
 VIVEKANANDA
College of Engineering & Technology

Nehrunagar post, Puttur, D.K. 574203

Lecture Notes

on

Subject Code: 15CS73

(CBCS Scheme)

Prepared by

Mr. Harivinod N
Dept. of Computer Science and Engineering,

VCET Puttur

Course website:

www.techjourney.in

Module-3

Artificial Neural Networks

http://www.techjourney.in/

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.2

Module-3: Artificial Neural Networks

1. Introduction

Neural network learning methods provide a robust approach to approximating real-valued,

discrete-valued, and vector-valued target functions. For certain types of problems, such as

learning to interpret complex real-world sensor data, artificial neural networks are among the

most effective learning methods currently known. For example, the Back-propagation

algorithm described in this module has proven surprisingly successful in many practical

problems such as learning to recognize handwritten characters, learning to recognize spoken

words and learning to recognize faces.

Biological Motivation

The study of artificial neural networks (ANNs) has been inspired in part by the observation

that biological learning systems are built of very complex webs of interconnected neurons. In

rough analogy, artificial neural networks are built out of a densely interconnected set of simple

units, where each unit takes a number of real-valued inputs (possibly the outputs of other units)

and produces a single real-valued output (which may become the input to many other units).

To develop a feel for this analogy, let us consider a few facts from neurobiology.

The human brain, for example, is estimated to contain a densely interconnected network of

approximately 1011 neurons, each connected, on average, to 104 others. Neuron activity is

typically excited or inhibited through connections to other neurons. The fastest neuron

switching times are known to be on the order of 10-3 seconds, quite slow compared to computer

switching speeds of 10-10 seconds. Yet humans are able to make surprisingly complex

decisions, surprisingly quickly. For example, it requires approximately 10-1 seconds to visually

recognize your mother. Notice that the sequence of neuron firings that can take place during

this 10-1 second interval cannot possibly be longer than a few hundred steps, given the

switching speed of single neurons.

This observation has led many to speculate that the information-processing abilities of

biological neural systems must follow from highly parallel processes operating on

representations that are distributed over many neurons. One motivation for ANN systems is to

capture this kind of highly parallel computation based on distributed representations. Most

ANN software runs on sequential machines emulating distributed processes, although faster

versions of the algorithms have also been implemented on highly parallel machines and on

specialized hardware designed specifically for ANN applications. While ANNs are loosely

motivated by biological neural systems, there are many complexities to biological neural

systems that are not modeled by ANNs, and many features of the ANNs we discuss here are

known to be inconsistent with biological systems. For example, we consider here ANNs whose

individual units output a single constant value, whereas biological neurons output a complex

time series of spikes.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.3

2. Neural Network Representations

A prototypical example of ANN learning is provided by Pomerleau's (1993) system ALVINN,

which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on public

highways. The input to the neural network is a 30x32 grid of pixel intensities obtained from a

forward-pointed camera mounted on the vehicle. The network output is the direction in which

the vehicle is steered. The ANN is trained to mimic the observed steering commands of a

human driving the vehicle for approximately 5 minutes. ALVINN has used its learned networks

to successfully drive at speeds up to 70 miles per hour and for distances of 90 miles on public

highways (driving in the left lane of a divided public highway, with other vehicles present).

Figure 4.1 illustrates the neural network representation used in one version of the ALVINN

system, and illustrates the kind of representation typical of many ANN systems.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.4

The network is shown on the left side of the figure, with the input camera image depicted below

it. Each node (i.e., circle) in the network diagram corresponds to the output of a single network

unit, and the lines entering the node from below are its inputs. As can be seen, there are four

units that receive inputs directly from all of the 30 x 32 pixels in the image. These are called

"hidden" units because their output is available only within the network and is not available as

part of the global network output. Each of these four hidden units computes a single real-valued

output based on a weighted combination of its 960 inputs. These hidden unit outputs are then

used as inputs to a second layer of 30 "output" units. Each output unit corresponds to a

particular steering direction, and the output values of these units determine which steering

direction is recommended most strongly.

The diagrams on the right side of the figure depict the learned weight values associated with

one of the four hidden units in this ANN. The large matrix of black and white boxes on the

lower right depicts the weights from the 30x32 pixel inputs into the hidden unit. Here, a white

box indicates a positive weight, a black box a negative weight, and the size of the box indicates

the weight magnitude. The smaller rectangular diagram directly above the large matrix shows

the weights from this hidden unit to each of the 30 output units.

