

 VIVEKANANDA
College of Engineering & Technology

Nehrunagar post, Puttur, D.K. 574203

Lecture Notes

on

 by Harivinod N

Subject Code: 15CS73
(CBCS Scheme)

Prepared by

Mr. Harivinod N
Dept. of Computer Science and Engineering,

VCET Puttur

Course website:

www.techjourney.in

Module-1

Introduction to Machine Learning

http://www.techjourney.in/

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.2

Module-1

Introduction to Machine Learning

1.1 Introduction

Ever since computers were invented, we have wondered whether they might be made to learn.

If we could understand how to program them to learn-to improve automatically with

experience, the impact would be dramatic. Imagine computers learning from medical records

which treatments are most effective for new diseases or personal software assistants learning

the evolving interests of their users in order to highlight especially relevant stories from the

online morning newspaper. This course presents the field of machine learning, describing a

variety of learning paradigms, algorithms, theoretical results, and applications.

Some successful applications of machine learning are,

• Learning to recognize spoken words.

• Learning to drive an autonomous vehicle.

• Learning to classify new astronomical structures.

• Learning to play world-class games.

Examples of supervised machine learning tasks include:

• Identifying the zip code from handwritten digits on an envelope

• Determining whether a tumor is benign based on a medical image

• Detecting fraudulent activity in credit card transactions

• Identifying topics in a set of blog posts

• Segmenting customers into groups with similar preferences

• Detecting abnormal access patterns to a website

1.2 Well posed learning problems

Learning is broadly defined as any computer program that improves its performance at some

task through experience.

Definition: A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.

For example, a computer program that learns to play checkers might improve its performance

as measured by its ability to win at the class of tasks involving playing checkers games, through

experience obtained by playing games against itself. In general, to have a well-defined learning

problem, we must identity these three features: the class of tasks, the measure of performance

to be improved, and the source of experience.

A checkers learning problem

• Task T: playing checkers

• Performance measure P: percent of games won against opponents

• Training experience E: playing practice games against itself

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.3

We can specify many learning problems in this fashion, such as learning to recognize

handwritten words, or learning to drive a robotic automobile autonomously.

A handwriting recognition learning problem

• Task T: recognizing and classifying

handwritten words within images

• Performance measure P: percent of words

correctly classified

• Training experience E: a database of handwritten words with given classifications

A robot driving learning problem

• T: driving on public four-lane highways using vision sensors

• P: average distance traveled before an error (as judged by human overseer)

• E: a sequence of images and steering commands recorded by observing a human driver

1.3 Designing a Learning system

In order to illustrate some of the basic design issues and approaches to machine learning, let us

consider designing a program to learn to play checkers, with the goal of entering it in the world

checkers tournament. We adopt the obvious performance measure: the percent of games it wins

in this world tournament.

1.3.1 Choosing the Training Experience

The type of training experience available can have a significant impact on success or failure of

the learner.

• One key attribute is whether the training experience provides direct or indirect feedback

regarding the choices made by the performance system.

For example, in learning to play checkers, the system might learn from direct training

examples consisting of individual checkers board states and the correct move for each.

Alternatively, it might have available only indirect information consisting of the move

sequences and final outcomes of various games played. Here the learner faces an additional

problem of credit assignment or determining the degree to which each move in the sequence

deserves credit or blame for the final outcome. Hence, learning from direct training

feedback is typically easier than learning from indirect feedback.

• A second important attribute of the training experience is the degree to which the learner

controls the sequence of training examples.

For example, the learner might rely on the teacher to select informative board states and to

provide the correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly

confusing and ask the teacher for the correct move. Or the learner may have complete

control over both the board states and (indirect) training classifications, as it does when it

learns by playing against itself with no teacher present.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.4

• A third important attribute of the training experience is how well it represents the

distribution of examples over which the final system performance P must be measured.

In general, learning is most reliable when the training examples follow a distribution similar

to that of future test examples. In practice, it is often necessary to learn from a distribution

of examples that is somewhat different from those on which the final system will be

evaluated

To proceed with our design, let us decide that our system will train by playing games against

itself. This has the advantage that no external trainer need be present, and it therefore allows

the system to generate as much training data as time permits. We now have a fully specified

learning task.

A checkers learning problem:

• Task T: playing checkers

• Performance measure P: percent of games won in the world tournament

• Training experience E: games played against itself

In order to complete the design of the learning system, we must now choose

1. the exact type of knowledge to be learned

2. a representation for this target knowledge

3. a learning mechanism

1.3.2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and

how this will be used by the performance program. Consider checkers-playing program. The

program needs only to learn how to choose the best move from among some large search space

are known a priori. Here we discuss two such methods.

