CHAPTER

6

BAYESIAN
LEARNING

Bayesian reasoning provides a probabilistic approach to inference. It is based on
the assumption that the quantities of interest are governed by probability distri-
butions and that optimal decisions can be made by reasoning about these proba-
bilities together with observed data. It is important to machine learning because
it provides a quantitative approach to weighing the evidence supporting alterna-
tive hypotheses. Bayesian reasoning provides the basis for learning algorithms
that directly manipulate probabilities, as well as a framework for analyzing the
operation of other algorithms that do not explicitly manipulate probabilities.

6.1 INTRODUCTION

Bayesian learning methods are relevant to our study of machine learning for
two different reasons. First, Bayesian learning algorithms that calculate explicit
probabilities for hypotheses, such as the naive Bayes classifier, are among the most
practical approaches to certain types of learning problems. For example, Michie
et al. (1994) provide a detailed study comparing the naive Bayes classifier to
other learning algorithms, including decision tree and neural network algorithms.
These researchers show that the naive Bayes classifier is competitive with these
other learning algorithms in many cases and that in some cases it outperforms
these other methods. In this chapter we describe the naive Bayes classifier and
provide a detailed example of its use. In particular, we discuss its application to
the problem of learning to classify text documents such as electronic news articles.

154

CHAPTER 6 BAYESIAN LEARNING 155

For such learning tasks, the naive Bayes classifier is among the most effective
algorithms known.

. The second reason that Bayesian methods are important to our study of ma-
chine learning is that they provide a useful perspective for understanding many
learning algorithms that do not explicitly manipulate probabilities. For exam-
ple, in this chapter we analyze algorithms such as the FIND-S and CANDIDATE-
ELIMINATION algorithms of Chapter 2 to determine conditions under which they
output the most probable hypothesis given the training data. We also use a
Bayesian analysis to justify a key design choice in neural network learning al-
gorithms: choosing to minimize the sum of squared errors when searching the
space of possible neural networks. We also derive an alternative error function,
cross entropy, that is more appropriate than sum of squared errors when learn-
ing target functions that predict probabilities. We use a Bayesian perspective to
analyze the inductive bias of decision tree learning algorithms that favor short
decision trees and examine the closely related Minimum Description Length prin-
ciple. A basic familiarity with Bayesian methods is important to understanding
- and characterizing the operation of many algorithms in machine learning.
Features of Bayesian learning methods include:

o Each observed training example can incrementally decrease or increase the
estimated probability that a hypothesis is correct. This provides a more
flexible approach to learning than algorithms that completely eliminate a
hypothesis if it is found to be inconsistent with any single example.

¢ Prior knowledge can be combined with observed data to determine the final
probability of a hypothesis. In Bayesian learning, prior knowledge is pro-
vided by asserting (1) a prior probability for each candidate hypothesis, and
(2) a probability distribution over observed data for each possible hypothesis.

e Bayesian methods can accommodate hypotheses that make probabilistic pre-
dictions (e.g., hypotheses such as “this pneumonia patient has a 93% chance
of complete recovery”).

o New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities.

e Even in cases where Bayesian methods prove computationally intractable,
they can provide a standard of optimal decision making against which other
practical methods can be measured.

One practical difficulty in applying Bayesian methods is that they typically
require initial knowledge of many probabilities. When these probabilities are not
known in advance they are often estimated based on background knowledge, pre-
viously available data, and assumptions about the form of the underlying distribu-
tions. A second practical difficulty is the significant computational cost required to
determine the Bayes optimal hypothesis in the general case (linear in the number
of candidate hypotheses). In certain specialized situations, this computational cost
can be significantly reduced.

156 MACHINE LEARNING

The remainder of this chapter is organized as follows. Section 6.2 intro-
duces Bayes theorem and defines maximum likelihood and maximum a posteriori
probability hypotheses. The four subsequent sections then apply this probabilistic
framework to analyze several issues and learning algorithms discussed in earlier
chapters. For example, we show that several previously described algorithms out-
put maximum likelihood hypotheses, under certain assumptions. The remaining
sections then introduce a number of learning algorithms that explicitly manip-
ulate probabilities. These include the Bayes optimal classifier, Gibbs algorithm,
and naive Bayes classifier. Finally, we discuss Bayesian belief networks, a rela-
tively recent approach to learning based on probabilistic reasoning, and the EM
algorithm, a widely used algorithm for learning in the presence of unobserved
variables.