The network structure of ALYINN is typical of many ANNs. Here the individual units are

interconnected in layers that form a directed acyclic graph. In general, ANNs can be graphs

with many types of structures-acyclic or cyclic, directed or undirected. This module will focus

on the most common and practical ANN approaches, which are based on the back-propagation

algorithm. The backpropagation algorithm assumes the network is a fixed structure that

corresponds to a directed graph, possibly containing cycles. Learning corresponds to choosing

a weight value for each edge in the graph. Although certain types of cycles are allowed, the

vast majority of practical applications involve acyclic feed-forward networks, similar to the

network structure used by ALVINN.

3. Appropriate Problems for Neural Network Learning

ANN learning is well-suited to problems in which the training data corresponds to noisy,

complex sensor data, such as inputs from cameras and microphones. It is also applicable to

problems for which more symbolic representations are often used, such as the decision tree

learning tasks. In these cases, ANN and decision tree learning often produce results of

comparable accuracy. The back-propagation algorithm is the most commonly used ANN

learning technique. It is appropriate for problems with the following characteristics:

• Instances are represented by many attribute-value pairs. The target function to be

learned is defined over instances that can be described by a vector of predefined

features, such as the pixel values in the ALVINN example. These input attributes may

be highly correlated or independent of one another. Input values can be any real values.

• The target function output may be discrete-valued, real-valued, or a vector of several

real- or discrete-valued attributes. For example, in the ALVINN system the output is

a vector of 30 attributes, each corresponding to a recommendation regarding the

steering direction. The value of each output is some real number between 0 and 1, which

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.5

in this case corresponds to the confidence in predicting the corresponding steering

direction. We can also train a single network to output both the steering command and

suggested acceleration, simply by concatenating the vectors that encode these two

output predictions.

• The training examples may contain errors. ANN learning methods are quite robust to

noise in the training data.

• Long training times are acceptable. Network training algorithms typically require

longer training times than, say, decision tree learning algorithms. Training times can

range from a few seconds to many hours, depending on factors such as the number of

weights in the network, the number of training examples considered, and the settings

of various learning algorithm parameters.

• Fast evaluation of the learned target function may be required. Although ANN

learning times are relatively long, evaluating the learned network, in order to apply it

to a subsequent instance, is typically very fast. For example, ALVINN applies its neural

network several times per second to continually update its steering command as the

vehicle drives forward.

• The ability of humans to understand the learned target function is not important. The

weights learned by neural networks are often difficult for humans to interpret. Learned

neural networks are less easily communicated to humans than learned rules.

4. Perceptrons

One type of ANN system is based on a unit called a perceptron, illustrated in Figure given

below.

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. More

precisely, given inputs xl through x,, the output o(x1, . . . , x,) computed by the perceptron is

where each wi is a real-valued constant, or weight, that determines the contribution of input xi

to the perceptron output. Notice the quantity (-w0) is a threshold that the weighted combination

of inputs wlxl + . . . + wnxn must surpass in order for the perceptron to output a 1.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.6

4.1 Representational Power of Perceptrons

A single perceptron can be used to represent many boolean functions. For example, if we

assume boolean values of 1 (true) and -1 (false), then one way to use a two-input perceptron to

implement the AND function is to set the weights wo = -3, and wl = w2 = .5. This perceptron

can be made to represent the OR function instead by altering the threshold to wo = -.3.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.7

4.2. The Perceptron Training Rule

Although we are interested in learning networks of many interconnected units, let us begin by

understanding how to learn the weights for a single perceptron. Here the precise learning

problem is to determine a weight vector that causes the perceptron to produce the correct ±1

output for each of the given training examples.

Several algorithms are known to solve this learning problem. Here we consider two:

1. The perceptron rule and

2. The delta rule

These two algorithms are guaranteed to converge to somewhat different acceptable hypotheses,

under somewhat different conditions. They are important to ANNs because they provide the

basis for learning networks of many units.

Let us understand perceptron rule.