• Method-1: Let us use the function ChooseMove: B → M to indicate that accepts any

board from the set of legal board states B as input and produces as output some move

from the set of legal moves M.

The choice of the target function ChooseMove is a key design choice.

Although ChooseMove is an obvious choice for the target function in our example, this function

will turn out to be very difficult to learn given the kind of indirect training experience available

to our system.

• Method-2: An alternative target function and one that will turn out to be easier to learn

in this setting is an evaluation function that assigns a numerical score to any given board

state.

Let us call this target function V and again use the notation V: B → to denote that V maps

any legal board state from the set B to some real value in . We intend for this target function

V to assign higher scores to better board states.

If the system can successfully learn such a target function V, then it can easily use it to select

the best move from any current board position. This can be accomplished by generating the

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.5

successor board state produced by every legal move, then using V to choose the best successor

state and therefore the best legal move.

For example, define the target value V(b) for an arbitrary board state b in B, as follows:

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V(b) = V(b'), where b' is the best final board

state that can be achieved starting from b and playing optimally until the end of the

game (assuming the opponent plays optimally, as well).

While this recursive definition specifies a value of V(b) for every board state b, this

definition is not usable by our checkers player because it is not efficiently computable.

The goal of learning in this case is to discover an operational description of V; i.e. select

moves within realistic time bounds.

Thus, we have reduced the learning task in this case to the problem of discovering an

operational description of the ideal target function V. In practice, implementation of learning

the target function is often called function approximation. We will use the symbol �̂� to refer to

the function that is actually learned by our program, to distinguish it from the ideal target

function V.

1.3.3 Choosing a Representation for the Target Function

We have several ways to represent �̂� like; using a large table with a distinct entry specifying

the value for each distinct board state or using a collection of rules that match against features

of the board state, or a quadratic polynomial function of predefined board features, or an

artificial neural network.

On the other hand, the more expressive the representation, the more training data the program

will require in order to choose among the alternative hypotheses it can represent. To keep the

discussion brief, let us choose a simple representation: for any given board state, the function

c will be calculated as a linear combination of the following board features:

• xl: the number of black pieces on the board

• x2: the number of red pieces on the board

• x3: the number of black kings on the board

• x4: the number of red kings on the board

• x5: the number of black pieces threatened by red (i.e., which can be captured on red's

next turn)

• x6: the number of red pieces threatened by black

Thus, our learning program will represent �̂�(b) as a linear function of the form

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.6

where w0 through w6 are numerical coefficients, or weights, to be chosen by the learning

algorithm.

1.3.4 Choosing a Function Approximation Algorithm

In order to learn the target function �̂� we require a set of training examples, each describing a

specific board state b and the training value Vtrain(b) for b. In other words, each training example

is an ordered pair of the form 〈𝑏, 𝑉𝑡𝑟𝑎𝑖𝑛(𝑏)〉. For instance, the following training example

describes a board state b in which black has won the game (note x2 = 0 indicates that red has

no remaining pieces) and for which the target function value Vtrain (b) is therefore +100.

Below we describe a procedure that first derives such training examples from the indirect

training experience available to the learner, then adjusts the weights wi to best fit these training

examples

Estimating Training Values: Recall that according to our formulation of the learning

problem, the only training information available to our learner is whether the game was

eventually won or lost.

Even if the program loses the game, it may still be the case that board states occurring early in

the game should be rated very highly and that the cause of the loss was a subsequent poor

move.

Despite the ambiguity inherent in estimating training values for intermediate board states, one

simple approach has been found to be surprisingly successful. This approach is to assign the

training value of Vtrain(b) for any intermediate board state b to be �̂�(Successor(b)) where �̂� is

the learner's current approximation to V and where Successor(b) denotes the next board state

following b for which it is again the program's turn to move (i.e., the board state following the

program's move and the opponent's response). This rule for estimating training values can be

summarized as

Rule for estimating training values:

While it may seem strange to use the current version of �̂� to estimate training values that will

be used to refine this very same function, notice that we are using estimates of the value of the

Successor(b) to estimate the value of board state b. Intuitively, we can see this will make sense

if �̂� tends to be more accurate for board states closer to game's end.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.7

Adjusting the weights: All that remains is to specify the learning algorithm for choosing the

weights wi to best fit the set of training examples {〈𝑏, 𝑉𝑡𝑟𝑎𝑖𝑛(𝑏)〉}. As a first step we must define

what we mean by the best-fit to the training data. One common approach is to define the best

hypothesis, or set of weights, as that which minimizes the square error E between the training

values and the values predicted by the hypothesis V.