6.2 BAYES THEOREM

In machine learning we are often interested in determining the best hypothesis
from some space H, given the observed training data D. One way to specify
what we mean by the best hypothesis is to say that we demand the most probable
hypothesis, given the data D plus any initial knowledge about the prior probabil-
ities of the various hypotheses in H. Bayes theorem provides a direct method for
calculating such probabilities. More precisely, Bayes theorem provides a way to
calculate the probability of a hypothesis based on its prior probability, the proba-
bilities of observing various data given the hypothesis, and the observed data itself.

To define Bayes theorem precisely, let us first introduce a little notation. We
shall write P (%) to denote the initial probability that hypothesis 4 holds, before we
have observed the training data. P (k) is often called the prior probability of h and
may reflect any background knowledge we have about the chance that % is a correct
hypothesis. If we have no such prior knowledge, then we might simply assign
the same prior probability to each candidate hypothesis. Similarly, we will write
P(D) to denote the prior probability that training data D will be observed (i.e.,
the probability of D given no knowledge about which hypothesis holds). Next,
we will write P(D|h) to denote the probability of observing data D given some
world in which hypothesis 7 holds. More generally, we write P(x|y) to denote
the probability of x given y. In machine learning problems we are interested in
the probability P (h|D) that h holds given the observed training data D. P(h|D) is
called the posterior probability of h, because it reflects our confidence that 4 holds
after we have seen the training data D. Notice the posterior probability P(h|D)
reflects the influence of the training data D, in contrast to the prior probability
P(h), which is independent of D.

Bayes theorem is the cornerstone of Bayesian learning methods because
it provides a way to calculate the posterior probability P(k|D), from the prior
probability P(h), together with P(D) and P(D|h).

Bayes theorem:

P(DIWP
P(|D) = -(_P'# | ©.1)

M

CHAPTER 6 BAYESIAN LEARNING 157

As one might intuitively expect, P(k|D) increases with P(kh) and with P(D|h)
according to Bayes theorem. It is also reasonable to see that P(k|D) decreases as
P(D) increases, because the more probable it is that D will be observed indepen-
dent of h, the less evidence D provides in support of A.

In many learning scenarios, the learner considers some set of candidate
hypotheses H and is interested in finding the most probable hypothesis # € H
given the observed data D (or at least one of the maximally probable if there
are several). Any such maximally probable hypothesis is called a maximum a
posteriori (MAP) hypothesis. We can determine the MAP hypotheses by using
Bayes theorem to calculate the posterior probability of each candidate hypothesis.
More precisely, we will say that sy 4p is a MAP hypothesis provided

hpap = argmax P(h|D)
heH
— argmax P(Dih) P(h)
heH P (D)
= argmax P(D|h) P(h) 6.2)
heH
Notice in the final step above we dropped the term P (D) because it is a constant
independent of .
In some cases, we will assume that every hypothesis in H is equally probable
a priori (P(h;) = P(h;) for all h; and h; in H). In this case we can further
simplify Equation (6.2) and need only consider the term P(D}h) to find the most
probable hypothesis. P(D|h) is often called the likelihood of the data D given &,
and any hypothesis that maximizes P(D|h) is called a maximum likelihood (ML)
hypothesis, k.
hy = argmax P(D|h) (6.3)
heH
In order to make clear the connection to machine learning problems, we
introduced Bayes theorem above by referring to the data D as training examples of
some target function and referring to H as the space of candidate target functions.
In fact, Bayes theorem is much more general than suggested by this discussion. It
can be applied equally well to any set H of mutually exclusive propositions whose
probabilities sum to one (e.g., “the sky is blue,” and “the sky is not blue”). In this
chapter, we will at times consider cases where H is a hypothesis space containing
possible target functions and the data D are training examples. At other times we
will consider cases where H is some other set of mutually exclusive propositions,
and D is some other kind of data.