One way to learn an acceptable weight vector is to begin with random weights, then iteratively

apply the perceptron to each training example, modifying the perceptron weights whenever it

misclassifies an example. This process is repeated, iterating through the training examples as

many times as needed until the perceptron classifies all training examples correctly. Weights

are modified at each step according to the perceptron training rule, which revises the weight wi

associated with input xi according to the rule

𝑤𝑖 ← 𝑤𝑖 + ∆𝑤 where ∆𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖

Here t is the target output for the current training example, o is the output generated by the

perceptron, and η is a positive constant called the learning rate. The role of the learning rate is

to moderate the degree to which weights are changed at each step. It is usually set to some

small value (e.g., 0.1) and is sometimes made to decay as the number of weight-tuning

iterations increases.

In fact, the above learning procedure can be proven to converge within a finite number of

applications of the perceptron training rule to a weight vector that correctly classifies all

training examples, provided the training examples are linearly separable and provided a

sufficiently small η is used. If the data are not linearly separable, convergence is not assured.

4.3 Illustration of Perceptron training rule

Consider 1st training example

Consider 2nd training example

Now consider 3rd example

4.4 Gradient Descent and the Delta Rule

Although the perceptron rule finds a successful weight vector when the training examples are

linearly separable, it can fail to converge if the examples are not linearly separable. A second

training rule, called the delta rule, is designed to overcome this difficulty. If the training

examples are not linearly separable, the delta rule converges toward a best-fit approximation

to the target concept.

The key idea behind the delta rule is to use gradient descent to search the hypothesis space of

possible weight vectors to find the weights that best fit the training examples. This rule is

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.9

important because gradient descent provides the basis for the Backpropagation Algorithm,

which can learn networks with many interconnected units. It is also important because gradient

descent can serve as the basis for learning algorithms that must search through hypothesis

spaces containing many different types of continuously parameterized hypotheses.

The delta training rule is best understood by considering the task of training an un-thresholded

perceptron; that is, a linear unit for which the output o is given by

Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.

In order to derive a weight learning rule for linear units, let us begin by specifying a measure

for the training error of a hypothesis (weight vector), relative to the training examples.

Although there are many ways to define this error, one common measure that will turn out to

be especially convenient is

where D is the set of training examples, td is the target output for training example d, and od is

the output of the linear unit for training example d. By this definition, E() is simply half the

squared difference between the target output td and the hear unit output od, summed over all

training examples.

Visualizing Hypothesis space: To understand the gradient descent algorithm, it is helpful to

visualize the entire hypothesis space of possible weight vectors and their associated E values,

as illustrated in Figure 4.4. Here the axes w0 and w1 represent possible values for the two

weights of a simple linear unit. The w0, w1 plane therefore represents the entire hypothesis

space. The vertical axis indicates the error E relative to some fixed set of training examples.

The error surface shown in the figure thus summarizes the desirability of every weight vector

in the hypothesis space (we desire a hypothesis with minimum error). Given the way in which

we chose to define E, for linear units this error surface must always be parabolic with a single

global minimum. The specific parabola will depend, of course, on the particular set of training

examples.

FIGURE 4.4 Error of different hypotheses. For a linear unit

with two weights, the hypothesis space H is the w0, w1 plane.

The vertical axis indicates the error of the corresponding

weight vector hypothesis, relative to a fixed set of training

examples. The arrow shows the negated gradient at one

particular point, indicating the direction in the w0, w1 plane

producing steepest descent along the error surface.

Gradient descent search determines a weight vector that minimizes E by starting with an

arbitrary initial weight vector, then repeatedly modifying it in small steps. At each step, the

weight vector is altered in the direction that produces the steepest descent along the error

surface depicted in Figure 4.4. This process continues until the global minimum error is

reached.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.10

Derivation of the gradient descent rule

where

 where

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.11

Table 4.1: Gradient Descent Algorithm for training a linear unit.

Stochastic Approximation to Gradient Descent

Gradient descent is an important general paradigm for learning. It is a strategy for searching

through a large or infinite hypothesis space that can be applied whenever

1. the hypothesis space contains continuously parameterized hypotheses (e.g., the weights

in a linear unit), and

2. the error can be differentiated with respect to these hypothesis parameters.

The key practical difficulties in applying gradient descent are

1. converging to a local minimum can sometimes be quite slow (i.e., it can require many

thousands of gradient descent steps), and

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.12

2. if there are multiple local minima in the error surface, then there is no guarantee that

the procedure will find the global minimum.

