
CHAPTER 

EVALUATING 
HYPOTHESES 

Empirically evaluating the accuracy of hypotheses is fundamental to machine learn- 
ing. This chapter presents an introduction to statistical methods for estimating hy- 
pothesis accuracy, focusing on three questions. First, given the observed accuracy 
of a hypothesis over a limited sample of data, how well does this estimate its ac- 
curacy over additional examples? Second, given that one hypothesis outperforms 
another over some sample of data, how probable is it that this hypothesis is more 
accurate in general? Third, when data is limited what is the best way to use this 
data to both learn a hypothesis and estimate its accuracy? Because limited samples 
of data might misrepresent the general distribution of data, estimating true accuracy 
from such samples can be misleading. Statistical methods, together with assump- 
tions about the underlying distributions of data, allow one to bound the difference 
between observed accuracy over the sample of available data and the true accuracy 
over the entire distribution of data. 

5.1 MOTIVATION 

In many cases it is important to evaluate the performance of learned hypotheses 
as precisely as possible. One reason is simply to understand whether to use the 
hypothesis. For instance, when learning from a limited-size database indicating 
the effectiveness of different medical treatments, it is important to understand as 
precisely as possible the accuracy of the learned hypotheses. A second reason is 
that evaluating hypotheses is an integral component of many learning methods. 
For example, in post-pruning decision trees to avoid overfitting, we must evaluate 



the impact of possible pruning steps on the accuracy of the resulting decision tree. 
Therefore it is important to understand the likely errors inherent in estimating the 
accuracy of the pruned and unpruned tree. 

Estimating the accuracy of a hypothesis is relatively straightforward when 
data is plentiful. However, when we must learn a hypothesis and estimate its 
future accuracy given only a limited set of data, two key difficulties arise: 

Bias in the estimate. First, the observed accuracy of the learned hypothesis 
over the training examples is often a poor estimator of its accuracy over 
future examples. Because the learned hypothesis was derived from these 
examples, they will typically provide an optimistically biased estimate of 
hypothesis accuracy over future examples. This is especially likely when 
the learner considers a very rich hypothesis space, enabling it to overfit the 
training examples. To obtain an unbiased estimate of future accuracy, we 
typically test the hypothesis on some set of test examples chosen indepen- 
dently of the training examples and the hypothesis. 

a Variance in the estimate. Second, even if the hypothesis accuracy is mea- 
sured over an unbiased set of test examples independent of the training 
examples, the measured accuracy can still vary from the true accuracy, de- 
pending on the makeup of the particular set of test examples. The smaller 
the set of test examples, the greater the expected variance. 

This chapter discusses methods for evaluating learned hypotheses, methods 
for comparing the accuracy of two hypotheses, and methods for comparing the 
accuracy of two learning algorithms when only limited data is available. Much 
of the discussion centers on basic principles from statistics and sampling theory, 
though the chapter assumes no special background in statistics on the part of the 
reader. The literature on statistical tests for hypotheses is very large. This chapter 
provides an introductory overview that focuses only on the issues most directly 
relevant to learning, evaluating, and comparing hypotheses. 

5.2 ESTIMATING HYPOTHESIS ACCURACY 

When evaluating a learned hypothesis we are most often interested in estimating 
the accuracy with which it will classify future instances. At the same time, we 
would like to know the probable error in this accuracy estimate (i.e., what error 
bars to associate with this estimate). 

Throughout this chapter we consider the following setting for the learning 
problem. There is some space of possible instances X (e.g., the set of all people) 
over which various target functions may be defined (e.g., people who plan to 
purchase new skis this year). We assume that different instances in X may be en- 
countered with different frequencies. A convenient way to model this is to assume 
there is some unknown probability distribution D that defines the probability of 
encountering each instance in X (e-g., 23 might assign a higher probability to en- 
countering 19-year-old people than 109-year-old people). Notice 23 says nothing 



about whether x is a positive or negative example; it only detennines the proba- 
bility that x will be encountered. The learning task is to learn the target concept 
or target function f by considering a space H of possible hypotheses. Training 
examples of the target function f are provided to the learner by a trainer who 
draws each instance independently, according to the distribution D, and who then 
forwards the instance x along with its correct target value f ( x )  to the learner. 

To illustrate, consider learning the target function "people who plan to pur- 
chase new skis this year," given a sample of training data collected by surveying 
people as they arrive at a ski resort. In this case the instance space X is the space 
of all people, who might be described by attributes such as their age, occupation, 
how many times they skied last year, etc. The distribution D specifies for each 
person x the probability that x will be encountered as the next person arriving at 
the ski resort. The target function f : X + { O , 1 )  classifies each person according 
to whether or not they plan to purchase skis this year. 

Within this general setting we are interested in the following two questions: 

1. Given a hypothesis h and a data sample containing n examples drawn at 
random according to the distribution D, what is the best estimate of the 
accuracy of h over future instances drawn from the same distribution? 

2. What is the probable error in this accuracy estimate? 

5.2.1 Sample Error and True Error 

To answer these questions, we need to distinguish carefully between two notions 
of accuracy or, equivalently, error. One is the error rate of the hypothesis over the 
sample of data that is available. The other is the error rate of the hypothesis over 
the entire unknown distribution D of examples. We will call these the sample 
error and the true error respectively. 

The sample error of a hypothesis with respect to some sample S of instances 
drawn from X is the fraction of S that it misclassifies: 

Definition: The sample error (denoted errors(h))  of hypothesis h  with respect to 
target function f and data sample S is 

Where n is the number of examples in S, and the quantity S(f ( x ) ,  h (x ) )  is 1 if 
f ( x )  # h(x ) ,  and 0 otherwise. 

The true error of a hypothesis is the probability that it will misclassify a 
single randomly drawn instance from the distribution D. 

Definition: The true error (denoted e r r o r v ( h ) )  of hypothesis h  with respect to target 
function f and distribution D, is the probability that h  will misclassify an instance 
drawn at random according to D. 

errorv (h )  = Pr [ f ( x )  # h(x ) ]  
X E D  



Here the notation Pr denotes that the probability is taken over the instance 
XGV 

distribution V. 
What we usually wish to know is the true error errorv(h) of the hypothesis, 

because this is the error we can expect when applying the hypothesis to future 
examples. All we can measure, however, is the sample error errors(h) of the 
hypothesis for the data sample S that we happen to have in hand. The main 
question considered in this section is "How good an estimate of errorD(h) is 
provided by errors (h)?" 

