8.1 Conditional Independence 

Let X, Y, and Z be three discrete-valued random variables. We say that X is conditionally 

independent of Y given Z if the probability distribution governing X is independent of the value 

of Y given a value for Z; that is, if 

 

where xi ∈ V(X), yj ∈ V(Y), and zk ∈ V(Z). We commonly write the above expression in 

abbreviated form as P(X|Y, Z) = P(X|Z). This definition of conditional independence can be 

extended to sets of variables as well. We say that the set of variables X1 . . . Xi is conditionally 

independent of the set of variables Yl . . . Ym given the set of variables Z1 . . . Zn, if  

 

Note the correspondence between this definition and our use of conditional independence in 

the definition of the naive Bayes classifier. The naive Bayes classifier assumes that the instance 

attribute A1 is conditionally independent of instance attribute A2 given the target value V. This 

allows the naive Bayes classifier to calculate P(Al, A2|V) in Equation (20) as follows 

 

Equation (6.23) is just the general form of the product rule of probability from Table 6.1. 

Equation (6.24) follows because if A1 is conditionally independent of A2 given V, then by our 

definition of conditional independence P (A1 | A2, V) = P(A1 | V). 

 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.19 

 

8.2 Representation 

A Bayesian belief network (Bayesian network for short) represents the joint probability 

distribution for a set of variables. For example, the Bayesian network in Figure 6.3 represents 

the joint probability distribution over the boolean variables Storm, Lightning, Thunder, 

ForestFire, Campjre, and BusTourGroup. In general, a Bayesian network represents the joint 

probability distribution by specifying a set of conditional independence assumptions 

(represented by a directed acyclic graph), together with sets of local conditional probabilities. 

Each variable in the joint space is represented by a node in the Bayesian network.  

For each variable two types of information are specified.  

1. First, the network arcs represent the assertion that the variable is conditionally 

independent of its non-descendants in the network given its immediate predecessors in 

the network. We say X is a descendant of Y if there is a directed path from Y to X.  

2. Second, a conditional probability table is given for each variable, describing the 

probability distribution for that variable given the values of its immediate predecessors. 

The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of 

network variables (Y1, . . . , Yn) can be computed by the formula 

 

where Parents(Yi) denotes the set of immediate predecessors of Yi in the network. Note 

the values of P(yi | Parents(Yi)) are precisely the values stored in the conditional 

probability table associated with node Yi. 

 

To illustrate, the Bayesian network in Figure 6.3 represents the joint probability distribution 

over the boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and 

BusTourGroup. Consider the node Campfire. The network nodes and arcs represent the 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.20 

 

assertion that Campfire is conditionally independent of its non-descendants Lightning and 

Thunder, given its immediate parents Storm and BusTourGroup. This means that once we 

know the value of the variables Storm and BusTourGroup, the variables Lightning and Thunder 

provide no additional information about Campfire. The right side of the figure shows the 

conditional probability table associated with the variable Campfire. The top left entry in this 

table, for example, expresses the assertion that 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

Note this table provides only the conditional probabilities of Campfire given its parent variables 

Storm and BusTourGroup. The set of local conditional probability tables for all the variables, 

together with the set of conditional independence assumptions described by the network, 

describe the full joint probability distribution for the network. 

One attractive feature of Bayesian belief networks is that they allow a convenient way to 

represent causal knowledge such as the fact that Lightning causes Thunder. In the terminology 

of conditional independence, we express this by stating that Thunder is conditionally 

independent of other variables in the network, given the value of Lightning.  

8.3 Inference 

We might wish to use a Bayesian network to infer the value of some target variable (e.g., 

ForestFire) given the observed values of the other variables. Of course, given that we are 

dealing with random variables it will not generally be correct to assign the target variable a 

single determined value. What we really wish to infer is the probability distribution for the 

target variable, which specifies the probability that it will take on each of its possible 

values given the observed values of the other variables. This inference step can be 

straightforward if values for all of the other variables in the network are known exactly. In the 

more general case we may wish to infer the probability distribution for some variable (e.g., 

ForestFire) given observed values for only a subset of the other variables (e.g., Thunder and 

BusTourGroup may be the only observed values available).  