One common variation on gradient descent intended to alleviate these difficulties is called

incremental gradient descent, or alternatively stochastic gradient descent. Whereas the gradient

descent training rule presented in Equation (4.7) computes weight updates after summing over

all the training examples in D, the idea behind stochastic gradient descent is to approximate

this gradient descent search by updating weights incrementally, following the calculation of

the error for each individual example. The modified training rule is like the training rule given

by Equation (4.7) except that as we iterate through each training example we update the weight

according to

 (Delta Rule, also called as LMS least mean square)

where t, o, and xi are the target value, unit output, and ith input for the training example in

question. To modify the gradient descent algorithm of Table 4.1 to implement this stochastic

approximation, Equation marked with ** is simply deleted and Equation marked with *

replaced by wi ← wi + η(t - o) xi. One way to view this stochastic gradient descent is to consider

a distinct error function 𝐸𝑑(�⃗⃗�) defined for each individual training example d as follows

where td, and od are the target value and the unit output value for training example d. Stochastic

gradient descent iterates over the training examples d in D, at each iteration altering the weights

according to the gradient with respect to 𝐸𝑑(�⃗⃗�). The sequence of these weight updates, when

iterated over all training examples, provides a reasonable approximation to descending the

gradient with respect to our original error function E(�⃗⃗�). By making the value of η (the gradient

descent step size) sufficiently small, stochastic gradient descent can be made to approximate

true gradient descent arbitrarily closely.

The key differences are listed below.

Standard gradient descent Stochastic gradient descent

1. Error is summed over all examples

before updating weights

1. Weights are updated upon

examining each training example

2. Requires more computation per

weight update step

2. Require less computation

3. Converges to local minima 3. Sometimes avoid falling into these

local minima

4.5 Remarks

We have considered two similar algorithms for iteratively learning perceptron weights. The

key difference between these algorithms are listed below

Perceptron training rule Delta rule

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.13

1.Updates weights based on the error in

the thresholded perceptron output

1. Updates weights based on the error in

the un-thresholded linear combination of

inputs

2.converges after a finite number of

iterations to a hypothesis that

perfectly classifies the training data,

provided the training examples are

linearly separable.

2. converges only asymptotically toward

the minimum error hypothesis, possibly

requiring unbounded time, but

converges regardless of whether the

training data are linearly separable.

5. Multilayer Networks and The Backpropagation Algorithm

Single perceptrons can only express linear decision surfaces. In contrast, the kind of multilayer

networks learned by the BACKPROPACATION algorithm are capable of expressing a rich

variety of nonlinear decision surfaces.

A typical multilayer network and decision surface is depicted in Figure 4.5. Here the speech

recognition task involves distinguishing among 10 possible vowels, all spoken in the context

of "h-d" (i.e., "hid," "had," "head," "hood," etc.). The input speech signal is represented by two

numerical parameters obtained from a spectral analysis of the sound, allowing us to easily

visualize the decision surface over the two-dimensional instance space. As shown in the figure,

it is possible for the multilayer network to represent highly nonlinear decision surfaces that are

much more expressive than the linear decision surfaces of single units.

This section discusses how to learn such multilayer networks using a gradient descent

algorithm

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.14

5.1 A Differentiable Threshold Unit

What type of unit shall we use as the basis for constructing multilayer networks? At first we

might be tempted to choose the linear units discussed in the previous section, for which we

have already derived a gradient descent learning rule. However, multiple layers of cascaded

linear units still produce only linear functions, and we prefer networks capable of representing

highly nonlinear functions. The perceptron unit is another possible choice, but its discontinuous

threshold makes it undifferentiable and hence unsuitable for gradient descent. What we need is

a unit whose output is a nonlinear function of its inputs, but whose output is also a differentiable

function of its inputs. One solution is the sigmoid unit - a unit very much like a perceptron,

but based on a smoothed, differentiable threshold function.

Figure 4.6: A sigmoid threshold unit

The sigmoid unit is illustrated in Figure 4.6. Like the perceptron, the sigmoid unit first

computes a linear combination of its inputs, then applies a threshold to the result. In the case

of the sigmoid unit, however, the threshold output is a continuous function of its input. More

precisely, the sigmoid unit computes its output o as

where

σ is often called the sigmoid function or, alternatively, the logistic function. Note its output

ranges between 0 and 1, increasing monotonically with its input. Because it maps a very large

input domain to a small range of outputs, it is often referred to as the squashing function of the

unit.