Thus, we seek the weights, or equivalently the �̂�, that minimize E for the observed training

examples.

In our case, we require an algorithm that will incrementally refine the weights as new training

examples become available and that will be robust to errors in these estimated training values.

One such algorithm is called the least mean squares (LMS) training rule. For each observed

training example, it adjusts the weights a small amount in the direction that reduces the error

on this training example. The LMS algorithm is defined as follows:

LMS Weight update rule

Here η is a small constant (e.g., 0.1) that moderates the size of the weight update. To get an

intuitive understanding for why this weight update rule works, notice that when the error

(Vtrain(b) - �̂� (b)) is zero, no weights are changed. When (Vtrain(b) - �̂� (b)) is positive (i.e., when

f(b) is too low), then each weight is increased in proportion to the value of its corresponding

feature. This will raise the value of �̂�(b), reducing the error. Notice that if the value of some

feature xi is zero, then its weight is not altered regardless of the error, so that the only weights

updated are those whose features actually occur on the training example board. Surprisingly,

in certain settings this simple weight-tuning method can be proven to converge to the least

squared error approximation to the Vtrain values.

1.3.5 The final design

The final design of our checkers learning system can be naturally described by four distinct

program modules that represent the central components in many learning systems.

a) The Performance System is the module that must solve the given performance task,

in this case playing checkers, by using the learned target function(s). It takes an instance

of a new problem (new game) as input and produces a trace of its solution (game

history) as output.

b) The Critic takes as input - history or trace of the game and produces as output - a set

of training examples of the target function.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.8

c) The Generalizer takes as input the training examples and produces an output

hypothesis that is its estimate of the target function. It generalizes from the specific

training examples, hypothesizing a general function that covers these examples and

other cases beyond the training examples.

d) The Experiment Generator takes as input the current hypothesis (currently learned

function) and outputs a new problem (i.e., initial board state) for the Performance

System to explore. Its role is to pick new practice problems that will maximize the

learning rate of the overall system.

These four modules are summarized as follows:

The sequence of design choices made for the checkers program is summarized in figure given

below.

Experiment
Generator

Generalizer Performance
System

Critic

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.9

1.4 Perspective and Issues in Machine Learning.

Perspective in ML - One useful perspective on machine learning is that it involves searching

a very large space of possible hypotheses to determine one that best fits the observed data and

any prior knowledge held by the learner.

For example, consider the space of hypotheses that could in principle be output by the above

checkers learner. This hypothesis space consists of all evaluation functions that can be

represented by some choice of values for the weights w0 through w6. The learner's task is thus

to search through this vast space to locate the hypothesis that is most consistent with the

available training examples. The LMS algorithm for fitting weights achieves this goal by

iteratively tuning the weights, adding a correction to each weight each time the hypothesized

evaluation function predicts a value that differs from the training value. This algorithm works

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.10

well when the hypothesis representation considered by the learner defines a continuously

parameterized space of potential hypotheses.

Issues in ML - Our checkers example raises a number of generic questions about machine

learning. The field of machine learning, is concerned with answering questions such as the

following:

• What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired function,

given sufficient training data? Which algorithms perform best for which types of

problems and representations?

• How much training data is sufficient? What general bounds can be found to relate the

confidence in learned hypotheses to the amount of training experience and the character

of the learner's hypothesis space?

• When and how can prior knowledge held by the learner guide the process of

generalizing from examples? Can prior knowledge be helpful even when it is only

approximately correct?

• What is the best strategy for choosing a useful next training experience, and how does

the choice of this strategy alter the complexity of the learning problem?

• What is the best way to reduce the learning task to one or more function approximation

problems? Put another way, what specific functions should the system attempt to learn?

Can this process itself be automated?

• How can the learner automatically alter its representation to improve its ability to

represent and learn the target function?

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.11

2 Concept Learning

Much of learning involves acquiring general concepts from specific training examples. People,

for example, continually learn general concepts or categories such as "bird," "car," etc. Each

concept can be viewed as describing some subset of objects/events defined over a larger set.

We consider the problem of automatically inferring the general definition of some concept,

given examples labeled as members or nonmembers of the concept. This task is commonly

referred to as concept learning or approximating a boolean-valued function from examples.

