
 

 

 VIVEKANANDA  
College of Engineering & Technology 

Nehrunagar post, Puttur, D.K. 574203 

 
 

 

Lecture Notes  

on 

 

 
 

Subject Code: 15CS73  
(CBCS Scheme) 

 

 

Prepared by 

Mr. Harivinod N  
Dept. of Computer Science and Engineering,  

VCET Puttur 
 

 

 

 
 

 

 

 

 

Course website:  

www.techjourney.in  

Module-2 

Decision Tree Learning 

http://www.techjourney.in/


Lecture Notes | 15CS73 – ML | Module 2: Decision Tree learning  

Mr. Harivinod N www.techjourney.in       Page| 2.2 

 

Module-2: Decision Tree Learning 

1. Introduction 

Decision tree learning is a method for approximating discrete-valued target functions, in which 

the learned function is represented by a decision tree. Learned trees can also be re-represented 

as sets of if-then rules to improve human readability. These learning methods are among the 

most popular of inductive inference algorithms and have been successfully applied to a broad 

range of tasks from learning to diagnose medical cases to learning to assess credit risk of loan 

applicants. 

2. Decision tree representation 

Decision trees classify instances by sorting them down the tree from the root to some leaf node, 

which provides the classification of the instance. Each node in the tree specifies a test of some 

attribute of the instance, and each branch descending from that node corresponds to one of the 

possible values for this attribute. An instance is classified by starting at the root node of the 

tree, testing the attribute specified by this node, then moving down the tree branch 

corresponding to the value of the attribute in the given example. This process is then repeated 

for the subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree.  

 

 

This decision tree classifies Saturday mornings according to whether they are suitable for 

playing tennis. For example, the instance 

 

would be sorted down the leftmost branch of this decision tree and would therefore be classified 

as a negative instance (i.e., the tree predicts that PlayTennis = No). 
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In general, decision trees represent a disjunction of conjunctions of constraints on the attribute 

values of instances. Each path from the tree root to a leaf corresponds to a conjunction of 

attribute tests, and the tree itself to a disjunction of these conjunctions. For example, the 

decision tree shown in Figure 3.1 corresponds to the expression 

 

 

3. Appropriate problems for decision tree learning 

Although a variety of decision tree learning methods have been developed with somewhat 

differing capabilities and requirements, decision tree learning is generally best suited to 

problems with the following characteristics: 

• Instances are represented by attribute-value pairs. Instances are described by a fixed 

set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation 

for decision tree learning is when each attribute takes on a small number of disjoint 

possible values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm 

allow handling real-valued attributes as well (e.g., representing Temperature 

numerically). 

• The target function has discrete output values. The decision tree assigns a boolean 

classification (e.g., yes or no) to each example. Decision tree methods easily extend to 

learning functions with more than two possible output values. A more substantial 

extension allows learning target functions with real-valued outputs, though the 

application of decision trees in this setting is less common. 

• Disjunctive descriptions may be required. As noted above, decision trees naturally 

represent disjunctive expressions. 

• The training data may contain errors. Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

• The training data may contain missing attribute values. Decision tree methods can be 

used even when some training examples have unknown values (e.g., if the Humidity of 

the day is known for only some of the training examples).  

Many practical problems have been found to fit these characteristics. Decision tree learning 

has therefore been applied to problems such as learning to classify medical patients by their 

disease, equipment malfunctions by their cause, and loan applicants by their likelihood of 

defaulting on payments. Such problems, in which the task is to classify examples into one of a 

discrete set of possible categories, are often referred to as classification problems. 
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4. Basic decision tree learning algorithm 

Most algorithms that have been developed for learning decision trees are variations on a core 

algorithm that employs a top-down, greedy search through the space of possible decision trees. 

This approach is demonstrated by the ID3 algorithm 

ID3 basic algorithm, learns decision trees by constructing them top-down, beginning with the 

question "which attribute should be tested at the root of the tree?” To answer this question, 

each instance attribute is evaluated using a statistical test to determine how well it alone 

classifies the training examples. The best attribute is selected and used as the test at the root 

node of the tree. 

A descendant of the root node is then created for each possible value of this attribute, and the 

training examples are sorted to the appropriate descendant node (i.e., down the branch 

corresponding to the example's value for this attribute). 

The entire process is then repeated using the training examples associated with each descendant 

node to select the best attribute to test at that point in the tree. This forms a greedy search for 

an acceptable decision tree, in which the algorithm never backtracks to reconsider earlier 

choices. A simplified version of the algorithm, specialized to learning boolean-valued functions 

(i.e., concept learning), is described in below. 