5.2.2 Confidence Intervals for Discrete-Valued Hypotheses 

Here we give an answer to the question "How good an estimate of errorv(h) is 
provided by errors(h)?' for the case in which h is a discrete-valued hypothesis. 
More specifically, suppose we wish to estimate the true error for some discrete- 
valued hypothesis h, based on its observed sample error over a sample S, where 

0 the sample S contains n examples drawn independent of one another, and 
independent of h, according to the probability distribution V 

0 n z 3 0  
0 hypothesis h commits r errors over these n examples (i.e., errors(h) = rln). 

Under these conditions, statistical theory allows us to make the following asser- 
tions: 

1. Given no other information, the most probable value of errorD(h) is errors(h) 
2. With approximately 95% probability, the true error errorv(h) lies in the 

interval 

errors(h)(l - errors (h) )  
errors(h) f 1.96 7 

To illustrate, suppose the data sample S contains n = 40 examples and that 
hypothesis h commits r = 12 errors over this data. In this case, the sample error 
errors(h) = 12/40 = .30. Given no other information, the best estimate of the true 
error errorD(h) is the observed sample error .30. However, we do not expect this 
to be a perfect estimate of the true error. If we were to collect a second sample 
S' containing 40 new randomly drawn examples, we might expect the sample 
error errors,(h) to vary slightly from the sample error errors(h). We expect a 
difference due to the random differences in the makeup of S and S'. In fact, if 
we repeated this experiment over and over, each time drawing a new sample 
S, containing 40 new examples, we would find that for approximately 95% of 
these experiments, the calculated interval would contain the true error. For this 
reason, we call this interval the 95% confidence interval estimate for errorv(h). 
In the current example, where r = 12 and n = 40, the 95% confidence interval is, 
according to the above expression, 0.30 f (1.96 - .07) = 0.30 f .14. 



ConfidencelevelN%: 50% 68% 80% 90% 95% 98% 99% 
Constant ZN: 0.67 1.00 1.28 1.64 1.96 2.33 2.58 

TABLE 5.1 
Values of z~ for two-sided N% confidence intervals. 

The above expression for the 95% confidence interval can be generalized to 
any desired confidence level. The constant 1.96 is used in case we desire a 95% 
confidence interval. A different constant, ZN, is used to calculate the N% confi- 
dence interval. The general expression for approximate N% confidence intervals 
for errorv(h) is 

where the constant ZN is chosen depending on the desired confidence level, using 
the values of z~ given in Table 5.1. 

Thus, just as we could calculate the 95% confidence interval for errorv(h) to 
be 0.305 (1.96. .07) (when r = 12, n = 40), we can calculate the 68% confidence 
interval in this case to be 0.30 f (1.0 - .07). Note it makes intuitive sense that the 
68% confidence interval is smaller than the 95% confidence interval, because we 
have reduced the probability with which we demand that errorv(h) fall into the 
interval. 

Equation (5.1) describes how to calculate the confidence intervals, or error 
bars, for estimates of errorv(h) that are based on errors(h). In using this ex- 
pression, it is important to keep in mind that this applies only to discrete-valued 
hypotheses, that it assumes the sample S is drawn at random using the same 
distribution from which future data will be drawn, and that it assumes the data 
is independent of the hypothesis being tested. We should also keep in mind that 
the expression provides only an approximate confidence interval, though the ap- 
proximation is quite good when the sample contains at least 30 examples, and 
errors(h) is not too close to 0 or 1 .  A more accurate rule of thumb is that the 
above approximation works well when 

Above we summarized the procedure for calculating confidence intervals for 
discrete-valued hypotheses. The following section presents the underlying statis- 
tical justification for this procedure. 

5.3 BASICS OF SAMPLING THEORY 

This section introduces basic notions from statistics and sampling theory, in- 
cluding probability distributions, expected value, variance, Binomial and Normal 
distributions, and two-sided and one-sided intervals. A basic familiarity with these 



a A random variable can be viewed as the name of an experiment with a probabilistic outcome. Its 
value is the outcome of the experiment. 
A probability distribution for a random variable Y  specifies the probability Pr(Y = yi) that Y  will 
take on the value yi, for each possible value yi. 
The expected value, or mean, of a random variable Y  is E [ Y ]  = Ci yi Pr(Y = yi). The symbol 
p ) ~  is commonly used to represent E[Y]. 
The variance of a random variable is Var(Y) = E[(Y  - p ~ ) ~ ] .  The variance characterizes the 
width or dispersion of the distribution about its mean. 

a The standard deviation of Y  is JVar(Y). The symbol uy is often used used to represent the 
standard deviation of Y .  

The Binomial distribution gives the probability of observing r heads in a series of n independent 
coin tosses, if the probability of heads in a single toss is p. 

a The Normal distribution is a bell-shaped probability distribution that covers many natural 
phenomena. 
The Central Limit Theorem is a theorem stating that the sum of a large number of independent, 
identically distributed random variables approximately follows a Normal distribution. 
An estimator is a random variable Y  used to estimate some parameter p of an underlying popu- 
lation. 

a The estimation bias of Y  as an estimator for p is the quantity ( E [ Y ]  - p). An unbiased estimator 
is one for which the bias is zero. 

a A N% conjidence interval estimate for parameter p is an interval that includes p with probabil- 
ity N%. 

TABLE 5.2 , 
Basic definitions and facts from statistics. 

concepts is important to understanding how to evaluate hypotheses and learning 
algorithms. Even more important, these same notions provide an important con- 
ceptual framework for understanding machine learning issues such as overfitting 
and the relationship between successful generalization and the number of training 
examples considered. The reader who is already familiar with these notions may 
skip or skim this section without loss of continuity. The key concepts introduced 
in this section are summarized in Table 5.2. 

5.3.1 Error Estimation and Estimating Binomial Proportions 

Precisely how does the deviation between sample error and true error depend 
on the size of the data sample? This question is an instance of a well-studied 
problem in statistics: the problem of estimating the proportion of a population that 
exhibits some property, given the observed proportion over some random sample 
of the population. In our case, the property of interest is that h misclassifies the 
example. 

The key to answering this question is to note that when we measure the 
sample error we are performing an experiment with a random outcome. We first 
collect a random sample S of n independently drawn instances from the distribu- 
tion D, and then measure the sample error errors(h). As noted in the previous 



section, if we were to repeat this experiment many times, each time drawing a 
different random sample Si of size n, we would expect to observe different values 
for the various errors,(h), depending on random differences in the makeup of 
the various Si. We say in such cases that errors, (h), the outcome of the ith such 
experiment, is a random variable. In general, one can think of a random variable 
as the name of an experiment with a random outcome. The value of the random 
variable is the observed outcome of the random experiment. 