The sigmoid function has the useful property that its derivative is easily expressed in terms of

its output. σ'(y) = σ(y) (1- σ(y))

5.2 The Backpropagation Algorithm

Because we are considering networks with multiple output units rather than single units as

before, we begin by redefining E to sum the errors over all of the network output units

where outputs are the set of output units in the network, and tkd and okd are the target and output

values associated with the kth output unit and training example d. The learning problem faced

by Backpropagation search a large hypothesis space defined by all possible weight values for

all the units in the network. The situation can be visualized in terms of an error surface similar

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.15

to that shown for linear units in Figure 4.4. The error in that diagram is replaced by our new

definition of E, and the other dimensions of the space correspond now to all of the weights

associated with all of the units in the network. As in the case of training a single unit, gradient

descent can be used to attempt to find a hypothesis to minimize E.

One major difference in the case of multilayer networks is that the error surface can have

multiple local minima, in contrast to the single-minimum parabolic error surface.

Unfortunately, this means that gradient descent is guaranteed only to converge toward some

local minimum, and not necessarily the global minimum error. Despite this obstacle, in practice

Backpropagation Algorithm been found to produce excellent results in many real-world

applications.

The Backpropagation Algorithm is presented in Table 4.2. The algorithm as described here

applies to layered feedforward networks containing two layers of sigmoid units, with units at

each layer connected to all units from the preceding layer. This is the incremental, or stochastic,

gradient descent version of Backpropagation. The notation used here is the same as that used

in earlier sections, with the following extensions:

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.16

Notice the algorithm in Table 4.2 begins by constructing a network with the desired number of

hidden and output units and initializing all network weights to small random values. Given this

fixed network structure, the main loop of the algorithm then repeatedly iterates over the training

examples. For each training example, it applies the network to the example, calculates the error

of the network output for this example, computes the gradient with respect to the error on this

example, then updates all weights in the network. This gradient descent step is iterated (often

thousands of times, using the same training examples multiple times) until the network

performs acceptably well.

The gradient descent weight-update rule (Equation [T4.5]) is similar to the delta training rule.

Like the delta rule, it updates each weight in proportion to the learning rate η, the input value

xji to which the weight is applied, and the error in the output of the unit. The only difference is

that the error (t - o) in the delta rule is replaced by a more complex error term, δj. The exact

form of δj follows from the derivation of the weight tuning rule. To understand it intuitively,

first consider how δk is computed for each network output unit k (Equation [T4.3]). δk is simply

the familiar (tk - ok) from the delta rule, multiplied by the factor ok(l - ok), which is the derivative

of the sigmoid squashing function. The δh value for each hidden unit h has a similar form

(Equation [T4.4] in the algorithm). However, since training examples provide target values tk

only for network outputs, no target values are directly available to indicate the error of hidden

units' values. Instead, the error term for hidden unit h is calculated by summing the error terms

Jk for each output unit influenced by h, weighting each of the δk's by wkh, the weight from

hidden unit h to output unit k. This weight characterizes the degree to which hidden unit h is

"responsible for" the error in output unit k.

The algorithm updates weights incrementally, following the presentation of each training

example. This corresponds to a stochastic approximation to gradient descent. To obtain the true

gradient of E one would sum the δj xji values over all training examples before altering weight

values.

The weight-update loop in Backpropagation may be iterated thousands of times in a typical

application. A variety of termination conditions can be used to halt the procedure. One may

choose to halt after a fixed number of iterations through the loop, or once the error on the

training examples falls below some threshold, or once the error on a separate validation set of

examples meets some criterion. The choice of termination criterion is an important one,

because too few iterations can fail to reduce error sufficiently, and too many can lead to

overfitting the training data.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.17

5.3 Learning in Arbitrary Acyclic Networks

where Downstream(r) is the set of units immediately downstream from unit r in the

network: that is, all units whose inputs include the output of unit r. It is this general

form of the weight-update rule that we derive in next Section.