 

Algorithm ID3 (Examples, TargetAttribute, Attributes) 

1. Create a Root node for the tree 

2. If all Examples are positive, Return the single-node tree Root, with label = + 

3. If all Examples are negative, Return the single-node tree Root, with label = - 

4. If Attributes is empty,  

– Return the single-node tree Root, with label = most common value of 

TargetAttribute in Examples 

Otherwise  

Begin 

– A ← the attribute from Attributes that best classifies Examples 

– The decision attribute for Root ← A 

– For each possible value vi of A, 

• Add a new tree branch below Root, corresponding to the test A = vi 

• Let Examplesvi be the subset of Examples that have value vi for A 

• If Examplesvi is empty Then  

– below this new branch add a leaf node with label = most 

common  value of TargetAttribute in Examples 

Else  

– below this new branch add the subtree   

ID3(Examplesvi , TargetAttribute, Attributes – {A}) 

End 

5. Return Root 
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4.1 Which Attribute Is the Best Classifier? 

The central choice in the ID3 algorithm is selecting attribute that is most useful for classifying 

examples. We will define a statistical property, called information gain, that measures how 

well a given attribute separates the training examples according to their target classification. 

ID3 uses this information gain measure to select among the candidate attributes at each step 

while growing the tree. 

4.1.1 Entropy – Measurement of Homogeneity of Examples 

In order to define information-gain precisely, we begin by defining a measure commonly used 

in information theory, called entropy, that characterizes the (im)purity of an arbitrary 

collection of examples. Given a collection S, containing positive and negative examples of 

some target concept, the entropy of S relative to this boolean classification is 

 

where p+ is the proportion of positive examples in S and p- is the proportion of negative 

examples in S. In all calculations involving entropy we define 0.log 0 to be 0. 

To illustrate, suppose S is a collection of 14 examples of some boolean concept, including 9 

positive and 5 negative examples (we adopt the notation [9+, 5-] to summarize such a sample 

of data). Then the entropy of S relative to this boolean classification is 

 

Figure 3.2 shows the form of the entropy function relative to a boolean classification, as p+, 

varies between 0 and 1. 

 

Interpretation: One interpretation of entropy from information theory is that it specifies the 

minimum number of bits of information needed to encode the classification of an arbitrary 

member of S (i.e., a member of S drawn at random with uniform probability). For example, if 

p+ = 1, the receiver knows the drawn example will be positive, so no message need be sent, and 

the entropy is zero. On the other hand, if p+ = 0.5, one bit is required to indicate whether the 

drawn example is positive or negative. If p+ =  0.8, then a collection of messages can be encoded 
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using on average less than 1 bit per message by assigning shorter codes to collections of 

positive examples and longer codes to less likely negative examples. 

Thus far we have discussed entropy in the special case where the target classification is 

boolean. More generally, if the target attribute can take on c different values, then the entropy 

of S relative to this c-wise classification is defined as 

 

where pi is the proportion of S belonging to class i. Note the logarithm is still base 2 because 

entropy is a measure of the expected encoding length measured in bits. Note also that if the 

target attribute can take on c possible values, the entropy can be as large as log2 c. 

 

4.1.2. Information Gain – Measurement of Expected Reduction in Entropy 

Given entropy as a measure of the impurity in a collection of training examples, we can now 

define a measure of the effectiveness of an attribute in classifying the training data. The 

measure we will use, called information gain, is simply the expected reduction in entropy 

caused by partitioning the examples according to this attribute. More precisely, the information 

gain, Gain(S, A) of an attribute A, relative to a collection of examples S, is defined as 

 

Where S – a collection of examples; A – an attribute; Values(A) – possible values of attribute 

A; Sv – the subset of S for which attribute A has value v.   

For example, suppose S is a collection of training-example days described by attributes 

including Wind, which can have the values Weak or Strong. As before, assume S is a collection 

containing 14 examples, [9+, 5-]. Of these 14 examples, suppose 6 of the positive and 2 of the 

negative examples have Wind = Weak, and the remainder have Wind = Strong. The 

information-gain due to sorting the original 14 examples by the attribute Wind may then be 

calculated as 

 

Information gain is precisely the measure used by ID3 to select the best attribute at each step 

in growing the tree. The use of information gain to evaluate the relevance of attributes is 

summarized in Figure 3.3. In this figure the information gain of two different attributes, 
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Humidity and Wind, is computed in order to determine which is the better attribute for 

classifying the training examples shown in Table 3.2. 

 

 

Day Outlook Temp. Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Table 3.2: Training examples for the target concept PlayTennis. 

 

4.2 Illustrative example 

To illustrate the operation of ID3, consider the learning task represented by the training 

examples of Table 3.2. Here the target attribute PlayTennis, which can have values yes or no 

for different Saturday mornings, is to be predicted based on other attributes of the morning in 

question. Consider the first step through the algorithm, in which the topmost node of the 

decision tree is created. Which attribute should be tested first in the tree? ID3 determines the 

information gain for each candidate attribute (i.e., Outlook, Temperature, Humidity, and 

Wind), then selects the one with highest information gain. The computation of information gain 

Which attribute is 

the best classifier?  
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for two of these attributes is shown in Figure 3.3. The information gain values for all four 

attributes are 

 

 

where S denotes the collection of training examples from Table 3.2. Computations of 

Gain(S,Wind) and Gain(S, Humidity) is shown in figure 3.3. Rest two can be taken as exercise. 