Concept learning: Inferring a boolean-valued function from training examples of its

input and output.

2.1 A Concept learning task

To ground our discussion of concept learning, consider the example task of learning the target

concept "Days on which my friend Sachin enjoys his favorite water sport”. Table given

below describes a set of example days, each represented by a set of attributes.

What hypothesis representation shall we provide to the learner in this case?

For each attribute, the hypothesis will either

• indicate by a “ ? ” that any value is acceptable for this attribute,

• specify a single required value (e.g., Warm) for the attribute, or

• indicate by a "Φ" that no value is acceptable.

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive

example (h(x) = 1).

To illustrate, the hypothesis that Sachin enjoys his favorite sport only on cold days with high

humidity (independent of the values of the other attributes) is represented by the expression

(?, Cold, High, ?, ?, ?)

The most general hypothesis-that every day is a positive example-is represented by

(?, ?, ?, ?, ?, ?)

and the most specific possible hypothesis-that no day is a positive example-is represented by

(Φ, Φ, Φ, Φ, Φ, Φ)

To summarize, the EnjoySport concept learning task requires learning the set of days for which

EnjoySport=yes, describing this set by a conjunction of constraints over the instance attributes.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.12

In general, any concept learning task can be described by the set of instances over which the

target function is defined, the target function, the set of candidate hypotheses considered by

the learner, and the set of available training examples.

Notation

• The set of items over which the concept is defined is called the set of instances, which

we denote by X. In the current example, X is the set of all possible days, each

represented by the attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.

• The concept or function to be learned is called the target concept, which we denote by

c. In general, c can be any boolean valued function defined over the instances X; that

is, c: X → {0, 1}. In the current example, the target concept corresponds to the value of

the attribute EnjoySport (i.e, c(x)=1 if EnjoySport=Yes, and c(x)=0 if EnjoySport= No).

• When learning the target concept, the learner is presented by a set of training examples,

each consisting of an instance x from X, along with its target concept value c(x).

Instances for which c(x) = 1 are called positive examples, or members of the target

concept. Instances for which c(x) = 0 are called negative examples. We will often write

the ordered pair (x, c(x)) to describe the training example consisting of the instance x

and its target concept value c(x).

• We use the symbol D to denote the set of available training examples.

• Given a set of training examples of the target concept c, the problem faced by the learner

is to hypothesize, or estimate, c. We use the symbol H to denote the set of all possible

hypotheses that the learner may consider regarding the identity of the target concept.

In general, each hypothesis h in H represents a boolean-valued function defined over

X; that is, h : X →{0, 1}. The goal of the learner is to find a hypothesis h such that h(x)

= c(x) for all x in X.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.13

Inductive learning hypothesis

• Our assumption is that the best hypothesis regarding unseen instances is the hypothesis

that best fits the observed training data. This is the fundamental assumption of inductive

learning.

• The inductive learning hypothesis. Any hypothesis found to approximate the target

function well over a sufficiently large set of training examples will also approximate

the target function well over other unobserved examples.

2.2 Concept learning as search

Concept learning can be viewed as the task of searching through a large space of hypotheses

implicitly defined by the hypothesis representation. The goal of this search is to find the

hypothesis that best fits the training examples.

Consider, for example, the instances X and hypotheses H in the EnjoySport learning task. Given

that the attribute Sky has three possible values, and that AirTemp, Humidity, Wind, Water, and

Forecast each have two possible values, the instance space X contains exactly 3.2.2.2.2.2 = 96

distinct instances. A similar calculation shows that there are 5.4.4.4.4.4 = 5120 syntactically

distinct hypotheses within H (including ? and Φ for each). Most practical learning tasks involve

much larger, sometimes infinite, hypothesis spaces.

General-to-Specific Ordering of Hypotheses

Many algorithms for concept learning organize the search through the hypothesis space by

relying on a very useful structure that exists for any concept learning problem: a general-to-

specific ordering of hypotheses. To illustrate the general-to-specific ordering, consider the two

hypotheses

Now consider the sets of instances that are classified positive by hl and by h2. Because h2

imposes fewer constraints on the instance, it classifies more instances as positive. In fact, any

instance classified positive by hl will also be classified positive by h2. Therefore, we say that

h2 is more general than hl.