5.4 Derivation of the Backpropagation rule

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.18

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.19

and

Illustration

Refer Additional notes provided in Techjoourney.in

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.20

6. Remarks on The Backpropagation algorithm

6.1 Convergence and Local Minima

As shown above, the Backpropagation algorithm implements a gradient descent search through

the space of possible network weights, iteratively reducing the error E between the training

example target values and the network outputs. Because the error surface for multilayer

networks may contain many different local minima, gradient descent can become trapped in

any of these. As a result, it is only guaranteed to converge toward some local minimum in E

and not necessarily to the global minimum error.

Despite the lack of assured convergence to the global minimum error, backpropagation is a

highly effective function approximation method in practice. In many practical applications the

problem of local minima has not been found to be as severe as one might fear. In fact, the more

weights in the network, the more dimensions that might provide "escape routes" for gradient

descent to fall away from the local minimum with respect to this single weight.

A second perspective on local minima can be gained by considering the manner in which

network weights evolve as the number of training iterations increases. Only after the weights

have had time to grow will they reach a point where they can represent highly nonlinear

network functions. One might expect more local minima to exist in the region of the weight

space that represents these more complex functions. One hopes that by the time the weights

reach this point they have already moved close enough to the global minimum that even local

minima in this region are acceptable.

Despite the above comments, gradient descent over the complex error surfaces represented by

ANNs is still poorly understood, and no methods are known to predict with certainty when

local minima will cause difficulties. Common heuristics to attempt to alleviate the problem of

local minima include:

• Add a momentum term to the weight-update rule

• Use stochastic gradient descent rather than true gradient descent.

• Train multiple networks using the same data, but initializing each network with

different random weights.

6.2 Representational Power of Feedforward Networks

What set of functions can be represented by feedforward networks? Of course the answer

depends on the width and depth of the networks. Although much is still unknown about which

function classes can be described by which types of networks, three quite general results are

known:

• Boolean functions. Every boolean function can be represented exactly by some network

with two layers of units, although the number of hidden units required grows

exponentially in the worst case with the number of network inputs.

• Continuous functions. Every bounded continuous function can be approximated with

arbitrarily small error by a network with two layers of units. The networks that use

sigmoid units at the hidden layer and (unthresholded) linear units at the output layer

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.21

will achieve this. The number of hidden units required depends on the function to be

approximated.

• Arbitrary functions. Any function can be approximated to arbitrary accuracy by a

network with three layers of units. Again, the output layer uses linear units, the two

hidden layers use sigmoid units, and the number of units required at each layer is not

known in general.

6.3 Hypothesis Space Search and Inductive Bias

The hypothesis space is the n-dimensional Euclidean space of the n network weights. Notice

this hypothesis space is continuous, in contrast to the hypothesis spaces of decision tree

learning and other methods based on discrete representations. The fact that it is continuous,

together with the fact that E is differentiable with respect to the continuous parameters of the

hypothesis, results in a well-defined error gradient that provides a very useful structure for

organizing the search for the best hypothesis. This structure is quite different from the general-

to-specific ordering algorithms, or the simple-to-complex ordering over decision trees

algorithms.

What is the inductive bias by which backpropagation generalizes beyond the observed data? It

is difficult to characterize precisely the inductive bias of backpropagation, because it depends

on the interplay between the gradient descent search and the way in which the weight space

spans the space of representable functions. However, one can roughly characterize it as smooth

interpolation between data points. Given two positive training examples with no negative

examples between them, backpropagation t end to label points in between as positive examples

as well.

6.4 Hidden Layer Representations

One intriguing property of Backpropagation is its ability to discover useful intermediate

representations at the hidden unit layers inside the network. Because training examples

constrain only the network inputs and outputs, the weight-tuning procedure is free to set

weights that define whatever hidden unit representation is most effective at minimizing the

squared error E. This can lead Backpropagation to define new hidden layer features that are

not explicit in the input representation, but which capture properties of the input instances that

are most relevant to learning the target function.

The ability of multilayer networks to automatically discover useful representations at the

hidden layers is a key feature of ANN learning. In contrast to learning methods that are

constrained to use only predefined features provided by the human designer, this provides an

important degree of flexibility that allows the learner to invent features not explicitly

introduced by the human designer.