(Refer your class notes for detailed computation) 

According to the information gain measure, the Outlook attribute provides the best prediction 

of the target attribute, PlayTennis, over the training examples. Therefore, Outlook is selected 

as the decision attribute for the root node, and branches are created below the root for each 

of its possible values (i.e., Sunny, Overcast, and Rain). The resulting partial decision tree is 

shown in Figure 3.4, along with the training examples sorted to each new descendant node. 

 

Note that every example for which Outlook=Overcast is also a positive example of PlayTennis. 

Therefore, this node of the tree becomes a leaf node with the classification PlayTennis = Yes. 

In contrast, the descendants corresponding to Outlook = Sunny and Outlook = Rain still have 

nonzero entropy, and the decision tree will be further elaborated below these nodes. 
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The process of selecting a new attribute and partitioning the training examples is now repeated 

for each nonterminal descendant node, this time using only the training examples associated 

with that node. Attributes that have been incorporated higher in the tree are excluded, so that 

any given attribute can appear at most once along any path through the tree. This process 

continues for each new leaf node until either of two conditions is met: (1) every attribute has 

already been included along this path through the tree, or (2) the training examples associated 

with this leaf node all have the same target attribute value (i.e., their entropy is zero). Figure 

3.4 illustrates the computations of information gain for the next step in growing the decision 

tree. The final decision tree learned by ID3 from the 14 training examples of Table 3.2 is shown 

in Figure 3.1 

 

(Refer class notes for detailed solution of this example.) 

 

5. Hypothesis space search in decision tree learning 

As with other inductive learning methods, ID3 can be characterized as searching a space of 

hypotheses for one that fits the training examples. The hypothesis space searched by ID3 is the 

set of possible decision trees. ID3 performs a simple-to complex, hill-climbing search through 

this hypothesis space, beginning with the empty tree, then considering progressively more 

elaborate hypotheses in search of a decision tree that correctly classifies the training data. The 

evaluation function that guides this hill-climbing search is the information gain measure. This 

search is depicted in Figure 3.5. 



Lecture Notes | 15CS73 – ML | Module 2: Decision Tree learning  

Mr. Harivinod N www.techjourney.in       Page| 2.10 

 

 

 

By viewing ID3 in terms of its search space and search strategy, we can get some insight into 

its capabilities and limitations. 

• ID3’s hypothesis space of all decision trees is a complete space of finite discrete-valued 

functions, relative to the available attributes. Because every finite discrete-valued 

function can be represented by some decision tree, ID3 avoids one of the major risks of 

methods that search incomplete hypothesis spaces (such as methods that consider only 

conjunctive hypotheses): that the hypothesis space might not contain the target 

function. 

• ID3 maintains only a single current hypothesis as it searches through the space of 

decision trees. TI does not have the ability to determine how many alternative decision 

trees are consistent with the available training data, or to pose new instance queries that 

optimally resolve among these competing hypotheses. 

• ID3 in its pure form performs no backtracking in its search. Therefore, it is susceptible 

to the usual risks of hill-climbing search without backtracking: converging to locally 

optimal solutions that are not globally optimal. In the case of ID3, a locally optimal 

solution corresponds to the decision tree it selects along the single search path it 

explores. However, this locally optimal solution may be less desirable than trees that 

would have been encountered along a different branch of the search.  

• ID3 uses all training examples at each step in the search to make statistically based 

decisions regarding how to refine its current hypothesis. This contrasts with methods 

that make decisions incrementally, based on individual training examples (e.g., Find-S 

or CEA). One advantage of using statistical properties of all the examples (e.g., 

information gain) is that the resulting search is much less sensitive to errors in 

individual training examples. ID3 can be easily extended to handle noisy training data 

by modifying its termination criterion to accept hypotheses that imperfectly fit the 

training data. 
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6. Inductive bias in decision tree learning 

What is the policy by which ID3 generalizes from observed training examples to classify 

unseen instances? In other words, what is its inductive bias? Bias is the set of assumptions that, 

together with the training data, deductively justify the classifications assigned by the learner to 

future instances. 

Given a collection of training examples, there are typically many decision trees consistent with 

these examples. Describing the inductive bias of ID3 therefore consists of describing the basis 

by which it chooses one of these consistent hypotheses over the others. It chooses the first 

acceptable tree it encounters in its simple-to-complex, hill-climbing search through the space 

of possible trees. Roughly speaking, then, the ID3 search strategy (a) selects in favor of shorter 

trees over longer ones, and (b) selects trees that place the attributes with highest information 

gain closest to the root. Because of the subtle interaction between the attribute selection 

heuristic used by ID3 and the particular training examples it encounters, it is difficult to 

characterize precisely the inductive bias exhibited by ID3. However, we can approximately 

characterize its bias as a preference for short decision trees over complex trees. 