Imagine that we were to run k such random experiments, measuring the ran- 
dom variables errors, (h), errors, (h) . . . errors, (h). Imagine further that we then 
plotted a histogram displaying the frequency with which we observed each possi- 
ble error value. As we allowed k to grow, the histogram would approach the form 
of the distribution shown in Table 5.3. This table describes a particular probability 
distribution called the Binomial distribution. 

Binomial dishibution for n = 40, p =0.3 
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A Binomial distribution gives the probability of observing r  heads in a sample of n  independent 
coin tosses, when the probability of heads on a single coin toss is p. It is defined by the probability 
function 

n !  
P ( r )  = - p r ( l  - p)"-' 

r ! (n  - r ) !  
If the random variable X  follows a Binomial distribution, then: 
0 The probability Pr(X = r )  that X  will take on the value r  is given by P ( r )  
0 The expected, or mean value of X, E[X], is 

0 The variance of X,  Var(X) ,  is 
Var ( X )  = n p ( 1 -  p)  

0 The standard deviation of X, ax, is 

For sufficiently large values of n  the Binomial distribution is closely approximated by a Normal 
distribution (see Table 5.4) with the same mean and variance. Most statisticians recommend using 
the Normal approximation only when n p ( 1 -  p)  2 5.  

TABLE 53 
The Binomial distribution. 



5.3.2 The Binomial Distribution 

A good way to understand the Binomial distribution is to consider the following 
problem. You are given a worn and bent coin and asked to estimate the probability 
that the coin will turn up heads when tossed. Let us call this unknown probability 
of heads p. You toss the coin n times and record the number of times r that it 
turns up heads. A reasonable estimate of p is rln. Note that if the experiment 
were rerun, generating a new set of n coin tosses, we might expect the number 
of heads r to vary somewhat from the value measured in the first experiment, 
yielding a somewhat different estimate for p. The Binomial distribution describes 
for each possible value of r (i.e., from 0 to n), the probability of observing exactly 
r heads given a sample of n independent tosses of a coin whose true probability 
of heads is p. 

Interestingly, estimating p from a random sample of coin tosses is equivalent 
to estimating errorv(h) from testing h on a random sample of instances. A single 
toss of the coin corresponds to drawing a single random instance from 23 and 
determining whether it is misclassified by h. The probability p that a single random 
coin toss will turn up heads corresponds to the probability that a single instance 
drawn at random will be misclassified (i.e., p corresponds to errorv(h)). The 
number r of heads observed over a sample of n coin tosses corresponds to the 
number of misclassifications observed over n randomly drawn instances. Thus rln 
corresponds to errors(h). The problem of estimating p for coins is identical to 
the problem of estimating errorv(h) for hypotheses. The Binomial distribution 
gives the general form of the probability distribution for the random variable r, 
whether it represents the number of heads in n coin tosses or the number of 
hypothesis errors in a sample of n examples. The detailed form of the Binomial 
distribution depends on the specific sample size n and the specific probability p 
or errorv(h). 

The general setting to which the Binomial distribution applies is: 

1. There is a base, or underlying, experiment (e.g., toss of the coin) whose 
outcome can be described by a random variable, say Y .  The random variable 
Y can take on two possible values (e.g., Y = 1 if heads, Y = 0 if tails). 

2. The probability that Y = 1 on any single trial of the underlying experiment 
is given by some constant p, independent of the outcome of any other 
experiment. The probability that Y = 0 is therefore (1 - p). Typically, p is 
not known in advance, and the problem is to estimate it. 

3. A series of n independent trials of the underlying experiment is performed 
(e.g., n independent coin tosses), producing the sequence of independent, 
identically distributed random variables Y l ,  Yz, . . . , Yn. Let R denote the 
number of trials for which Yi = 1 in this series of n experiments 



4. The probability that the random variable R will take on a specific value r  
(e.g., the probability of observing exactly r  heads) is given by the Binomial 
distribution 

n! 
Pr(R = r )  = pr(l  - p)"-' 

r!(n - r ) !  

A plot of this probability distribution is shown in Table 5.3. 

The Binomial distribution characterizes the probability of observing r  heads from 
n coin flip experiments, as well as the probability of observing r  errors in a data 
sample containing n randomly drawn instances. 

5.3.3 Mean and Variance 

Two properties of a random variable that are often of interest are its expected 
value (also called its mean value) and its variance. The expected value is_the 
average of the values taken on by repeatedly sampling the random variable. More 
precisely 

Definition: Consider a random variable Y  that takes on the possible values yl, . . . yn. 
The expected value of Y ,  E[Y] ,  is 

For example, if Y takes on the value 1 with probability .7 and the value 2 with 
probability .3, then its expected value is (1 .0.7 + 2.0.3 = 1.3). In case the random 
variable Y is governed by a Binomial distribution, then it can be shown that 

E [Y]  = np (5.4) 

where n and p are the parameters of the Binomial distribution defined in Equa- 
tion (5.2). 

A second property, the variance, captures the "width or "spread" of the 
probability distribution; that is, it captures how far the random variable is expected 
to vary from its mean value. 

Definition: The variance of a random variable Y ,  Var [Y] ,  is 

Var[Y]  = E[(Y - E [ Y ] ) ~ ]  (5.5) 

The variance describes the expected squared error in using a single obser- 
vation of Y to estimate its mean E [ Y ] .  The square root of the variance is called 
the standard deviation of Y ,  denoted oy . 

Definition: The standard deviation of a random variable Y ,  u y ,  is 



In case the random variable Y is governed by a Binomial distribution, then the 
variance and standard deviation are given by 

5.3.4 Estimators, Bias, and Variance 

Now that we have shown that the random variable errors(h) obeys a Binomial 
distribution, we return to our primary question: What is the likely difference 
between errors(h) and the true error errorv(h)? 

Let us describe errors(h) and errorv(h) using the terms in Equation (5.2) 
defining the Binomial distribution. We then have 

where n is the number of instances in the sample S, r is the number of instances 
from S misclassified by h, and p is the probability of misclassifying a single 
instance drawn from 23. 

Statisticians call errors(h) an estimator for the true error errorv(h). In 
general, an estimator is any random variable used to estimate some parameter of 
the underlying population from which the sample is drawn. An obvious question 
to ask about any estimator is whether on average it gives the right estimate. We 
define the estimation bias to be the difference between the expected value of the 
estimator and the true value of the parameter. 

Definition: The estimation bias of an estimator Y for an arbitrary parameter p is 

If the estimation bias is zero, we say that Y is an unbiased estimator for p. Notice 
this will be the case if the average of many random values of Y generated by 
repeated random experiments (i.e., E[Y]) converges toward p. 