In general, a Bayesian network can be used to compute the probability distribution for any 

subset of network variables given the values or distributions for any subset of the remaining 

variables. 

8.4 Learning Bayesian Belief Networks 

Can we devise effective algorithms for learning Bayesian belief networks from training data? 

This question is a focus of much current research. Several different settings for this learning 

problem can be considered. First, the network structure might be given in advance, or it might 

have to be inferred from the training data. Second, all the network variables might be directly 

observable in each training example, or some might be unobservable. 

In the case where the network structure is given in advance and the variables are fully 

observable in the training examples, learning the conditional probability tables is 

straightforward. We simply estimate the conditional probability table entries just as we would 

for a naive Bayes classifier. 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.21 

 

In the case where the network structure is given but only some of the variable values are 

observable in the training data, the learning problem is more difficult. This problem is 

somewhat analogous to learning the weights for the hidden units in an artificial neural network, 

where the input and output node values are given but the hidden unit values are left unspecified 

by the training examples. In fact, Russell et al. (1995) propose a similar gradient ascent 

procedure that learns the entries in the conditional probability tables. This gradient ascent 

procedure searches through a space of hypotheses that corresponds to the set of all possible 

entries for the conditional probability tables. The objective function that is maximized during 

gradient ascent is the probability P(D|h) of the observed training data D given the hypothesis 

h. By definition, this corresponds to searching for the maximum likelihood hypothesis for the 

table entries. 

Note: Refer lecture slides for more examples/illustrations 

9. The EM Algorithm 

In many practical learning settings, only a subset of the relevant instance features might be 

observable. For example, in training or using the Bayesian belief network, we might have data 

where only a subset of the network variables Storm, Lightning, Thunder, ForestFire, Campfire, 

and BusTourGroup have been observed. Many approaches have been proposed to handle the 

problem of learning in the presence of unobserved variables. If some variable is sometimes 

observed and sometimes not, then we can use the cases for which it has been observed to learn 

to predict its values when it is not.  

In this section we describe the EM algorithm (Dempster et al. 1977), a widely used approach 

to learning in the presence of unobserved variables. The EM algorithm can be used even for 

variables whose value is never directly observed, provided the general form of the probability 

distribution governing these variables is known.  

Application: The EM algorithm has been used to train Bayesian belief networks (Heckerman 

1995) as well as radial basis function neural networks. The EM algorithm is also the basis for 

many unsupervised clustering algorithms (e.g., Cheeseman et al. 1988), and it is the basis for 

the widely used Baum-Welch forward-backward algorithm for learning Partially Observable 

Markov Models (Rabiner 1989). 

9.1 Estimating Means of k Gaussians 

The easiest way to introduce the EM algorithm is via an example. Consider a problem in which 

the data D is a set of instances generated by a probability distribution that is a mixture of k 

distinct Normal distributions. This problem setting is illustrated in Figure 6.4 for the case where 

k = 2 and where the instances are the points shown along the x axis. Each instance is generated 

using a two-step process. First, one of the k Normal distributions is selected at random. Second, 

a single random instance xi is generated according to this selected distribution. This process is 

repeated to generate a set of data points as shown in the figure. To simplify our discussion, we 

consider the special case where the selection of the single Normal distribution at each step is 

based on choosing each with uniform probability, where each of the k Normal distributions has 

the same variance σ2, known value. The learning task is to output a hypothesis h = (μ1, . . . ,μk) 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.22 

 

 

 

that describes the means of each of the k distributions. We would like to find a maximum 

likelihood hypothesis for these means; that is, a hypothesis h that maximizes p(D |h). 

Note it is easy to calculate the maximum likelihood hypothesis for the mean of a single Normal 

distribution given the observed data instances x1, x2, . . . , xm drawn from this single distribution. 