6.4 Generalization, Overfitting, and Stopping Criterion

In the Backpropagation algorithm, the termination condition for the algorithm has been left

unspecified. What is an appropriate condition for termination the weight update loop? One

obvious choice is to continue training until the error E on the training examples falls below

some predetermined threshold. In fact, this is a poor strategy because Backpropagation is

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.22

susceptible to overfitting the training examples at the cost of decreasing generalization

accuracy over other unseen examples.

To see the dangers of minimizing the error over the training data, consider how the error E

varies with the number of weight iterations. Figure 4.9 shows this variation for two fairly

typical applications of Backpropogation.

FIGURE 4.9 Plots of error E as a function of the number of weight updates, for two different robot perception

tasks. In both learning cases, error E over the training examples decreases monotonically, as gradient descent

minimizes this measure of error. Error over the separate "validation" set of examples typically decreases at first,

then may later increase due to overfitting the training examples. The network most likeIy to generalize correctly

to unseen data is the network with the lowest error over the validation set. Notice in the second plot, one must be

careful to not stop training too soon when the validation set error begins to increase.

Consider first plot in this figure. The lower of the two lines shows the monotonically decreasing error

E over the training set, as the number of gradient descent iterations grows. The upper line shows the

error E measured over a different validation set of examples, distinct from the training examples. This

line measures the generalization accuracy of the network-the accuracy with which it fits examples

beyond the training data

Why does overfitting tend to occur during later iterations, but not during earlier iterations?

Consider that network weights are initialized to small random values. With weights of nearly

identical value, only very smooth decision surfaces are describable. As training proceeds, some

weights begin to grow in order to reduce the error over the training data, and the complexity of

the learned decision surface increases. Thus, the effective complexity of the hypotheses that

can be reached by Backpropagation increases with the number of weight-tuning iterations. This

overfitting problem is analogous to the overfitting problem in decision tree learning.

One of the most successful methods for overcoming the overfitting problem is to simply

provide a set of validation data to the algorithm in addition to the training data. The algorithm

monitors the error with respect to this validation set, while using the training set to drive the

gradient descent search.

How many weight-tuning iterations should the algorithm perform? Clearly, it should use the

number of iterations that produces the lowest error over the validation set, since this is the best

indicator of network performance over unseen examples. In typical implementations of this

approach, two copies of the network weights are kept: one copy for training and a separate

copy of the best-performing weights thus far, measured by their error over the validation set.

Once the trained weights reach a significantly higher error over the validation set than the

stored weights, training is terminated and the stored weights are returned as the final

hypothesis.

Lecture Notes | 15CS73 – ML | Module 3: Artificial Neural Networks

Mr. Harivinod N www.techjourney.in Page| 3.23

.

7. Summary

Main points of this chapter include:

• Artificial neural network learning provides a practical method for learning real-valued

and vector-valued functions over continuous and discrete-valued attributes, in a way

that is robust to noise in the training data. The Backpropagation algorithm is the most

common network learning method and has been successfully applied to a variety of

learning tasks, such as handwriting recognition and robot control.

• The hypothesis space considered by the Backpropagation algorithm is the space of all

functions that can be represented by assigning weights to the given, fixed network of

interconnected units. Feedforward networks containing three layers of units are able to

approximate any function to arbitrary accuracy, given a sufficient (potentially very

large) number of units in each layer. Even networks of practical size are capable of

representing a rich space of highly nonlinear functions, making feedforward networks

a good choice for learning discrete and continuous functions whose general form is

unknown in advance.

• Backpropagation searches the space of possible hypotheses using gradient descent to

iteratively reduce the error in the network fit to the training examples. Gradient descent

converges to a local minimum in the training error with respect to the network weights.

More generally, gradient descent is a potentially useful method for searching many

continuously parameterized hypothesis spaces where the training error is a

differentiable function of hypothesis parameters.

• One of the most intriguing properties of Backpropagation is its ability to invent new

features that are not explicit in the input to the network. In particular, the internal

(hidden) layers of multilayer networks learn to represent intermediate features that are

useful for learning the target function and that are only implicit in the network inputs.

• Overfitting the training data is an important issue in ANN learning. Overfitting results

in networks that generalize poorly to new data despite excellent performance over the

training data. Cross-validation methods can be used to estimate an appropriate stopping

point for gradient descent search and thus to minimize the risk of overfitting.