This intuitive "more general than" relationship between hypotheses can be defined more

precisely as follows.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.14

2.3 Find-S: Finding A Maximally Specific Hypothesis

How can we use the more-general-than partial ordering to organize the search for a hypothesis

consistent with the observed training examples? One way is to begin with the most specific

possible hypothesis in H, then generalize this hypothesis each time it fails to cover an observed

positive training example. FIND-S algorithm is used for this purpose.

To illustrate this algorithm, assume the learner is given the sequence of training examples from

Table 2.1 for the EnjoySport task.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.15

The first step of FIND-S is to initialize h to the most specific hypothesis in H.

Upon observing the first training example from Table 2.1, which happens to be a positive

example, it becomes clear that our hypothesis is too specific. In particular, none of the “Φ”

constraints in h are satisfied by this example, so each is replaced by the next more general

constraint that fits the example; namely, the attribute values for this training example.

This h is still very specific; it asserts that all instances are negative except for the single positive

training example we have observed.

Next, the second training example (also positive in this case) forces the algorithm to further

generalize h, this time substituting a "?' in place of any attribute value in h that is not satisfied

by the new example. The refined hypothesis is

Upon encountering the third training example-in this case a negative example-the algorithm

makes no change to h. In fact, the FIND-S algorithm simply ignores every negative example.

The fourth (positive) example leads to a further generalization of h

The FIND-S algorithm illustrates one way in which the more-general-than partial ordering can

be used to organize the search for an acceptable hypothesis. The search moves from hypothesis

to hypothesis, searching from the most specific to progressively more general hypotheses along

one chain of the partial ordering.

Figure 2.2 illustrates this search in terms of the instance and hypothesis spaces.

Key Property

The key property of the Find-S algorithm is that for hypothesis spaces described by

conjunctions of attribute constraints (such as H for the EnjoySport task). Find-S is guaranteed

to output the most specific hypothesis within H that is consistent with the positive training

examples.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.16

However, there are several questions still left unanswered, such as:

• Has the learner converged to the correct target concept? Although FIND-S will find

a hypothesis consistent with the training data, it has no way to determine whether it has

found the only hypothesis in H consistent with the data (i.e., the correct target concept),

or whether there are many other consistent hypotheses as well.

• Why prefer the most specific hypothesis? In case there are multiple hypotheses

consistent with the training examples, FIND-S will find the most specific. It is unclear

whether we should prefer this hypothesis over, say, the most general, or some other

hypothesis of intermediate generality.

• Are the training examples consistent? In most practical learning problems there is

some chance that the training examples will contain at least some errors or noise. Such

inconsistent sets of training examples can severely mislead FIND-S, given the fact that

it ignores negative examples.

• What if there are several maximally specific consistent hypotheses? There can be

several maximally specific hypotheses consistent with the data. Find S finds only one.

2.4 Version Space and Motivation to Candidate Elimination algorithm

Candidate Elimination algorithm (CEA), addresses limitations of FIND-S. It finds all

describable hypotheses that are consistent with the observed training examples. In order to

define this algorithm precisely, we begin with a few basic definitions.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.17

Notice the key difference between this definition of consistent and our earlier definition of

satisfies. An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x

is a positive or negative example of the target concept. However, whether such an example is

consistent with h depends on the target concept, and in particular, whether h(x) = c(x).

This subset of all hypotheses is called the version space with respect to the hypothesis space

H and the training examples D, because it contains all plausible versions of the target concept.

The List-Then-Eliminate algorithm

One obvious way to represent the version space is simply to list all of its members. This leads

to a simple learning algorithm, which we might call the List-Then-Eliminate algorithm.

The List-Then-Eliminate algorithm first initializes the version space to contain all hypotheses

in H, then eliminates any hypothesis found inconsistent with any training example. The version

space of candidate hypotheses thus shrinks as more examples are observed, until ideally just

one hypothesis remains that is consistent with all the observed examples.

It is intuitively plausible that we can represent the version space in terms of its most specific

and most general members.

As long as the sets G and S are well defined, they completely specify the version space. In

particular, we can show that the version space is precisely the set of hypotheses contained in

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.18

G, plus those contained in S, plus those that lie between G and S in the partially ordered

hypothesis space. (This is stated precisely in Theorem 2.1. Refer text book for more details)

2.5 Candidate Elimination algorithm

The computes the version space containing all hypotheses from H that are consistent with an

observed sequence of training examples. It begins by initializing the version space to the set of

all hypotheses in H; that is, by initializing the G boundary set to contain the most general

hypothesis in H

and initializing the S boundary set to contain the most specific (least general) hypothesis

These two boundary sets delimit the entire hypothesis space, because every other hypothesis

in H is both more general than So and more specific than Go. As each training example is

considered, the S and G boundary sets are generalized and specialized, respectively, to

eliminate from the version space any hypotheses found inconsistent with the new training

example. After all examples have been processed, the computed version space contains all the

hypotheses consistent with these examples and only these hypotheses. This algorithm is

summarized in given below.