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees. 

In fact, one could imagine an algorithm similar to ID3 that exhibits precisely this inductive 

bias. Consider an algorithm that begins with the empty tree and searches breadth first through 

progressively more complex trees, first considering all trees of depth 1, then all trees of depth 

2, etc. Once it finds a decision tree consistent with the training data, it returns the smallest 

consistent tree at that search depth (e.g., the tree with the fewest nodes).  

In particular, it does not always find the shortest consistent tree, and it is biased to favor trees 

that place attributes with high information gain closest to the root. 

A closer approximation to the inductive bias of ID3: Shorter trees are preferred over 

longer trees. Trees that place high information gain attributes close to the root are 

preferred over those that do not. 

6.1 Restriction Biases and Preference Biases 

There is an interesting difference between the types of inductive bias exhibited by ID3 and by 

the CEA. Consider the difference between the hypothesis space search in these two approaches:  

• ID3 searches a complete hypothesis space. It searches incompletely through this space, 

from simple to complex hypotheses, until its termination condition is met (e.g., until it 

finds a hypothesis consistent with the data). Its inductive bias is solely a consequence 

of the ordering of hypotheses by its search strategy. Its hypothesis space introduces no 

additional bias.  

• The version space CEA searches an incomplete hypothesis space (i.e., one that can 

express only a subset of the potentially teachable concepts). It searches this space 

completely, finding every hypothesis consistent with the training data. Its inductive bias 

is solely a consequence of the expressive power of its hypothesis representation. Its 

search strategy introduces no additional bias. 
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In brief, the inductive bias of ID3 follows from its search strategy, whereas the inductive bias 

of the CEA follows from the definition of its search space.  

The inductive bias of ID3 is thus a preference for certain hypotheses over others (e.g., for 

shorter hypotheses), with no hard restriction on the hypotheses that can be eventually 

enumerated. This form of bias is typically called a preference bias (or, alternatively, a search 

bias). In contrast, the bias of the CEA is in the form of a categorical restriction on the set of 

hypotheses considered. This form of bias is typically called a restriction bias (or, alternatively, 

a language bias). 

Given that some form of inductive bias is required in order to generalize beyond the training 

data, which type of inductive bias shall we prefer; a preference bias or restriction bias? 

Typically, a preference bias is more desirable than a restriction bias, because it allows the 

learner to work within a complete hypothesis space that is assured to contain the unknown 

target function. In contrast, a restriction bias that strictly limits the set of potential hypotheses 

is generally less desirable, because it introduces the possibility of excluding the unknown target 

function altogether. 

ID3 exhibits a purely preference bias and CEA is a purely restriction bias, whereas some 

learning systems combine both. 

6.2 Why Prefer Short Hypotheses? 

Is ID3's inductive bias favoring shorter decision trees a sound basis for generalizing beyond 

the training data? Philosophers and others have debated this question for centuries, and the 

debate remains unresolved to this day. William of Occam was one of the first to discuss the 

question, around the year 1320, so this bias often goes by the name of Occam's razor. 

Occam's razor: Prefer the simplest hypothesis that fits the data. 

Why should one prefer simpler hypotheses? One argument is that because there are fewer short 

hypotheses than long ones (based on straightforward combinatorial arguments), it is less likely 

that one will find a short hypothesis that coincidentally fits the training data. In contrast there 

are often many very complex hypotheses that fit the current training data but fail to generalize 

correctly to subsequent data.  

There is a major difficulty with the above argument. By the same reasoning we could have 

argued that one should prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf 

nodes, that use the decision attribute A1 at the root, and test attributes A2 through All, in 

numerical order. There are relatively few such trees, and we might argue (by the same 

reasoning as above) that our a priori chance of finding one consistent with an arbitrary set of 

data is therefore small. The difficulty here is that there are very many small sets of hypotheses 

that one can define-most of them rather arcane. Why should we believe that the small set of 

hypotheses consisting of decision trees with short descriptions should be any more relevant 

than the multitude of other small sets of hypotheses that we might define? 

A second problem with the above argument for Occam's razor is that the size of a hypothesis 

is determined by the particular representation used internally by the learner. Two learners using 
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different internal representations could therefore arrive at different hypotheses, both justifying 

their contradictory conclusions by Occam's razor! For example, the function represented by the 

learned decision tree in Figure 3.1 could be represented as a tree with just one decision node, 

by a learner that uses the boolean attribute XYZ, where we define the attribute XYZ to be true 

for instances that are classified positive by the decision tree in Figure 3.1 and false otherwise. 

Thus, two learners, both applying Occam's razor, would generalize in different ways if one 

used the XYZ attribute to describe its examples and the other used only the attributes Outlook, 

Temperature, Humidity, and Wind.  