6.2.1 An Example

To illustrate Bayes rule, consider a medical diagnosis problem in which there are
two alternative hypotheses: (1) that the patient has a particular form of cancer,
and (2) that the patient does not. The available data is from a particular laboratory

158 MACHINE LEARNING

test with two possible outcomes: @ (positive) and © (negative). We have prior
knowledge that over the entire population of people only .008 have this disease.
Furthermore, the lab test is only an imperfect indicator of the disease. The test
returns a correct positive result in only 98% of the cases in which the disease is
actually present and a correct negative result in only 97% of the cases in which
the disease is not present. In other cases, the test returns the opposite result. The
above situation can be summarized by the following probabilities:

P(cancer) = .008, P(—cancer) = .992
P(®|cancer) = .98, P(S|cancer) = .02
P(®|—cancer) = .03, P(S|—-cancer) = .97

Suppose we now observe a new patient for whom the lab test returns a positive
result. Should we diagnose the patient as having cancer or not? The maximum a
posteriori hypothesis can be found using Equation (6.2):

P(®|cancer)P(cancer) = (.98).008 = .0078
P(®|—cancer)P(—cancer) = (.03).992 = .0298

Thus, hyap = —cancer. The exact posterior [;robabilities can also be determined
by normalizing the above quantities so that they sum to 1 (e.g., P(cancer|®) =
ﬁ%@—g = .21). This step is warranted because Bayes theorem states that the
posterior probabilities are just the above quantities divided by the probability of
the data, P(@). Although P(®) was not provided directly as part of the problem
statement, we can calculate it in this fashion because we know that P(cancer|®)
and P(—cancer|®) must sum to 1 (i.e., either the patient has cancer or they do
not). Notice that while the posterior probability of cancer is significantly higher
than its prior probability, the most probable hypothesis is still that the patient does
not have cancer.

As this example illustrates, the result of Bayesian inference depends strongly
on the prior probabilities, which must be available in order to apply the method
directly. Note also that in this example the hypotheses are not completely accepted
or rejected, but rather become more or less probable as more data is observed.

Basic formulas for calculating probabilities are summarized in Table 6.1.

6.3 BAYES THEOREM AND CONCEPT LEARNING

What is the relationship between Bayes theorem and the problem of concept learn-
ing? Since Bayes theorem provides a principled way to calculate the posterior
probability of each hypothesis given the training data, we can use it as the basis
for a straightforward learning algorithm that calculates the probability for each
possible hypothesis, then outputs the most probable. This section considers such
a brute-force Bayesian concept learning algorithm, then compares it to concept
learning algorithms we considered in Chapter 2. As we shall see, one interesting
result of this comparison is that under certain conditions several algorithms dis-
cussed in earlier chapters output the same hypotheses as this brute-force Bayesian

CHAPTER 6 BAYESIAN LEARNING 159

o Product rule: probability P(A A B) of a conjunction of two events A and B
P(A A B) = P(A|B)P(B) = P(B|A)P(A)

o Sum rule: probability of a disjunction of two events A and B

P(AV B) = P(A) + P(B)— P(AA B)

e Bayes theorem: the posterior probability P(k|D) of h given D

P(Dih)P(h)

P(|D) =)

o Theorem of total probability: if events Ay, ..., A, are mutually exclusive with }:?:1 P(A) =1,
then .
P(B) =) P(BIA)P(A)

i=1

TABLE 6.1
Summary of basic probability formulas.

algorithm, despite the fact that they do not explicitly manipulate probabilities and
are considerably more efficient.

6.3.1 Brute-Force Bayes Concept Learning

Consider the concept learning problem first introduced in Chapter 2. In particular,
assume the learner considers some finite hypothesis space H defined over the
instance space X, in which the task is to learn some target concept ¢ : X — {0, 1}.
As usual, we assume that the learner is given some sequence of training examples
({x1, d1) ... {xm, dn}) where x; is some instance from X and where d; is the target
value of x; (i.e., d; = ¢(x;)). To simplify the discussion in this section, we assume
the sequence of instances (x; ... x,) is held fixed, so that the training data D can
be written simply as the sequence of target values D = (d; ...dy,). It can be shown
(see Exercise 6.4) that this simplification does not alter the main conclusions of
this section.