Earlier where we showed that the maximum likelihood hypothesis is the one that minimizes 

the sum of squared errors over the m training instances. Now the problem of finding the mean 

of a single distribution is just a special case of the problem discussed. Restating using our 

current notation, we have 

…(6.27) 

In this case, the sum of squared errors is minimized by the sample mean 

… (6.28) 

Our problem here, however, involves a mixture of k different Normal distributions, and we 

cannot observe which instances were generated by which distribution. Thus, we have a 

prototypical example of a problem involving hidden variables. In the example of Figure 6.4, 

we can think of the full description of each instance as the triple (xi, zi1, zi2), where xi is the 

observed value of the ith instance and where zil and zi2 indicate which of the two Normal 

distributions was used to generate the value xi. In particular, zij has the value 1 if xi was created 

by the jth Normal distribution and 0 otherwise. Here xi is the observed variable in the description 

of the instance, and zil and zi2 are hidden variables. If the values of zil and zi2 were observed, 

we could use Equation (6.27) to solve for the means p1 and p2. Because they are not, we will 

instead use the EM algorithm. 

Applied to our k-means problem the EM algorithm searches for a maximum likelihood 

hypothesis by repeatedly re-estimating the expected values of the hidden variables zij given its 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.23 

 

current hypothesis (μ1 . . . μ k), then recalculating the maximum likelihood hypothesis using 

these expected values for the hidden variables. 

We will first describe this instance of the EM algorithm, and later state the EM algorithm in its 

general form. 

Applied to the problem of estimating the two means for Figure 6.4, the EM algorithm first 

initializes the hypothesis to h = (μ1, μ2), where μ1 and μ2 are arbitrary initial values. It then 

iteratively re-estimates h by repeating the following two steps until the procedure converges to 

a stationary value for h. 

 

Let us examine how both of these steps can be implemented in practice. Step 1 must calculate 

the expected value of each zi,. This E[zij] is just the probability that instance xi was generated 

by the jth Normal distribution.  

 

Thus, the first step is implemented by substituting the current values (μl, μ2) and the observed 

xi into the above expression. 

In the second step we use the E[zij] calculated during Step 1 to derive a new maximum 

likelihood hypothesis h' = (μ'1, μ'2). As we will discuss later, the maximum likelihood 

hypothesis in this case is given by 

 

Note this expression is similar to the sample mean from Equation (6.28) that is used to estimate 

μ for a single Normal distribution. Our new expression is just the weighted sample mean for 

μj, with each instance weighted by the expectation E[zij] that it was generated by the jth Normal 

distribution.  

The above algorithm for estimating the means of a mixture of k Normal distributions illustrates 

the essence of the EM approach: The current hypothesis is used to estimate the unobserved 

variables, and the expected values of these variables are then used to calculate an 

improved hypothesis. It can be proved that on each iteration through this loop, the EM 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.24 

 

algorithm increases the likelihood P(D|h) unless it is at a local maximum. The algorithm thus 

converges to a local maximum likelihood hypothesis for (μ1, μ2). 

9.2 General Statement of EM Algorithm 

Above we described an EM algorithm for the problem of estimating means of a mixture of 

Normal distributions. More generally, the EM algorithm can be applied in many settings where 

we wish to estimate some set of parameters θ that describe an underlying probability 

distribution, given only the observed portion of the full data produced by this distribution. In 

the above two-means example the parameters of interest were θ = (μ1, μ2), and the full data 

were the triples (xi, zi1, zi2) of which only the xi were observed. In general let X = {xl, . . . , xm} 

denote the observed data in a set of m independently drawn instances, let Z = {zl, . . . , zm} 

denote the unobserved data in these same instances, and let Y = X U Z denote the full data. 

Note the unobserved Z can be treated as a random variable whose probability distribution 

depends on the unknown parameters θ and on the observed data X. Similarly, Y is a random 

variable because it is defined in terms of the random variable Z. In the remainder of this section 

we describe the general form of the EM algorithm. We use h to denote the current hypothesized 

values of the parameters θ, and h' to denote the revised hypothesis that is estimated on each 

iteration of the EM algorithm. 

The EM algorithm searches for the maximum likelihood hypothesis h' by seeking the h' that 

maximizes E[ln P(Y|h')]. This expected value is taken over the probability distribution 

governing Y, which is determined by the unknown parameters θ. Let us consider exactly what 

this expression signifies. First, P(Y|h’) is the likelihood of the full data Y given hypothesis h'. 