This last argument shows that Occam's razor will produce two different hypotheses from the 

same training examples when it is applied by two learners that perceive these examples in terms 

of different internal representations. On this basis we might be tempted to reject Occam's razor 

altogether. However, consider the following scenario that examines the question of which 

internal representations might arise from a process of evolution and natural selection. Imagine 

a population of artificial learning agents created by a simulated evolutionary process involving 

reproduction, mutation, and natural selection of these agents. For the sake of argument, let us 

also assume that the learning agents employ a fixed learning algorithm (say ID3) that cannot 

be altered by evolution. It is reasonable to assume that over time evolution will produce internal 

representation that make these agents increasingly successful within their environment. The 

essence of the argument here is that evolution will create internal representations that make the 

learning algorithm's inductive bias a self-fulfilling prophecy, simply because it can alter the 

representation easier than it can alter the learning algorithm. 

7. Issues in decision tree learning 

Practical issues in learning decision trees include determining how deeply to grow the decision 

tree, handling continuous attributes, choosing an appropriate attribute selection measure, 

handling training data with missing attribute values, handling attributes with differing costs, 

and improving computational efficiency. Below we discuss each of these issues and extensions 

to the basic ID3 algorithm that address them. ID3 has itself been extended to address most of 

these issues, with the resulting system renamed C4.5.  

7.1 Avoiding Overfitting the Data 

The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify the 

training examples. This can lead to difficulties when there is noise in the data, or when the 

number of training examples is too small to produce a representative sample of the true target 

function. In either of these cases, this simple algorithm can produce trees that overfit the 

training examples.  

Definition: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the 

training data if there exists some alternative hypothesis h' ∈ H, such that h has smaller 

error than h' over the training examples, but h' has a smaller error than h over the entire 

distribution of instances. 

Figure 3.6 illustrates the impact of overfitting in a typical application of decision tree learning. 

In this case, the ID3 algorithm is applied to the task of learning which medical patients have a 
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form of diabetes. The horizontal axis of this plot indicates the total number of nodes in the 

decision tree, as the tree is being constructed. The vertical axis indicates the accuracy of 

predictions made by the tree. The solid line shows the accuracy of the decision tree over the 

training examples, whereas the broken line shows accuracy measured over an independent set 

of test examples (not included in the training set).  

 

Predictably, the accuracy of the tree over the training examples increases monotonically as the 

tree is grown. However, the accuracy measured over the independent test examples first 

increases, then decreases. As can be seen, once the tree size exceeds approximately 25 nodes, 

further elaboration of the tree decreases its accuracy over the test examples despite increasing 

its accuracy on the training examples. 

How can it be possible for tree h to fit the training examples better than h', but for it to perform 

more poorly over subsequent examples? One way this can occur is when the training 

examples contain random errors or noise. To illustrate, consider the effect of adding the 

following positive training example, incorrectly labeled as negative, to the (otherwise correct) 

examples in Table 3.2. 

 

Given the original error-free data, ID3 produces the decision tree shown in Figure 3.1. 

However, the addition of this incorrect example will now cause ID3 to construct a more 

complex tree. In particular, the new example will be sorted into the second leaf node from the 

left in the learned tree of Figure 3.1, along with the previous positive examples D9 and D11. 

Because the new example is labeled as a negative example, ID3 will search for further 

refinements to the tree below this node. The result is that ID3 will output a decision tree (h) 

that is more complex than the original tree from Figure 3.1 (h'). Of course, h will fit the 

collection of training examples perfectly, whereas the simpler h' will not. However, given that 

the new decision node is simply a consequence of fitting the noisy training example, we expect 

h to outperform h' over subsequent data drawn from the same instance distribution. 

The above example illustrates how random noise in the training examples can lead to 

overfitting.  
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In fact, overfitting is possible even when the training data are noise-free, especially when small 

numbers of examples are associated with leaf nodes. In this case, it is quite possible for 

coincidental regularities to occur, in which some attribute happens to partition the examples 

very well, despite being unrelated to the actual target function. Whenever such coincidental 

regularities exist, there is a risk of overfitting. 

Overfitting is a significant practical difficulty for decision tree learning and many other 

learning methods. For example, in one experimental study of ID3 involving five different 

learning tasks with noisy, nondeterministic data, overfitting was found to decrease the accuracy 

of learned decision trees by 10-25% on most problems. 

Avoiding Overfitting: There are several approaches to avoiding overfitting in decision tree 

learning. These can be grouped into two classes: 

• approaches that stop growing the tree earlier, before it reaches the point where it 

perfectly classifies the training data,  

• approaches that allow the tree to overfit the data, and then post-prune the tree. 

Although the first of these approaches might seem more direct, the second approach of post-

pruning overfit trees has been found to be more successful in practice. This is due to the 

difficulty in the first approach of estimating precisely when to stop growing the tree. Regardless 

of whether the correct tree size is found by stopping early or by post-pruning, a key question 

is what criterion is to be used to determine the correct final tree size. Approaches include: 

• Use a separate set of examples, distinct from the training examples, to evaluate the 

utility of post-pruning nodes from the tree. 