Is errors(h) an unbiased estimator for errorv(h)? Yes, because for a Bi- 
nomial distribution the expected value of r is equal to np (Equation r5.41). It 
follows, given that n is a constant, that the expected value of rln is p. 

Two quick remarks are in order regarding the estimation bias. First, when 
we mentioned at the beginning of this chapter that testing the hypothesis on the 
training examples provides an optimistically biased estimate of hypothesis error, 
it is exactly this notion of estimation bias to which we were referring. In order for 
errors(h) to give an unbiased estimate of errorv(h), the hypothesis h and sample 
S must be chosen independently. Second, this notion of estimation bias should 
not be confused with the inductive bias of a learner introduced in Chapter 2. The 



estimation bias is a numerical quantity, whereas the inductive bias is a set of 
assertions. 

A second important property of any estimator is its variance. Given a choice 
among alternative unbiased estimators, it makes sense to choose the one with 
least variance. By our definition of variance, this choice will yield the smallest 
expected squared error between the estimate and the true value of the parameter. 

To illustrate these concepts, suppose we test a hypothesis and find that it 
commits r = 12 errors on a sample of n = 40 randomly drawn test examples. 
Then an unbiased estimate for errorv(h) is given by errors(h) = rln = 0.3. 
The variance in this estimate arises completely from the variance in r,  because 
n is a constant. Because r is Binomially distributed, its variance is given by 
Equation (5.7) as np(1 - p). Unfortunately p is unknown, but we can substitute 
our estimate rln for p. This yields an estimated variance in r of 4 0 .  0.3(1 - 
0.3) = 8.4, or a corresponding standard deviation of a ;j: 2.9.  his implies 
that the standard deviation in errors(h) = rln is approximately 2.9140 = .07. To 
summarize, errors(h) in this case is observed to be 0.30, with a standard deviation 
of approximately 0.07. (See Exercise 5.1 .) 

In general, given r errors in a sample of n independently drawn test exam- 
ples, the standard deviation for errors(h) is given by 

which can be approximated by substituting rln = errors(h) for p 

5.3.5 Confidence Intervals 

One common way to describe the uncertainty associated with an estimate is to 
give an interval within which the true value is expected to fall, along with the 
probability with which it is expected to fall into this interval. Such estimates are 
called conjdence interval estimates. 

Definition: An N% confidence interval for some parameter p is an interval that is 
expected with probability N% to contain p .  

For example, if we observe r = 12 errors in a sample of n = 40 independently 
drawn examples, we can say with approximately 95% probability that the interval 
0.30 f 0.14 contains the true error errorv(h). 

How can we derive confidence intervals for errorv(h)? The answer lies in 
the fact that we know the Binomial probability distribution governing the estima- 
tor errors(h). The mean value of this distribution is errorV(h), and the standard 
deviation is given by Equation (5.9). Therefore, to derive a 95% confidence in- 
terval, we need only find the interval centered around the mean value errorD(h), 



which is wide enough to contain 95% of the total probability under this distribu- 
tion. This provides an interval surrounding errorv(h) into which errors(h) must 
fall 95% of the time. Equivalently, it provides the size of the interval surrounding 
errordh) into which errorv(h) must fall 95% of the time. 

For a given value of N how can we find the size of the interval that con- 
tains N% of the probability mass? Unfortunately, for the Binomial distribution 
this calculation can be quite tedious. Fortunately, however, an easily calculated 
and very good approximation can be found in most cases, based on the fact that 
for sufficiently large sample sizes the Binomial distribution can be closely ap- 
proximated by the Normal distribution. The Normal distribution, summarized in 
Table 5.4, is perhaps the most well-studied probability distribution in statistics. 
As illustrated in Table 5.4, it is a bell-shaped distribution fully specified by its 

Normal dismbution with mean 0. standard deviation I 

3 -2 -1 0 1 2 3 

A Normal distribution (also called a Gaussian distribution) is a bell-shaped distribution defined by 
the probability density function 

A Normal distribution is fully determined by two parameters in the above formula: p and a. 

If the random variable X  follows a normal distribution, then: 
0 The probability that X will fall into the interval (a, 6)  is given by 

The expected, or mean value of X, E [ X ] ,  is 

The variance of X, Var(X) ,  is 
V a r ( X )  = a2 

0 The standard deviation of X, ax, is 
ax = a 

The Central Limit Theorem (Section 5.4.1) states that the sum of a large number of independent, 
identically distributed random variables follows a distribution that is approximately Normal. 

TABLE 5.4 
The Normal or Gaussian distribution. 



mean p and standard deviation a. For large n, any Binomial distribution is very 
closely approximated by a Normal distribution with the same mean and variance. 

One reason that we prefer to work with the Normal distribution is that most 
statistics references give tables specifying the size of the interval about the mean 
that contains N% of the probability mass under the Normal distribution. This is 
precisely the information needed to calculate our N% confidence interval. In fact, 
Table 5.1 is such a table. The constant ZN given in Table 5.1 defines the width 
of the smallest interval about the mean that includes N% of the total probability 
mass under the bell-shaped Normal distribution. More precisely, ZN gives half the 
width of the interval (i.e., the distance from the mean in either direction) measured 
in standard deviations. Figure 5.l(a) illustrates such an interval for z.80. 

To summarize, if a random variable Y obeys a Normal distribution with 
mean p and standard deviation a ,  then the measured random value y of Y will 
fall into the following interval N% of the time 

Equivalently, the mean p will fall into the following interval N% of the time 

We can easily combine this fact with earlier facts to derive the general 
expression for N% confidence intervals for discrete-valued hypotheses given in 
Equation (5.1). First, we know that errors(h) follows a Binomial distribution with 
mean value e r r o r ~ ( h )  and standard deviation as given in Equation (5.9). Second, 
we know that for sufficiently large sample size n, this Binomial distribution is 
well approximated by a Normal distribution. Third, Equation (5.1 1) tells us how 
to find the N% confidence interval for estimating the mean value of a Normal 
distribution. Therefore, substituting the mean and standard deviation of errors(h) 
into Equation (5.1 1) yields the expression from Equation (5.1) for N% confidence 

FIGURE 5.1 
A Normal distribution with mean 0, standard deviation 1. (a) With 80% confidence, the value of 
the random variable will lie in the two-sided interval [-1.28,1.28]. Note 2.80 = 1.28. With 10% 
confidence it will lie to the right of this interval, and with 10% confidence it will lie to the left. 
(b) With 90% confidence, it will lie in the one-sided interval [-oo, 1.281. 



intervals for discrete-valued hypotheses 

J errors(h)(l - errors(h)) 
errors(h) z t  ZN 

n 

Recall that two approximations were involved in deriving this expression, namely: 

1. in estimating the standard deviation a of errors(h), we have approximated 
errorv(h) by errors(h) [i.e., in going from Equation (5.8) to (5.9)], and 

2. the Binomial distribution has been approximated by the Normal distribution. 