We can design a straightforward concept learning algorithm to output the
maximum a posteriori hypothesis, based on Bayes theorem, as follows:

BRUTE-FORCE MAP LEARNING algorithm

1. For each hypothesis 4 in H, calculate the posterior probability
P(D|h)P(h)

P(D)
2. Output the hypothesis k4 p with the highest posterior probability

P(h|D) =

hmap = argmax P(h|D)
heH

160 MACHINE LEARNING

This algorithm may require significant computation, because it applies Bayes theo-
rem to each hypothesis in H to calculate P(k|D). While this may prove impractical
for large hypothesis spaces, the algorithm is still of interest because it provides a
standard against which we may judge the performance of other concept learning
algorithms.

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING
algorithm we must specify what values are to be used for P(h) and for P(D|h)
(as we shall see, P(D) will be determined once we choose the other two). We
may choose the probability distributions P(h) and P(D|h) in any way we wish,
to describe our prior knowledge about the learning task. Here let us choose them
to be consistent with the following assumptions:

1. The training data D is noise free (i.e., d; = c(x;)).
2. The target concept ¢ is contained in the hypothesis space H.

3. We have no a priori reason to believe that any hypothesis is more probable
than any other.

Given these assumptions, what values should we specify for P(h)? Given no
prior knowledge that one hypothesis is more likely than another, it is reasonable to
assign the same prior probability to every hypothesis & in H. Furthermore, because
we assume the target concept is contained in H we should require that these prior
probabilities sum to 1. Together these constraints imply that we should choose

1
P(hy=— forallhin H
@) |H| .

What choice shall we make for P(D|h)? P(D|h) is the probability of ob-
serving the target values D = (d; ...d,) for the fixed set of instances (xi ...xn),
given a world in which hypothesis 4 holds (i.e., given a world in which % is the
correct description of the target concept c). Since we assume noise-free training
data, the probability of observing classification d; given 4 is just 1 if d; = h(x;)
and 0 if d; # h(x;). Therefore,

1ifd; =h(x;) forall 4; in D
P(D|h) = 6.4)
0 otherwise

In other words, the probability of data D given hypothesis 4 is 1 if D is consistent
with %, and O otherwise.

Given these choices for P(k) and for P(D|h) we now have a fully-defined
problem for the above BRUTE-FORCE MAP LEARNING algorithm. Let us consider the
first step of this algorithm, which uses Bayes theorem to compute the posterior
probability P(k|D) of each hypothesis # given the observed training data D.

— =

CHAPTER 6 BAYESIAN LEARNING 161

Recalling Bayes theorem, we have

P(DI|h)P(h)

, P(D)

First consider the case where k is inconsistent with the training data D. Since

Equation (6.4) defines P(D|h) to be 0 when h is inconsistent with D, we have
0-P(h)

P(D)
The posterior probability of a hypothesis inconsistent with D is zero.-

Now consider the case where & is consistent with D. Since Equation (6.4)
defines P(D]h) to be 1 when h is consistent with D, we have

P(|D)=

P(h|D) = = 0 if h is inconsistent with D

S

P(D

s

P(h|D) =

—
|~
SN’

=
~ |VSup
|H|

1

x

if k is consistent with D

"~ |VSa,pl

where V Sy p is the subset of hypotheses from H that are consistent with D (i.e.,
V Sy p is the version space of H with respect to D as defined in Chapter 2). It
is easy to verify that P(D) = 'Vl“ji—”"" above, because the sum over all hypotheses
of P(h|D) must be one and because the number of hypotheses from H consistent
with D is by definition |V Sy p|. Altemnatively, we can derive P(D) from the
theorem of total probability (see Table 6.1) and the fact that the hypotheses are

mutually exclusive (i.e., (Vi # j)(P(h; Ahj) =0))
P(D) = Y P(Dlh;) P(h)

h;eH
1 1
= 2 Lt Il
hiGVSHD I I h,‘¢VsH | |
_ 1
h,‘EVSHVD 'Hl
__VSupl
1H]

To summarize, Bayes theorem implies that the posterior probability P (k|D)
under our assumed P (k) and P(D|h) is

IVSIH_Dl if &k is consistent with D

P(h|D) = (6.5)
0 otherwise

162 MACHINE LEARNING

where |V Sy p| is the number of hypotheses from H consistent with D. The evo-
lution of probabilities associated with hypotheses is depicted schematically in
Figure 6.1. Initially (Figure 6.1a) all hypotheses have the same probability. As
training data accumulates (Figures 6.1» and 6.1c), the posterior probability for
inconsistent hypotheses becomes zero while the total probability summing to one
is shared equally among the remaining consistent hypotheses.