• Use all the available data for training but apply a statistical test to estimate whether 

expanding (or pruning) a particular node is likely to produce an improvement beyond 

the training set. For example, a chi-square test to estimate whether further expanding a 

node is likely to improve performance over the entire instance distribution, or only on 

the current sample of training data. 

• Use an explicit measure of the complexity for encoding the training examples and the 

decision tree, halting growth of the tree when this encoding size is minimized. This 

approach, based on a heuristic called the Minimum Description Length principle. 

The first of the above approaches is the most common and is often referred to as a training and 

validation set approach. We discuss the two main variants of this approach below. In this 

approach, the available data are separated into two sets of examples: a training set, which is 

used to form the learned hypothesis, and a separate validation set, which is used to evaluate 

the accuracy of this hypothesis over subsequent data and, in particular, to evaluate the impact 

of pruning this hypothesis. The motivation is this: Even though the learner may be misled by 

random errors and coincidental regularities within the training set, the validation set is unlikely 

to exhibit the same random fluctuations. Therefore, the validation set can be expected to 

provide a safety check against overfitting the spurious characteristics of the training set. Of 

course, it is important that the validation set be large enough to itself provide a statistically 
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significant sample of the instances. One common heuristic is to withhold one-third of the 

available examples for the validation set, using the other two-thirds for training. 

7.1.1 Reduced Error Pruning 

How exactly might we use a validation set to prevent overfitting? One approach, called 

reduced-error pruning (Quinlan 1987), is to consider each of the decision nodes in the tree to 

be candidates for pruning. Pruning a decision node consists of removing the subtree rooted at 

that node, making it a leaf node, and assigning it the most common classification of the training 

examples affiliated with that node. Nodes are removed only if the resulting pruned tree 

performs no worse than-the original over the validation set. This has the effect that any leaf 

node added due to coincidental regularities in the training set is likely to be pruned because 

these same coincidences are unlikely to occur in the validation set. Nodes are pruned iteratively, 

always choosing the node whose removal most increases the decision tree accuracy over the 

validation set. Pruning of nodes continues until further pruning is harmful (i.e., decreases 

accuracy of the tree over the validation set). 

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in Figure 

3.7. As in Figure 3.6, the accuracy of the tree is shown measured over both training examples 

and test examples. The additional line in Figure 3.7 shows accuracy over the test examples as 

the tree is pruned. When pruning begins, the tree is at its maximum size and lowest accuracy 

over the test set. As pruning proceeds, the number of nodes is reduced and accuracy over the 

test set increases. Here, the available data has been split into three subsets: the training 

examples, the validation examples used for pruning the tree, and a set of test examples used to 

provide an unbiased estimate of accuracy over future unseen examples. The plot shows 

accuracy over the training and test sets. Accuracy over the validation set used for pruning is 

not shown. 
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Using a separate set of data to guide pruning is an effective approach provided a large amount 

of data is available. The major drawback of this approach is that when data is limited, 

withholding part of it for the validation set reduces even further the number of examples 

available for training.  

The following section presents an alternative approach to pruning that has been found useful 

in many practical situations where data is limited. Many additional techniques have been 

proposed as well, involving partitioning the available data several different times in multiple 

ways, then averaging the results.  

7.1.2 Rule Post-Pruning 

In practice, one quite successful method for finding high accuracy hypotheses is a technique 

we shall call rule post-pruning. A variant of this pruning method is used by C4.5 (Quinlan 

1993), which is an outgrowth of the original ID3 algorithm. Rule post-pruning involves the 

following steps: 

1. Infer the decision tree from the training set, growing the tree until the training data is 

fit as well as possible and allowing overfitting to occur. 

2. Convert the learned tree into an equivalent set of rules by creating one rule for each 

path from the root node to a leaf node. 

3. Prune (generalize) each rule by removing any preconditions that result in improving its 

estimated accuracy. 

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence 

when classifying subsequent instances. 

To illustrate, consider again the decision tree in Figure 3.1. In rule post-pruning, one rule is 

generated for each leaf node in the tree. Each attribute test along the path from the root to the 

leaf becomes a rule antecedent (precondition) and the classification at the leaf node becomes 

the rule consequent (postcondition). For example, the leftmost path of the tree in Figure 3.1 is 

translated into the rule 

 

 

Next, each such rule is pruned by removing any antecedent, or precondition, whose removal 

does not worsen its estimated accuracy. Given the above rule, for example, rule post-pruning 

would consider removing the preconditions (Outlook = Sunny) and (Humidity = High). It 

would select whichever of these pruning steps produced the greatest improvement in estimated 

rule accuracy, then consider pruning the second precondition as a further pruning step. No 

pruning step is performed if it reduces the estimated rule accuracy. 

Why to convert the decision tree to rules before pruning? There are three main advantages. 