The common rule of thumb in statistics is that these two approximations are very 
good as long as n 2 30, or when np(1- p) 2 5. For smaller values of n it is wise 
to use a table giving exact values for the Binomial distribution. 

5.3.6 Two-sided and One-sided Bounds 

Notice that the above confidence interval is a two-sided bound; that is, it bounds 
the estimated quantity from above and from below. In some cases, we will be 
interested only in a one-sided bound. For example, we might be interested in the 
question "What is the probability that errorz,(h) is at most U?' This kind of one- 
sided question is natural when we are only interested in bounding the maximum 
error of h and do not mind if the true error is much smaller than estimated. 

There is an easy modification to the above procedure for finding such one- 
sided error bounds. It follows from the fact that the Normal distribution is syrnrnet- 
ric about its mean. Because of this fact, any two-sided confidence interval based on 
a Normal distribution can be converted to a corresponding one-sided interval with 
twice the confidence (see Figure 5.l(b)). That is, a 100(1- a)% confidence inter- 
val with lower bound L and upper bound U implies a 100(1- a/2)% confidence 
interval with lower bound L and no upper bound. It also implies a 100(1 -a/2)% 
confidence interval with upper bound U and no lower bound. Here a corresponds 
to the probability that the correct value lies outside the stated interval. In other 
words, a is the probability that the value will fall into the unshaded region in 
Figure 5.l(a), and a/2 is the probability that it will fall into the unshaded region 
in Figure 5.l(b). 

To illustrate, consider again the example in which h commits r = 12 errors 
over a sample of n = 40 independently drawn examples. As discussed above, 
this leads to a (two-sided) 95% confidence interval of 0.30 f 0.14. In this case, 
100(1 - a) = 95%, so a! = 0.05. Thus, we can apply the above rule to say with 
100(1 - a/2) = 97.5% confidence that errorv(h) is at most 0.30 + 0.14 = 0.44, 
making no assertion about the lower bound on errorv(h). Thus, we have a one- 
sided error bound on errorv(h) with double the confidence that we had in the 
corresponding two-sided bound (see Exercise 5.3). 
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5.4 A GENERAL APPROACH FOR DERIVING CONFIDENCE 
INTERVALS 

The previous section described in detail how to derive confidence interval es- 
timates for one particular case: estimating errorv(h) for a discrete-valued hy- 
pothesis h, based on a sample of n independently drawn instances. The approach 
described there illustrates a general approach followed in many estima6on prob- 
lems. In particular, we can see this as a problem of estimating the mean (expected 
value) of a population based on the mean of a randomly drawn sample of size n. 
The general process includes the following steps: 

1. Identify the underlying population parameter p to be estimated, for example, 
errorv(h). 

2. Define the estimator Y (e.g., errors(h)). It is desirable to choose a minimum- 
variance, unbiased estimator. 

3. Determine the probability distribution Vy that governs the estimator Y, in- 
cluding its mean and variance. 

4. Determine the N% confidence interval by finding thresholds L and U such 
that N% of the mass in the probability distribution V y  falls between L and U. 

In later sections of this chapter we apply this general approach to sev- 
eral other estimation problems common in machine learning. First, however, let 
us discuss a fundamental result from estimation theory called the Central Limit 
Theorem. 

5.4.1 Central Limit Theorem 

One essential fact that simplifies attempts to derive confidence intervals is the 
Central Limit Theorem. Consider again our general setting, in which we observe 
the values of n independently drawn random variables Yl . . . Yn that obey the same 
unknown underlying probability distribution (e.g., n tosses of the same coin). Let 
p denote the mean of the unknown distribution governing each of the Yi and let 
a denote the standard deviation. We say that these variables Yi are independent, 
identically distributed random variables, because they describe independent exper- 
iments, each obeying the same underlying probability distribution. In an attempt 
to estimate the mean p of the distribution governing the Yi, we calculate the sam- 
ple mean = '& Yi (e.g., the fraction of heads among the n coin tosses). 
The Central Limit Theorem states that the probability distribution governing Fn 
approaches a Normal distribution as n + co, regardless of the distribution that 
governs the underlying random variables Yi. Furthermore, the mean of the dis- 
tribution governing Yn approaches p and the standard deviation approaches k. 
More precisely, 

Theorem 5.1. Central Limit Theorem. Consider a set of independent, identically 
distributed random variables Yl . . . Y, governed by an arbitrary probability distribu- 
tion with mean p and finite variance a2. Define the sample mean, = xy=, Yi. 



Then as n + co, the distribution governing 

5 
approaches a Normal distribution, with zero mean and standard deviation equal to 1. 

This is a quite surprising fact, because it states that we know the form of 
the distribution that governs the sample mean ? even when we do not know the 
form of the underlying distribution that governs the individual Yi that are being 
observed! Furthermore, the Central Limit Theorem describes how the mean and 
variance of Y can be used to determine the mean and variance of the individual Yi .  

The Central Limit Theorem is a very useful fact, because it implies that 
whenever we define an estimator that is the mean of some sample (e.g., errors(h) 
is the mean error), the distribution governing this estimator can be approximated 
by a Normal distribution for sufficiently large n. If we also know the variance 
for this (approximately) Normal distribution, then we can use Equation (5.1 1) to 
compute confidence intervals. A common rule of thumb is that we can use the 
Normal approximation when n 2 30. Recall that in the preceding section we used 
such a Normal distribution to approximate the Binomial distribution that more 
precisely describes errors (h)  . 

5.5 DIFFERENCE IN ERROR OF TWO HYPOTHESES 

Consider the case where we have two hypotheses hl  and h2 for some discrete- 
valued target function. Hypothesis hl has been tested on a samj4e S1 containing 
nl randomly drawn examples, and ha has been tested on an indi:pendent sample 
S2 containing n2 examples drawn from the same distribution. Suppose we wish 
to estimate the difference d between the true errors of these two hypotheses. 

We will use the generic four-step procedure described at the beginning of 
Section 5.4 to derive a confidence interval estimate for d. Having identified d as 
the parameter to be estimated, we next define an estimator. The obvious choice 
for an estimator in this case is the difference between the sample errors, which 
we denote by 2 

,. 
d = errors, (h l )  - errors, (h2) 

Although we will not prove it here, it can be shown that 2 gives an unbiased 
estimate of d; that is E[C? ] = d. 