The above analysis implies that under our choice for P(k) and P(Di[h), every
consistent hypothesis has posterior probability (1/|V Sg pl), and every inconsistent
hypothesis has posterior probability 0. Every consistent hypothesis is, therefore,
a MAP hypothesis.

6.3.2 MAP Hypotheses and Consistent Learners

The above analysis shows that in the given setting, every hypothesis consistent
with D is a MAP hypothesis. This statement translates directly into an interesting
statement about a general class of learners that we might call consistent learners.
We will say that a learning algorithm is a consistent learner provided it outputs a
hypothesis that commits zero errors over the training examples. Given the above
analysis, we can conclude that every consistent learner outputs a MAP hypothesis,
if we assume a uniform prior probability distribution over H (i.e., P(h;) = P(h;)
foralli, j), and if we assume deterministic, noise-free training data (i.e., P(D|h) =
1 if D and h are consistent, and 0 otherwise).

Consider, for example, the concept learning algorithm Finp-S discussed in
Chapter 2. FIND-S searches the hypothesis space H from specific to general hy-
potheses, outputting a maximally specific consistent hypothesis (i.e., a maximally
specific member of the version space). Because FIND-S outputs a consistent hy-
pothesis, we know that it will output a MAP hypothesis under the probability
distributions P(h) and P(D|h) defined above. Of course FIND-S does not explic-
itly manipulate probabilities at all—it simply outputs a maximally specific member

i i i
P(h) P(RID1) | P(hiD1,D2)

hypotheses hypotheses hypotheses

(a) (b (c)

FIGURE 6.1

Evolution of posterior probabilities P(k|D) with increasing training data. (a) Uniform priors assign
equal probability to each hypothesis. As training data increases first to D1 (b), then to D1 A D2
(¢), the posterior probability of inconsistent hypotheses becomes zero, while posterior probabilities
increase for hypotheses remaining in the version space.

CHAPTER 6 BAYESIAN LEARNING 163

of the version space. However, by identifying distributions for P(k) and P(D|h)
under which its output hypotheses will be MAP hypotheses, we have a useful way
of characterizing the behavior of FIND-S.

" Are there other probability distributions for P(h) and P(D|h) under which
FiND-S outputs MAP hypotheses? Yes. Because FIND-S outputs a maximally spe-
cific hypothesis from the version space, its output hypothesis will be a MAP
hypothesis relative to any prior probability distribution that favors more specific
hypotheses. More precisely, suppose H is any probability distribution P (k) over
H that assigns P(h1) > P(hy) if k) is more specific than k;. Then it can be shown
that FIND-S outputs a MAP hypothesis assuming the prior distribution H and the
same distribution P(D|h) discussed above. ,

To summarize the above discussion, the Bayesian framework allows one
way to characterize the behavior of learning algorithms (e.g., FIND-S), even when
the learning algorithm does not explicitly manipulate probabilities. By identifying
probability distributions P(#) and P(D]h) under which the algorithm outputs
optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions
. under which this algorithm behaves optimally.

Using the Bayesian perspective to characterize learning algorithms in this
way is similar in spirit to characterizing the inductive bias of the learner. Recall
that in Chapter 2 we defined the inductive bias of a learning algorithm to be
the set of assumptions B sufficient to deductively justify the inductive inference
performed by the learner. For example, we described the inductive bias of the
CANDIDATE-ELIMINATION algorithm as the assumption that the target concept ¢ is
included in the hypothesis space H. Furthermore, we showed there that the output
of this learning algorithm follows deductively from its inputs plus this implicit
inductive bias assumption. The above Bayesian interpretation provides an alter-
native way to characterize the assumptions implicit in learning algorithms. Here,
instead of modeling the inductive inference method by an equivalent deductive
system, we model it by an equivalent probabilistic reasoning system based on
Bayes theorem. And here the implicit assumptions that we attribute to the learner
are assumptions of the form “the prior probabilities over H are given by the
distribution P (%), and the strength of data in rejecting or accepting a hypothesis
is given by P(D|k).” The definitions of P(k) and P(D|k) given in this section
characterize the implicit assumptions of the CANDIDATE-ELIMINATION and FIND-S
algorithms. A probabilistic reasoning system based on Bayes theorem will exhibit
input-output behavior equivalent to these algorithms, provided it is given these
assumed probability distributions.