• Converting to rules allows distinguishing among the different contexts in which a 

decision node is used. Because each distinct path through the decision tree node 

produces a distinct rule, the pruning decision regarding that attribute test can be made 

differently for each path. In contrast, if the tree itself were pruned, the only two choices 

would be to remove the decision node completely, or to retain it in its original form. 
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• Converting to rules removes the distinction between attribute tests that occur near the 

root of the tree and those that occur near the leaves. Thus, we avoid messy bookkeeping 

issues such as how to reorganize the tree if the root node is pruned while retaining part 

of the subtree below this test. 

• Converting to rules improves readability. Rules are often easier for to understand. 

7.2 Incorporating Continuous-Valued Attributes 

Our initial definition of ID3 is restricted to attributes that take on a discrete set of values.  

1. The target attribute whose value is predicted by learned tree must be discrete valued.  

2. The attributes tested in the decision nodes of the tree must also be discrete valued.  

This second restriction can easily be removed so that continuous-valued decision attributes can 

be incorporated into the learned tree. For an attribute A that is continuous-valued, the algorithm 

can dynamically create a new boolean attribute A, that is true if A < c and false otherwise. The 

only question is how to select the best value for the threshold c. 

Illustration: Suppose we wish to include the continuous-valued attribute Temperature in 

describing the training example days in the learning task of Table 3.2. Suppose further that the 

training examples associated with a particular node in the decision tree have the following 

values for Temperature and the target attribute PlayTennis. 

 

What threshold-based boolean attribute should be defined based on Temperature? Pick a 

threshold, c, that produces the greatest information gain. By sorting the examples according to 

the continuous attribute A, then identifying adjacent examples that differ in their target 

classification, we can generate a set of candidate thresholds midway between the corresponding 

values of A. It can be shown that the value of c that maximizes information gain must always 

lie at such a boundary. These candidate thresholds can then be evaluated by computing the 

information gain associated with each. In the current example, there are two candidate 

thresholds, corresponding to the values of Temperature at which the value of PlayTennis 

changes: (48 + 60)/2, and (80 + 90)/2. The information gain can then be computed for each of 

the candidate attributes, Temperature>54 and Temperature>85, and the best can be selected 

(Temperature>54). This dynamically created boolean attribute can then compete with the other 

discrete-valued candidate attributes available for growing the decision tree.  

7.3 Alternative Measures for Selecting Attributes  

There is a natural bias in the information gain measure that favors attributes with many values 

over those with few values. As an extreme example, consider the attribute Date, which has a 

very large number of possible values. What is wrong with the attribute Date? Simply put, it has 

so many possible values that it is bound to separate the training examples into very small 

subsets. Because of this, it will have a very high information gain relative to the training 

examples, despite being a very poor predictor of the target function over unseen instances. 
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Alternate measure-1: One alternative measure that has been used successfully is the gain 

ratio (Quinlan 1986). The gain ratio measure penalizes attributes such as Date by incorporating 

a term, called split information that is sensitive to how broadly and uniformly the attribute 

splits the data: 

 

where S1 through Sc, are the c subsets of examples resulting from partitioning S by the c-valued 

attribute A. Note that Splitlnformation is actually the entropy of S with respect to the values of 

attribute A. This is in contrast to our previous uses of entropy, in which we considered only the 

entropy of S with respect to the target attribute whose value is to be predicted by the learned 

tree. The Gain Ratio measure is defined in terms of the earlier Gain measure, as well as this 

Splitlnformation, as follows 

 

The Splitlnformation term discourages the selection of attributes with many uniformly 

distributed values (e.g., Date).  

One practical issue that arises in using GainRatio in place of Gain to select attributes is that 

the denominator can be zero or very small when |Si| ≈ |S| for one of the Si. This either makes 

the GainRatio undefined or very large for attributes that happen to have the same value for 

nearly all members of S. To avoid selecting attributes purely on this basis, we can adopt some 

heuristic such as first calculating the Gain of each attribute, then applying the GainRatio test 

only considering those attributes with above average Gain (Quinlan 1986). 

Alternate measure-2: An alternative to the GainRatio, designed to directly address the above 

difficulty is a distance-based measure introduced by Lopez de Mantaras in 1991. This 

measure is based on defining a distance metric between partitions of the data. Each attribute is 

evaluated based on the distance between the data partition it creates and the perfect partition 

(i.e., the partition that perfectly classifies the training data). The attribute whose partition is 

closest to the perfect partition is chosen. It is not biased toward attributes with large numbers 

of values, and the predictive accuracy of the induced trees is not significantly different from 

that obtained with the Gain and Gain Ratio measures. However, this distance measure avoids 

the practical difficulties associated with the GainRatio measure, and in his it produces 

significantly smaller trees in the case of data sets whose attributes have very different numbers 

of values. 