What is the probability distribution governing the random variable 2? From 
earlier sections, we know that for large nl and n2 (e.g., both 2 30), both errors, (h l )  
and error& (hz )  follow distributions that are approximately Normal. Because the 
difference of two Normal distributions is also a Normal distribution, 2 will also 
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follow a distribution that is approximately Normal, with mean d. It can also 
be shown that the variance of this distribution is the sum of the variances of 
errors, (h l )  and errors2(h2). Using Equation (5.9) to obtain the approximate vari- 
ance of each of these distributions, we have 

errorS, ( h l ) ( l  - errors, ( h l ) )  errors2 (h2)(1 - errors,(h2)) 
0 2  , ci + (5.12) 

n 1 n2 

Now that we have determined the probability distribution that governs the esti- 
mator 2, it is straightforward to derive confidence intervals that characterize the 
likely error in employing 2 to estimate d. For a random variable 2 obeying a 
Normal distribution with mean d and variance a2, the N% confidence interval 
estimate for d is 2 f z ~ a .  Using the approximate variance a; given above, this 
approximate N% confidence interval estimate for d is 

J errors, ( h l ) ( l  - errors, (h 1 ) )  errors2 (h2)(1 - errors2(h2)) 
d f z ~  + (5.13) 

nl n2 

where zN is the same constant described in Table 5.1. The above expression gives 
the general two-sided confidence interval for estimating the difference between 
errors of two hypotheses. In some situations we might be interested in one-sided 
bounds--either bounding the largest possible difference in errors or the smallest, 
with some confidence level. One-sided confidence intervals can be obtained by 
modifying the above expression as described in Section 5.3.6. 

Although the above analysis considers the case in which hl and h2 are tested 
on independent data samples, it is often acceptable to use the confidence interval 
seen in Equation (5.13) in the setting where h 1 and h2 are tested on a single sample 
S (where S is still independent of hl and h2).  In this later case, we redefine 2 as 

The variance in this new 2 will usually be smaller than the variance given by 
Equation (5.12), when we set S1 and S2 to S. This is because using a single 
sample S eliminates the variance due to random differences in the compositions 
of S1 and S2. In this case, the confidence interval given by Equation (5.13) will 
generally be an overly conservative, but still correct, interval. 

5.5.1 Hypothesis Testing 

In some cases we are interested in the probability that some specific conjecture is 
true, rather than in confidence intervals for some parameter. Suppose, for example, 
that we are interested in the question "what is the probability that errorv(h1) > 
errorv(h2)?' Following the setting in the previous section, suppose we measure 
the sample errors for hl  and h2 using two independent samples S1 and S2 of size 
100 and find that errors, ( h l )  = .30 and errors2(h2) = -20, hence the observed 
difference is 2 = . l o .  Of course, due to random variation in the data sample, 



we might observe this difference in the sample errors even when errorv(hl) 5 
errorv(h2). What is the probability that errorv(hl) > errorv(h2), given the 
observed difference in sample errors 2 = .10 in this case? Equivalently, what is 
the probability that d > 0, given that we observed 2 = .lo? 

Note the probability Pr(d > 0) is equal to the probability that 2 has not 
overestimated d by more than .lo. Put another way, this is the probability that 2 
falls into the one-sided interval 2 < d + .lo. Since d is the mean of the distribution 
governing 2, we can equivalently express this one-sided interval as 2 < p2 + .lo. 

To summarize, the probability Pr(d > 0) equals the probability that 2 falls 
into the one-sided interval 2 < pa + .lo. Since we already calculated the ap- 
proximate distribution governing 2 in the previous section, we can determine the 
probability that 2 falls into this one-sided interval by calculating the probability 
mass of the 2 distribution within this interval. 

Let us begin this calculation by re-expressing the interval 2 < pi + .10 in 
terms of the number of standard deviations it allows deviating from the mean. 
Using Equation (5.12) we find that 02 FZ .061, so we can re-express the interval 
as approximately 

What is the confidence level associated with this one-sided interval for a Normal 
distribution? Consulting Table 5.1, we find that 1.64 standard deviations about the 
mean corresponds to a two-sided interval with confidence level 90%. Therefore, 
the one-sided interval will have an associated confidence level of 95%. 

Therefore, given the observed 2 = .lo, the probability that errorv(h1) > 
errorv(h2) is approximately .95. In the terminology of the statistics literature, we 
say that we accept the hypothesis that "errorv(hl) > errorv(h2)" with confidence 
0.95. Alternatively, we may state that we reject the opposite hypothesis (often 
called the null hypothesis) at a (1 - 0.95) = .05 level of significance. 

5.6 COMPARING LEARNING ALGORITHMS 

Often we are interested in comparing the performance of two learning algorithms 
L A  and L B ,  rather than two specific hypotheses. What is an appropriate test for 
comparing learning algorithms, and how can we determine whether an observed 
difference between the algorithms is statistically significant? Although there is 
active debate within the machine-learning research community regarding the best 
method for comparison, we present here one reasonable approach. A discussion 
of alternative methods is given by Dietterich (1996). 

As usual, we begin by specifying the parameter we wish to estimate. Suppose 
we wish to determine which of LA and LB is the better learning method on average 
for learning some particular target function f .  A reasonable way to define "on 
average" is to consider the relative performance of these two algorithms averaged 
over all the training sets of size n that might be drawn from the underlying 
instance distribution V. In other words, we wish to estimate the expected value 



of the difference in their errors 

where L(S) denotes the hypothesis output by learning method L when given 
the sample S of training data and where the subscript S c V indicates that 
the expected value is taken over samples S drawn according to the underlying 
instance distribution V. The above expression describes the expected value of the 
difference in errors between learning methods LA and L B. 

Of course in practice we have only a limited sample Do of data when 
comparing learning methods. In such cases, one obvious approach to estimating 
the above quantity is to divide Do into a training set So and a disjoint test set To. 
The training data can be used to train both LA and LB, and the test data can be 
used to compare the accuracy of the two learned hypotheses. In other words, we 
measure the quantity 

Notice two key differences between this estimator and the quantity in Equa- 
tion (5.14). First, we are using errorTo(h) to approximate errorv(h). Second, we 
are only measuring the difference in errors for one training set So rather than tak- 
ing the expected value of this difference over all samples S that might be drawn 
from the distribution 2). 

One way to improve on the estimator given by Equation (5.15) is to repeat- 
edly partition the data Do into disjoint training and test sets and to take the mean 
of the test set errors for these different experiments. This leads to the procedure 
shown in Table 5.5 for estimating the difference between errors of two learning 
methods, based on a fixed sample Do of available data. This procedure first parti- 
tions the data into k disjoint subsets of equal size, where this size is at least 30. It 
then trains and tests the learning algorithms k times, using each of the k subsets 
in turn as the test set, and using all remaining data as the training set. In this 
way, the learning algorithms are tested on k independent test sets, 'and the mean 
difference in errors 8 is returned as an estimate of the difference between the two 
learning algorithms. 