The discussion throughout this section corresponds to a special case of
Bayesian reasoning, because we considered the case where P(D|k) takes on val-
ues of only 0 and 1, reflecting the deterministic predictions of hypotheses and the
assumption of noise-free training data. As we shall see in the next section, we
can also model learning from noisy training data, by allowing P(D]h) to take on
values other than O and 1, and by introducing into P(D|h) additional assumptions
about the probability distributions that govern the noise.

164 MACHINE LEARNING

6.4 MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR
HYPOTHESES

As illustrated in the above section, Bayesian analysis can sometimes be used to
show that a particular learning algorithm outputs MAP hypotheses even though it
may not explicitly use Bayes rule or calculate probabilities in any form.

In this section we consider the problem of learning a continuous-valued
target function—a problem faced by many learning approaches such as neural
network learning, linear regression, and polynomial curve fitting. A straightfor-
ward Bayesian analysis will show that under certain assumptions any learning
algorithm that minimizes the squared error between the output hypothesis pre-
dictions and the training data will output a maximum likelihood hypothesis. The
significance of this result is that it provides a Bayesian justification (under cer-
tain assumptions) for many neural network and other curve fitting methods that
attempt to minimize the sum of squared errors over the training data.

Consider the following problem setting. Learner L considers an instance
space X and a hypothesis space H consisting of some class of real-valued functions
defined over X (i.e., each & in H is a function of the form 4 : X — R, where
R represents the set of real numbers). The problem faced by L is to learn an
unknown target function f : X — R drawn from H. A set of m training examples
is provided, where the target value of each example is corrupted by random
noise drawn according to a Normal probability distribution. More precisely, each
training example is a pair of the form (x;, d;) where d; = f(x;) + ¢;. Here f(x;) is
the noise-free value of the target function and ¢; is a random variable represent-
ing the noise. It is assumed that the values of the ¢; are drawn independently and
that they are distributed according to a Normal distribution with zero mean. The
task of the learner is to output a maximum likelihood hypothesis, or, equivalently,
a MAP hypothesis assuming all hypotheses are equally probable a priori.

A simple example of such a problem is learning a linear function, though our
analysis applies to learning arbitrary real-valued functions. Figure 6.2 illustrates

FIGURE 6.2

Learning a real-valued function. The target
function f corresponds to the solid line.
The training examples (x;, d;) are assumed
to have Normally distributed noise e; with
zero mean added to the true target value
f(xi). The dashed line corresponds to the
linear function that minimizes the sum of
squared errors. Therefore, it is the maximum
likelihood hypothesis %1, given these five
x training examples.

Y

CHAPTER 6 BAYESIAN LEARNING 165

a linear target function f depicted by the solid line, and a set of noisy training
examples of this target function. The dashed line corresponds to the hypothesis
hui with least-squared training error, hence the maximum likelihood hypothesis.
Notice that the maximum likelihood hypothesis is not necessarily identical to the
correct hypothesis, f, because it is inferred from only a limited sample of noisy
training data.

Before showing why a hypothesis that minimizes the sum of squared errors
in this setting is also a maximum likelihood hypothesis, let us quickly review two
basic concepts from probability theory: probability densities and Normal distribu-
tions. First, in order to discuss probabilities over continuous variables such as e,
we must introduce probability densities. The reason, roughly, is that we wish for
the total probability over all possible values of the random variable to sum to one.
In the case of continuous variables we cannot achieve this by assigning a finite
probability to each of the infinite set of possible values for the random variable.
Instead, we speak of a probability density for continuous variables such as e and
require that the integral of this probability density over all possible values be one.
In general we will use lower case p to refer to the probability density function,
to distinguish it from a finite probability P (which we will sometimes refer to as
a probability mass). The probability density p(xp) is the limit as ¢ goes to zero,
of % times the probability that x will take on a value in the interval [xg, xp + €).