7.4 Handling Training Examples with Missing Attribute Values 

In certain cases, the available data may be missing values for some attributes. For example, in 

a medical domain in which we wish to predict patient outcome based on various laboratory 

tests, it may be that the Blood-Test-Result is available only for a subset of the patients. In such 

cases, it is common to estimate the missing attribute value based on other examples for which 

this attribute has a known value. 
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Consider the situation in which Gain(S, A) is to be calculated at node n in the decision tree to 

evaluate whether the attribute A is the best attribute to test at this decision node. Suppose that 

(x, c(x)) is one of the training examples in S and that the value A(x) is unknown. 

Method-1: One strategy for dealing with the missing attribute value is to assign it the value 

that is most common among training examples at node n. Alternatively, we might assign it the 

most common value among examples at node n that have the classification c(x). The elaborated 

training example using this estimated value for A(x) can then be used directly by the existing 

decision tree learning algorithm.  

Method-2: A second, more complex procedure is to assign a probability to each of the possible 

values of A. These probabilities can be estimated again based on the observed frequencies of 

the various values for A among the examples at node n. For example, given a boolean attribute 

A, if node n contains six known examples with A = 1 and four with A = 0, then we would say 

the probability that A(x) = 1 is 0.6, and the probability that A(x) = 0 is 0.4. A fractional 0.6 of 

instance x is now distributed down the branch for A = 1, and a fractional 0.4 of x down the 

other tree branch. These fractional examples are used for the purpose of computing information 

Gain and can be further subdivided at subsequent branches of the tree if a second missing 

attribute value must be tested. This same fractioning of examples can also be applied after 

learning, to classify new instances whose attribute values are unknown. In this case, the 

classification of the new instance is simply the most probable classification, computed by 

summing the weights of the instance fragments classified in different ways at the leaf nodes of 

the tree. This method for handling missing attribute values is used in C4.5 

7.5 Handling Attributes with Differing Costs 

In some learning tasks the instance attributes may have associated costs. For example, in 

learning to classify medical diseases we might describe patients in terms of attributes such as 

Temperature, BiopsyResult, Pulse, BloodTestResults, etc. These attributes vary significantly in 

their costs, both in terms of monetary cost and cost to patient comfort. In such tasks, we would 

prefer decision trees that use low-cost attributes where possible, relying on high-cost attributes 

only when needed to produce reliable classifications. 

ID3 can be modified to consider attribute costs by introducing a cost term into the attribute 

selection measure. For example, we might divide the Gain by the cost of the attribute, so that 

lower-cost attributes would be preferred. While such cost-sensitive measures do not guarantee 

finding an optimal cost-sensitive decision tree, they do bias the search in favor of low-cost 

attributes. 

Method-1: Tan and Schlimmer (1990) and Tan (1993) describe one such approach and apply 

it to a robot perception task in which the robot must learn to classify different objects according 

to how they can be grasped by the robot's manipulator. In this case the attributes correspond to 

different sensor readings obtained by a movable sonar on the robot. Attribute cost is measured 

by the number of seconds required to obtain the attribute value by positioning and operating 

the sonar. They demonstrate that more efficient recognition strategies are learned, without 
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sacrificing classification accuracy, by replacing the information gain attribute selection 

measure by the following measure 

 

Method-2: Nunez (1988) describes a related approach and its application to learning medical 

diagnosis rules. Here the attributes are different symptoms and laboratory tests with differing 

costs. His system uses a somewhat different attribute selection measure, 

where w ∈ [0, 1] is a constant that determines the relative 

importance of cost versus information gain.  

 

8. Summary 

The main points in this module include: 

• Decision tree learning provides a practical method for concept learning and for learning 

other discrete-valued functions. The ID3 family of algorithms infers decision trees by 

growing them from the root downward, greedily selecting the next best attribute for 

each new decision branch added to the tree. 

• ID3 searches a complete hypothesis space (i.e., the space of decision trees can represent 

any discrete-valued function defined over discrete-valued instances). It thereby avoids 

the major difficulty associated with approaches that consider only restricted sets of 

hypotheses: that the target function might not be present in the hypothesis space. 

• The inductive bias implicit in ID3 includes a preference for smaller trees; that is, its 

search through the hypothesis space grows the tree only as large as needed in order to 

classify the available training examples. 

• Overfitting the training data is an important issue in decision tree learning. Because the 

training examples are only a sample of all possible instances, it is possible to add 

branches to the tree that improve performance on the training examples while 

decreasing performance on other instances outside this set. Methods for post-pruning 

the decision tree are therefore important to avoid overfitting in decision tree learning 

(and other inductive inference methods that employ a preference bias). 

• A large variety of extensions to the basic ID3 algorithm has been developed by different 

researchers. These include methods for post-pruning trees, handling real-valued 

attributes, accommodating training examples with missing attribute values, 

incrementally refining decision trees as new training examples become available, using 

attribute selection measures other than information gain, and considering costs 

associated with instance attributes. 

 

***** 