Candidate Elimination Algorithm using Version Spaces

1. Initialize G to the set of maximally general hypotheses in H

2. Initialize S to the set of maximally specific hypotheses in H

3. For each training example d, do

a. If d is a positive example

i. Remove from G any hypothesis inconsistent with d,

ii. For each hypothesis s in S that is not consistent with d,

Remove s from S

Add to S all minimal generalizations h of s such that h is consistent

with d, and some member of G is more general than h

Remove from S, hypothesis that is more general than another in S

b. If d is a negative example

i. Remove from S any hypothesis inconsistent with d

ii. For each hypothesis g in G that is not consistent with d

Remove g from G

Add to G all minimal specializations h of g such that h is consistent

with d, and some member of S is more specific than h

Remove from G any hypothesis that is less general than another in G

An Illustrative Example

The Figure given below traces the algorithm. As described above, the boundary sets are first

initialized to G0 and S0, the most general and most specific hypotheses in H, respectively.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.19

First training Sample: When the first training example is presented (a positive example in this

case), the algorithm checks the S boundary and finds that it is overly specific-it fails to cover

the positive example. The boundary is therefore revised by moving it to the least more general

hypothesis that covers this new example. This revised boundary is shown as S1 in Figure 2.4.

No update of the G boundary is needed in response to this training example because G0

correctly covers this example.

Second Training Sample: When the second training example (also positive) is observed, it has

a similar effect of generalizing S further to S2, leaving G again unchanged (i.e., G2 = G1= G0).

Notice the processing of these first two positive examples is very similar to the processing

performed by the Find-S algorithm.

Third Sample: Negative training examples play the complimentary role of forcing the G

boundary to become increasingly specific. Consider the third training example (negative

sample), This negative example reveals that the G boundary of the version space is overly

general; that is, the hypothesis in G incorrectly predicts that this new example is a positive

example. The hypothesis in the G boundary must therefore be specialized until it correctly

classifies this new negative example. There are several alternative minimally more specific

hypotheses. All of these become members of the new G3 boundary set.

Given that there are six attributes that could be specified to specialize G2, why are there only

three new hypotheses in G3? For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal

specialization of G2 that correctly labels the new example as a negative example, but it is not

included in G3. The reason this hypothesis is excluded is that it is inconsistent with the

previously encountered positive examples. The algorithm determines this simply by noting that

h is not more general than the current specific boundary, S2. In fact, the S boundary of the

version space forms a summary of the previously encountered positive examples that can be

used to determine whether any given hypothesis is consistent with these examples. Any

hypothesis more general than S will, by definition, cover any example that S covers and thus

will cover any past positive example. In a dual fashion, the G boundary summarizes the

information from previously encountered negative examples. Any hypothesis more specific

than G is assured to be consistent with past negative examples. This is true because any such

hypothesis, by definition, cannot cover examples that G does not cover.

Fourth training example: This further generalizes the S boundary of the version space. It also

results in removing one member of the G boundary, because this member fails to cover the new

positive example. This last action results from the first step under the condition "If d is a

positive example" in the algorithm. To understand the rationale for this step, it is useful to

consider why the offending hypothesis must be removed from G. Notice it cannot be

specialized, because specializing it would not make it cover the new example. It also cannot be

generalized, because by the definition of G, any more general hypothesis will cover at least one

negative training example. Therefore, the hypothesis must be dropped from the G boundary,

thereby removing an entire branch of the partial ordering from the version space of hypotheses

remaining under consideration.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.20

After processing these four examples, the boundary sets S4 and G4 delimit the version space of

all hypotheses consistent with the set of incrementally observed training examples. The entire

version space, including those hypotheses bounded by S4 and G4. This learned version space is

independent of the sequence in which the training examples are presented (because in the end

it contains all hypotheses consistent with the set of examples). As further training data is

encountered, the S and G boundaries will move monotonically closer to each other, delimiting

a smaller and smaller version space of candidate hypotheses.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.21

2.6 Inductive Bias.

The CEA will converge toward the true target concept provided it is given accurate training

examples and provided its initial hypothesis space contains the target concept.

• What if the target concept is not contained in the hypothesis space?