Probability density function:

1 .
plxg) = lir% ZP(xO <x <xg+¢€)
€~

Second, we stated that the random noise variable e is generated by a Normal
probability distribution. A Normal distribution is a smooth, bell-shaped distribu-
tion that can be completely characterized by its mean u and its standard deviation
o. See Table 5.4 for a precise definition.

Given this background we now return to the main issue: showing that the
least-squared error hypothesis is, in fact, the maximum likelihood hypothesis
within our problem setting. We will show this by deriving the maximum like-
lihood hypothesis starting with our earlier definition Equation (6.3), but using
lower case p to refer to the probability density

hyL = argmax p(Dlh)
heH
As before, we assume a fixed set of training instances (x; ...x»,) and there-
fore consider the data D to be the corresponding sequence of target values
D = (dy...d,). Here d; = f(x;) + ¢;. Assuming the training examples are mu-
tually independent given A, we can write P(Dih) as the product of the various
p(diih) :

m
hy = argmax [| p(di (k)
heH i=1

166 MACHINE LEARNING

Given that the noise ¢; obeys a Normal distribution with zero mean and unknown
variance o2, each d; must also obey a Normal distribution with variance o2 cen-
tered around the true target value f(x;) rather than zero. Therefore p(d;|h) can
be written as 2 Normal distribution with variance o2 and mean u = f(x;). Let us
write the formula for this Normal distribution to describe p(d;|h), beginning with
the general formula for a Normal distribution from Table 5.4 and substituting the
appropriate 4 and o2. Because we are writing the expression for the probability
of d; given that A is the correct description of the target function f, we will also
substitute & = f(x;) = h(x;), yielding

e 202 (d: —,“')2

hyr = argmaxl—[\/_2___
o

hed ;.

ool ahe))?
= argmax | | o~ k)
keH ;1 V2mo?

We now apply a transformation that is common in maximum likelihood calcula-
tions: Rather than maximizing the above complicated expression we shall choose
to maximize its (less complicated) logarithm. This is justified because Inp is a
monotonic function of p. Therefore maximizing In p also maximizes p.

hyr = argmalen

5 L — hx))?
heH

1
V2mo? 20

The first term in this expression is a constant independent of 4, and can therefore
be discarded, yielding

i=l1

hur = argmaxz — h(x:))*
heH i=1
Maximizing this negative quantity is equivalent to minimizing the corresponding
positive quantity.

hur = argmmX:2 5 (di — — h(x))?

Finally, we can again discard constants that are independent of 4.

hur = d; — h(x;))* 6.6
ue arhgerng((x:)) (6.6)

i=1

Thus, Equation (6.6) shows that the maximum likelihood hypothesis Az, 18
the one that minimizes the sum of the squared errors between the observed training
values d; and the hypothesis predictions A (x;). This holds under the assumption
that the observed training values d; are generated by adding random noise to

Il

CHAPTER 6 BAYESIAN LEARNING 167

the true target value, where this random noise is drawn independently for each
example from a Normal distribution with zero mean. As the above derivation
makes clear, the squared error term (d; —h(x;))? follows directly from the exponent
in the definition of the Normal distribution. Similar derivations can be performed
starting with other assumed noise distributions, producing different results.

Notice the structure of the above derivation involves selecting the hypothesis
that maximizes the logarithm of the likelihood (In p(D|h)) in order to determine
the most probable hypothesis. As noted earlier, this yields the same result as max-
imizing the likelihood p(D|k). This approach of working with the log likelihood
is common to many Bayesian analyses, because it is often more mathematically
tractable than working directly with the likelihood. Of course, as noted earlier,
the maximum likelihood hypothesis might not be the MAP hypothesis, but if one
assumes uniform prior probabilities over the hypotheses then it is.

Why is it reasonable to choose the Normal distribution to characterize noise?
One reason, it must be admitted, is that it allows for a mathematically straightfor-
ward analysis. A second reason is that the smooth, bell-shaped distribution is a
good approximation to many types of noise in physical systems. In fact, the Cen-
tral Limit Theorem discussed in Chapter 5 shows that the sum of a sufficiently
large number of independent, identically distributed random variables itself obeys
a Normal distribution, regardless of the distributions of the individual variables.
This implies that noise generated by the sum of very many independent, but
identically distributed factors will itself be Normally distributed. Of course, in
reality, different components that contribute to noise might not follow identical
distributions, in which case this theorem will not necessarily justify our choice.