It is reasonable that we wish to find a h' that maximizes some function of this quantity. Second, 

maximizing the logarithm of this quantity ln(P(Y|h’)) also maximizes P(Y|h’), as we have 

discussed on several occasions already. Third, we introduce the expected value E[ln P(Y|h’)] 

because the full data Y is itself a random variable. Given that the full data Y is a combination 

of the observed data X and unobserved data Z, we must average over the possible values of the 

unobserved Z, weighting each according to its probability. In other words we take the expected 

value E[ln P(Y|h')] over the probability distribution governing the random variable Y. The 

distribution governing Y is determined by the completely known values for X, plus the 

distribution governing Z. 

What is the probability distribution governing Y? In general, we will not know this distribution 

because it is determined by the parameters θ that we are trying to estimate. Therefore, the EM 

algorithm uses its current hypothesis h in place of the actual parameters θ to estimate the 

distribution governing Y. Let us define a function Q(h’|h) that gives E[ln P(Y |h')] as a function 

of h', under the assumption that θ = h and given the observed portion X of the full data Y. 

 

We write this function Q in the form Q(h’|h) to indicate that it is defined in part by the 

assumption that the current hypothesis h is equal to 8. In its general form, the EM algorithm 

repeats the following two steps until convergence: 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.25 

 

 

When the function Q is continuous, the EM algorithm converges to a stationary point of the 

likelihood function P(Y|h'). When this likelihood function has a single maximum, EM will 

converge to this global maximum likelihood estimate for h'. Otherwise, it is guaranteed only to 

converge to a local maximum. In this respect, EM shares some of the same limitations as other 

optimization methods such as gradient descent, line search, and conjugate gradient discussed 

in Chapter 4. 

9.3 Derivation of the k Means Algorithm 

 

 

 

 

 



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.26 

 

 

 

 

 
 

  



Lecture Notes | 15CS73 – ML | Module 4: Bayesian Learning 

Mr. Harivinod N www.techjourney.in       Page| 4.27 

 

10. Summary 

• Bayesian methods provide the basis for probabilistic learning methods that 

accommodate (and require) knowledge about the prior probabilities of alternative 

hypotheses and about the probability of observing various data given the hypothesis. 

Bayesian methods allow assigning a posterior probability to each candidate hypothesis, 

based on these assumed priors and the observed data. 

• Bayesian methods can be used to determine the most probable hypothesis given the 

data-the maximum a posteriori (MAP) hypothesis. This is the optimal hypothesis in the 

sense that no other hypothesis is more likely. 

• The naive Bayes classifier is a Bayesian learning method that has been found to be 

useful in many practical applications. It is called "naive" because it incorporates the 

simplifying assumption that attribute values are conditionally independent, given the 

classification of the instance. When this assumption is met, the naive Bayes classifier 

outputs the MAP classification. Even when this assumption is not met, as in the case of 

learning to classify text, the naive Bayes classifier is often quite effective. Bayesian 

belief networks provide a more expressive representation for sets of conditional 

independence assumptions among subsets of the attributes. 

• The framework of Bayesian reasoning can provide a useful basis for analyzing certain 

learning methods that do not directly apply Bayes theorem. For example, under certain 

conditions it can be shown that minimizing the squared error when learning a real-

valued target function corresponds to computing the maximum likelihood hypothesis. 

• The Minimum Description Length principle recommends choosing the hypothesis that 

minimizes the description length of the hypothesis plus the description length of the 

data given the hypothesis. Bayes theorem and basic results from information theory can 

be used to provide a rationale for this principle. 

• In many practical learning tasks, some of the relevant instance variables may be 

unobservable. The EM algorithm provides a quite general approach to learning in the 

presence of unobservable variables. This algorithm begins with an arbitrary initial 

hypothesis. It then repeatedly calculates the expected values of the hidden variables 

(assuming the current hypothesis is correct), and then recalculates the maximum 

likelihood hypothesis (assuming the hidden variables have the expected values 

calculated by the first step). This procedure converges to a local maximum likelihood 

hypothesis, along with estimated values for the hidden variables. 

***** 