• Can we avoid this difficulty by using a hypothesis space that includes every possible

hypothesis?

• How does the size of this hypothesis space influence the ability of the algorithm to

generalize to unobserved instances?

• How does the size of the hypothesis space influence the number of training examples

that must be observed?

These are fundamental questions for inductive inference in general. Here we examine them in

the context of the CEA. The conclusions we draw from this analysis will apply to any concept

learning system that outputs any hypothesis consistent with the training data.

2.6.1 A Biased Hypothesis Space

Suppose we wish to assure that the hypothesis space contains the unknown target concept. The

obvious solution is to enrich the hypothesis space to include every possible hypothesis. To

illustrate, consider EnjoySport example in which we restricted the hypothesis space to include

only conjunctions of attribute values. Because of this restriction, the hypothesis space is unable

to represent even simple disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy."

In fact, given the following three training examples of this disjunctive hypothesis, our

algorithm would find that there are zero hypotheses in the version space.

To see why there are no hypotheses consistent with these three examples, note that the most

specific hypothesis consistent with the first two examples and representable in the given

hypothesis space H is

This hypothesis, although it is the maximally specific hypothesis from H that is consistent with

the first two examples, is already overly general: it incorrectly covers the third (negative)

training example. The problem is that we have biased the learner to consider only conjunctive

hypotheses. In this case we require a more expressive hypothesis space.

2.6.2 An Unbiased Learner

The obvious solution to the problem of assuring that the target concept is in the hypothesis

space H is to provide a hypothesis space capable of representing every teachable concept; that

is, it is capable of representing every possible subset of the instances X. (In general, the set of

all subsets of a set X is called the power-set of X).

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.22

In the EnjoySport learning task, for example, the size of the instance space X of days described

by the six available attributes is 96. In general, the number of distinct subsets that can be

defined over a set X containing |x| elements is 2|X|. Thus, there are 296, or approximately distinct

target concepts that could be defined over this instance space and that our learner might be

called upon to learn. Our conjunctive hypothesis space is able to represent only 973 of these-a

very biased hypothesis space indeed!

Let us reformulate the Enjoysport learning task in an unbiased way by defining a new

hypothesis space H' that can represent every subset of instances; that is, let H' correspond to

the power set of X. One way to define such an H' is to allow arbitrary disjunctions,

conjunctions, and negations of our earlier hypotheses.

For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be described as

However, while this hypothesis space eliminates any problems of expressibility, it

unfortunately raises a new, equally difficult problem: our concept learning algorithm is now

completely unable to generalize beyond the observed examples! To see why, suppose we

present three positive examples (xl, x2, x3) and two negative examples (x4, x5) to the learner.

At this point, the S boundary of the version space will be

That of G will be

Here in order to converge to a single, final target concept, we will have to present every single

instance in X as a training example!

2.6.3 The Futility of Bias-Free Learning

The fundamental property of inductive inference: a learner that makes no a priori assumptions

regarding the identity of the target concept has no rational basis for classifying any unseen

instances. In fact, the only reason that the CEA was able to generalize beyond the observed

training examples in our original formulation of the EnjoySport task is that it was biased by the

implicit assumption that the target concept could be represented by a conjunction of attribute

values. In cases where this assumption is correct (and the training examples are error-free), its

classification of new instances will also be correct. If this assumption is incorrect, however, it

is certain that the CEA will mis-classify at least some instances from X.

Let us define this notion of inductive bias more precisely. Consider the general setting in which

an arbitrary learning algorithm L is provided an arbitrary set of training data Dc = {〈x, c(x) 〉}

of some arbitrary target concept c. After training, L is asked to classify a new instance xi. Let

L(xi, Dc) denote the classification (e.g., positive or negative) that L assigns to xi after learning

from the training data Dc. We can describe this inductive inference step performed by L as

follows

where the notation y z indicates that z is inductively inferred from y. For example, if we take

L to be the CEA, Dc, to be the training data from Table 2.1, and xi to be the first instance from

Table 2.6, then the inductive inference performed in this case concludes that L(xi, Dc) =

(EnjoySport = yes).

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.23

Definition: Consider a concept learning algorithm L for the set of instances X. Let c be an

arbitrary concept defined over X, and let Dc = {〈x, c(x) 〉} be an arbitrary set of training

examples of c. Let L(xi, Dc) denote the classification assigned to the instance xi by L after

training on the data Dc. The inductive bias of L is any minimal set of assertions B such that

for any target concept c and corresponding training examples Dc

Inductive bias of CEA: The target concept c is contained in the given hypothesis space H.