The quantity 8 returned by the procedure of Table 5.5 can be taken as an 
estimate of the desired quantity from Equation 5.14. More appropriately, we can 
view 8 as an estimate of the quantity 

where S represents a random sample of size ID01 drawn uniformly from Do. 
The only difference between this expression and our original expression in Equa- 
tion (5.14) is that this new expression takes the expected value over subsets of 
the available data Do, rather than over subsets drawn from the full instance dis- 
tribution 2). 



1. Partition the available data Do into k disjoint subsets T I ,  T2, . . . , Tk of equal size, where this size 
is at least 30. 

2. For i from 1 to k, do 
use Ti for the test set, and the remaining data for training set Si 

0 Si c {Do - Ti}  
hA C LA(Si) 
h~  + L ~ ( s i )  

0 Si t errorq (hA)  - errorz ( h B )  

3. Return the value 6 ,  where 

TABLE 5.5 
A procedure to estimate the difference in error between two learning methods LA and LB.  Approxi- 
mate confidence intervals for this estimate are given in the text. 

The approximate N% confidence interval for estimating the quantity in Equa- 
tion (5.16) using 8 is given by 

where t N , k - l  is a constant that plays a role analogous to that of ZN in our ear- 
lier confidence interval expressions, and where s,- is an estimate of the standard 
deviation of the distribution governing 8. In particular, sg is defined as 

Notice the constant t ~ , k - l  in Equation (5.17) has two subscripts. The first 
specifies the desired confidence level, as it did for our earlier constant Z N .  The 
second parameter, called the number of degrees of freedom and usually denoted by 
v ,  is related to the number of independent random events that go into producing 
the value for the random variable 8. In the current setting, the number of degrees 
of freedom is k - 1. Selected values for the parameter t are given in Table 5.6. 
Notice that as k + oo, the value of t ~ , k - l  approaches the constant Z N .  

Note the procedure described here for comparing two learning methods in- 
volves testing the two learned hypotheses on identical test sets. This contrasts with 
the method described in Section 5.5 for comparing hypotheses that have been eval- 
uated using two independent test sets. Tests where the hypotheses are evaluated 
over identical samples are called paired tests. Paired tests typically produce tighter 
confidence intervals because any differences in observed errors in a paired test 
are due to differences between the hypotheses. In contrast, when the hypotheses 
are tested on separate data samples, differences in the two sample errors might be 
partially attributable to differences in the makeup of the two samples. 



Confidence level N 
90% 95% 98% 99% 

TABLE 5.6 
Values  oft^," for two-sided confidence intervals. As v + w, t ~ , "  approaches ZN. 

5.6.1 Paired t Tests 

Above we described one procedure for comparing two learning methods given a 
fixed set of data. This section discusses the statistical justification for this proce- 
dure, and for the confidence interval defined by Equations (5.17) and (5.18). It 
can be skipped or skimmed on a first reading without loss of continuity. 

The best way to understand the justification for the confidence interval es- 
timate given by Equation (5.17) is to consider the following estimation problem: 

0 

0 

a 

This 

We are given the observed values of a set of independent, identically dis- 
tributed random variables YI, Y2, . . . , Yk. 

We wish to estimate the mean p of the probability distribution governing 
these Yi. 

The estimator we will use is the sample mean Y 

problem of estimating the distribution mean p based on the sample mean 
Y is quite general. For example, it covers the problem discussed earlier of using 
errors(h) to estimate errorv(h). (In that problem, the Yi are 1 or 0 to indicate 
whether h commits an error on an individual example from S, and errorv(h) is the 
mean p of the underlying distribution.) The t test, described by Equations (5.17) 
and (5.18), applies to a special case of this problem-the case in which the 
individual Yi follow a Normal distribution. 

Now consider the following idealization of the method in Table 5.5 for com- 
paring learning methods. Assume that instead of having a fixed sample of data Do, 
we can request new training examples drawn according to the underlying instance 
distribution. In particular, in this idealized method we modify the procedure of 
Table 5.5 so that on each iteration through the loop it generates a new random 
training set Si and new random test set Ti by drawing from this underlying instance 
distribution instead of drawing from the fixed sample Do. This idealized method 



perfectly fits the form of the above estimation problem. In particular, the Si mea- 
sured by the procedure now correspond to the independent, identically distributed 
random variables Yi. The mean p of their distribution corresponds to the expected 
difference in error between the two learning methods [i.e., Equation (5.14)]. The 
sample mean Y is the quantity 6 computed by this idealized version of the method. 
We wish to answer the question "how good an estimate of p is provided by s?' 

First, note that the size of the test sets has been chosen to contain at least 
30 examples. Because of this, the individual Si will each follow an approximately 
Normal distribution (due to the Central Limit Theorem). Hence, we have a special 
case in which the Yi are governed by an approximately Normal distribution. It 
can be shown in general that when the individual Yi each follow a Normal dis- 
tribution, then the sample mean Y follows a Normal distribution as well. Given 
that Y is Normally distributed, we might consider using the earlier expression for 
confidence intervals (Equation [5.11]) that applies to estimators governed by Nor- 
mal distributions. Unfortunately, that equation requires that we know the standard 
deviation of this distribution, which we do not. 

The t test applies to precisely these situations, in which the task is to esti- 
mate the sample mean of a collection of independent, identically and Normally 
distributed random variables. In this case, we can use the confidence interval given 
by Equations (5.17) and (5.18), which can be restated using our current notation as 

where sp is the estimated standard deviation of the sample mean 

and where tN,k-l is a constant analogous to our earlier ZN. In fact, the constant 
t~ ,k- l  characterizes the area under a probability distribution known as the t distri- 
bution, just as the constant ZN characterizes the area under a Normal distribution. 
The t distribution is a bell-shaped distribution similar to the Normal distribu- 
tion, but wider and shorter to reflect the greater variance introduced by using sp 
to approximate the true standard deviation ap. The t distribution approaches the 
Normal distribution (and therefore tN,k-l approaches zN) as k approaches infinity. 
This is intuitively satisfying because we expect sp to converge toward the true 
standard deviation ap as the sample size k grows, and because we can use ZN 

when the standard deviation is known exactly. 