The figure given below summarizes the situation schematically.

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.24

One advantage of viewing inductive inference systems in terms of their inductive bias is that it

provides a nonprocedural means of characterizing their policy for generalizing beyond the

observed data. A second advantage is that it allows comparison of different learners according

to the strength of the inductive bias they employ. Consider, for example, the following three

learning algorithms, which are listed from weakest to strongest bias.

• Rote-Learner: Learning corresponds simply to storing each observed training example

in memory. Subsequent instances are classified by looking them up in memory. If the

instance is found in memory, the stored classification is returned. Otherwise, the system

refuses to classify the new instance.

• CEA: New instances are classified only in the case where all members of the current

version space agree on the classification. Otherwise, the system refuses to classify the

new instance.

• FIND-S: This algorithm, described earlier, finds the most specific hypothesis consistent

with the training examples. It then uses this hypothesis to classify all subsequent

instances.

The Rote-Learner has no inductive bias. The classifications it provides for new instances follow

deductively from the observed training examples, with no additional assumptions required. The

CEA has a stronger inductive bias: that the target concept can be represented in its hypothesis

space. Because it has a stronger bias, it will classify some instances that the Rote-Learner will

not. Of course, the correctness of such classifications will depend completely on the correctness

of this inductive bias. The FIND-S algorithm has an even stronger inductive bias. In addition

to the assumption that the target concept can be described in its hypothesis space, it has an

additional inductive bias assumption: that all instances are negative instances unless the

opposite is entailed by its other knowledge.

3. Summary

Machine learning addresses the question of how to build computer programs that improve their

performance at some task through experience. Major points of this topic include:

• Machine learning algorithms have proven to be of great practical value in a variety of

application domains. They are especially useful in (a) data mining problems where large

databases may contain valuable implicit regularities that can be discovered

automatically (b) poorly understood domains where humans might not have the

knowledge needed to develop effective and (c) domains where the program must

dynamically adapt to changing conditions

• Machine learning draws on ideas from a diverse set of disciplines, including artificial

intelligence, probability and statistics, computational complexity, information theory,

psychology and neurobiology, control theory, and philosophy.

• A well-defined learning problem requires a well-specified task, performance metric,

and source of training experience.

• Designing a machine learning approach involves a number of design choices, including

choosing the type of training experience, the target function to be learned, a

Lecture Notes | 15CS73 – Machine Learning | Module 1: Introduction

Mr. Harivinod N www.techjourney.in Page| 1.25

representation for this target function, and an algorithm for learning the target function

from training examples.

• Learning involves search: searching through a space of possible hypotheses to find the

hypothesis that best fits the available training examples and other prior constraints or

knowledge.

The main points in the Concept Learning include:

• Concept learning can be cast as a problem of searching through a large predefined space

of potential hypotheses.

• The general-to-specific partial ordering of hypotheses, which can be defined for any

concept learning problem, provides a useful structure for organizing the search through

the hypothesis space.

• The Find-S algorithm utilizes this general-to-specific ordering, performing a specific-

to-general search through the hypothesis space along one branch of the partial ordering,

to find the most specific hypothesis consistent with the training examples.

• The CEA utilizes this general-to-specific ordering to compute the version space (the set

of all hypotheses consistent with the training data) by incrementally computing the sets

of maximally specific (S) and maximally general (G) hypotheses.

• The version space of alternative hypotheses can be examined to determine whether the

learner has converged to the target concept, to determine when the training data are

inconsistent, to generate informative queries to further refine the version space, and to

determine which unseen instances can be unambiguously classified based on the

partially learned concept.

• Version spaces and the CEA provide a useful conceptual framework for studying

concept learning. However, this learning algorithm is not robust to noisy data or to

situations in which the unknown target concept is not expressible in the provided

hypothesis space.

• Inductive learning algorithms are able to classify unseen examples only because of their

implicit inductive bias for selecting one consistent hypothesis over another. The bias

associated with the CEA is that the target concept can be found in the provided

hypothesis space (c ∈ H). The output hypotheses and classifications of subsequent

instances follow deductively from this assumption together with the observed training

data.

• If the hypothesis space is enriched to the point where there is a hypothesis

corresponding to every possible subset of instances (the power set of the instances), this

will remove any inductive bias from the CEA. Unfortunately, this also removes the

ability to classify any instance beyond the observed training examples. An unbiased

learner cannot make inductive leaps to classify unseen examples.