5.6.2 Practical Considerations 

Note the above discussion justifies the use of the confidence interval estimate 
given by Equation (5.17) in the case where we wish to use the sample mean 
Y to estimate the mean of a sample containing k independent, identically and 
Normally distributed random variables. This fits the idealized method described 



above, in which we assume unlimited access to examples of the target function. In 
practice, given a limited set of data Do and the more practical method described 
by Table 5.5, this justification does not strictly apply. In practice, the problem is 
that the only way to generate new Si is to resample Do, dividing it into training 
and test sets in different ways. The 6i are not independent of one another in this 
case, because they are based on overlapping sets of training examples drawn from 
the limited subset Do of data, rather than from the full distribution 'D. 

When only a limited sample of data Do is available, several methods can be 
used to resample Do. Table 5.5 describes a k-fold method in which Do is parti- 
tioned into k disjoint, equal-sized subsets. In this k-fold approach, each example 
from Do is used exactly once in a test set, and k - 1 times in a training set. A 
second popular approach is to randomly choose a test set of at least 30 examples 
from Do, use the remaining examples for training, then repeat this process as 
many times as desired. This randomized method has the advantage that it can be 
repeated an indefinite number of times, to shrink the confidence interval to the 
desired width. In contrast, the k-fold method is limited by the total number of 
examples, by the use of each example only once in a test set, and by our desire 
to use samples of size at least 30. However, the randomized method has the dis- 
advantage that the test sets no longer qualify as being independently drawn with 
respect to the underlying instance distribution D. In contrast, the test sets gener- 
ated by k-fold cross validation are independent because each instance is included 
in only one test set. 

To summarize, no single procedure for comparing learning methods based 
on limited data satisfies all the constraints we would like. It is wise to keep in 
mind that statistical models rarely fit perfectly the practical constraints in testing 
learning algorithms when available data is limited. Nevertheless, they do pro- 
vide approximate confidence intervals that can be of great help in interpreting 
experimental comparisons of learning methods. 

5.7 SUMMARY AND FURTHER READING 

The main points of this chapter include: 

0 Statistical theory provides a basis for estimating the true error (errorv(h)) 
of a hypothesis h, based on its observed error (errors(h)) over a sample S of 
data. For example, if h is a discrete-valued hypothesis and the data sample 
S contains n 2 30 examples drawn independently of h and of one another, 
then the N% confidence interval for errorv(h) is approximately 

where values for zN are given in Table 5.1. 
0 In general, the problem of estimating confidence intervals is approached by 

identifying the parameter to be estimated (e.g., errorD(h)) and an estimator 
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(e.g., errors(h)) for this quantity. Because the estimator is a random variable 
(e.g., errors(h) depends on the random sample S), it can be characterized 
by the probability distribution that governs its value. Confidence intervals 
can then be calculated by determining the interval that contains the desired 
probability mass under this distribution. 

0 One possible cause of errors in estimating hypothesis accuracy is estimation 
bias. If Y is an estimator for some parameter p, the estimation bias of Y 
is the difference between p and the expected value of Y. For example, if S 
is the training data used to formulate hypothesis h, then errors(h) gives an 
optimistically biased estimate of the true error errorD(h). 

0 A second cause of estimation error is variance in the estimate. Even with an 
unbiased estimator, the observed value of the estimator is likely to vary from 
one experiment to another. The variance a2 of the distribution governing the 
estimator characterizes how widely this estimate is likely to vary from the 
correct value. This variance decreases as the size of the data sample is 
increased. 

0 Comparing the relative effectiveness of two learning algorithms is an esti- 
mation problem that is relatively easy when data and time are unlimited, but 
more difficult when these resources are limited. One possible approach de- 
scribed in this chapter is to run the learning algorithms on different subsets 
of the available data, testing the learned hypotheses on the remaining data, 
then averaging the results of these experiments. 

0 In most cases considered here, deriving confidence intervals involves making 
a number of assumptions and approximations. For example, the above confi- 
dence interval for errorv(h) involved approximating a Binomial distribution 
by a Normal distribution, approximating the variance of this distribution, and 
assuming instances are generated by a fixed, unchanging probability distri- 
bution. While intervals based on such approximations are only approximate 
confidence intervals, they nevertheless provide useful guidance for designing 
and interpreting experimental results in machine learning. 

The key statistical definitions presented in this chapter are summarized in 
Table 5.2. 

An ocean of literature exists on the topic of statistical methods for estimating 
means and testing significance of hypotheses. While this chapter introduces the 
basic concepts, more detailed treatments of these issues can be found in many 
books and articles. Billingsley et al. (1986) provide a very readable introduction 
to statistics that elaborates on the issues discussed here. Other texts on statistics 
include DeGroot (1986); Casella and Berger (1990). Duda and Hart (1973) provide 
a treatment of these issues in the context of numerical pattern recognition. 

Segre et al. (1991, 1996), Etzioni and Etzioni (1994), and Gordon and 
Segre (1996) discuss statistical significance tests for evaluating learning algo- 
rithms whose performance is measured by their ability to improve computational 
efficiency. 



Geman et al. (1992) discuss the tradeoff involved in attempting to minimize 
bias and variance simultaneously. There is ongoing debate regarding the best way 
to learn and compare hypotheses from limited data. For example, Dietterich (1996) 
discusses the risks of applying the paired-difference t test repeatedly to different 
train-test splits of the data. 

EXERCISES 

5.1. Suppose you test a hypothesis h and find that it commits r = 300 errors on a sample 
S of n = 1000 randomly drawn test examples. What is the standard deviation in 
errors(h)? How does this compare to the standard deviation in the example at the 
end of Section 5.3.4? 

5.2. Consider a learned hypothesis, h ,  for some boolean concept. When h is tested on a 
set of 100 examples, it classifies 83 correctly. What is the standard deviation and 
the 95% confidence interval for the true error rate for Errorv(h)? 

5.3. Suppose hypothesis h commits r = 10 errors over a sample of n = 65 independently 
drawn examples. What is the 90% confidence interval (two-sided) for the true error 
rate? What is the 95% one-sided interval (i.e., what is the upper bound U such that 
errorv(h) 5 U with 95% confidence)? What is the 90% one-sided interval? 

5.4. You are about to test a hypothesis h whose errorV(h) is known to be in the range 
between 0.2 and 0.6. What is the minimum number of examples you must collect 
to assure that the width of the two-sided 95% confidence interval will be smaller 
than 0.1? 

5.5. Give general expressions for the upper and lower one-sided N% confidence intervals 
for the difference in errors between two hypotheses tested on different samples of 
data. Hint: Modify the expression given in Section 5.5. 

5.6. Explain why the confidence interval estimate given in Equation (5.17) applies to 
estimating the quantity in Equation (5.16), and not the quantity in Equation (5.14). 
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