Minimizing the sum of squared errors is a common approach in many neural
network, curve fitting, and other approaches to approximating real-valued func-
tions. Chapter 4 describes gradient descent methods that seek the least-squared
error hypothesis in neural network learning.

Before leaving our discussion of the relationship between the maximum
likelihood hypothesis and the least-squared error hypothesis, it is important to
note some limitations of this problem setting. The above analysis considers noise
only in the target value of the training example and does not consider noise in
the attributes describing the instances themselves. For example, if the problem
is to learn to predict the weight of someone based on that person’s age and
height, then the above analysis assumes noise in measurements of weight, but
perfect measurements of age and height. The analysis becomes significantly more
complex as these simplifying assumptions are removed.

6.5 MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING
PROBABILITIES

In the problem setting of the previous section we determined that the maximum
likelihood hypothesis is the one that minimizes the sum of squared errors over the
training examples. In this section we derive an analogous criterion for a second
setting that is common in neural network learning: learning to predict probabilities.

168 MACHINE LEARNING

Consider the setting in which we wish to learn a nondeterministic (prob-
abilistic) function f : X — {0, 1}, which has two discrete output values. For
example, the instance space X might represent medical patients in terms of their
symptoms, and the target function f(x) might be 1 if the patient survives the
disease and O if not. Alternatively, X might represent loan applicants in terms of
their past credit history, and f(x) might be 1 if the applicant successfully repays
their next loan and O if not. In both of these cases we might well expect f to be
probabilistic. For example, among a collection of patients exhibiting the same set
of observable symptoms, we might find that 92% survive, and 8% do not. This
unpredictability could arise from our inability to observe all the important distin-
guishing features of the patients, or from some genuinely probabilistic mechanism
in the evolution of the disease. Whatever the source of the problem, the effect is
that we have a target function f(x) whose output is a probabilistic function of the
input.

Given this problem setting, we might wish to learn a neural network (or other
real-valued function approximator) whose output is the probability that f(x) = 1.
In other words, we seek to learn the target function, f’ : X — [0, 1], such that
f'(x) = P(f(x) = 1). In the above medical patient example, if x is one of those
indistinguishable patients of which 92% survive, then f’(x) = 0.92 whereas the
probabilistic function f(x) will be equal to 1 in 92% of cases and equal to 0 in
the remaining 8%.

How can we learn f’ using, say, a neural network? One obvious, brute-
force way would be to first collect the observed frequencies of 1’s and 0’s for
each possible value of x and to then train the neural network to output the target
frequency for each x. As we shall see below, we can instead train a neural network
directly from the observed training examples of f, yet still derive a maximum
likelihood hypothesis for f.

What criterion should we optimize in order to find a maximum likelihood
hypothesis for f’ in this setting? To answer this question we must first obtain
an expression for P(D|h). Let us assume the training data D is of the form
D = {{x1,d1) ... {(Xm, dn)}, where d; is the observed O or 1 value for f(x;).

Recall that in the maximum likelihood, least-squared error analysis of the
previous section, we made the simplifying assumption that the instances (x; .. .x,,)
were fixed. This enabled us to characterize the data by considering only the target
values d;. Although we could make a similar simplifying assumption in this case,
let us avoid it here in order to demonstrate that it has no impact on the final
outcome. Thus treating both x; and d; as random variables, and assuming that
each training example is drawn independently, we can write P(D|h) as

P(DIk) =[] P(xi, dilh) 6.7)
i i=1

It is reasonable to assume, furthermore, that the probability of encountering
any particular instance x; is independent of the hypothesis 4. For example, the
probability that our training set contains a particular patient x; is independent of
our hypothesis about survival rates (though of course the survival d; of the patient

CHAPTER 6 BAYESIAN LEARNING 169

does depend strongly on k). When x is independent of & we can rewrite the above
expression (applying the product rule from Table 6.1) as

m

P(DIky =[] P(xi, dith) = ﬁ P(d;\h, x;) P(xi) (6.8)

i=1 i=1

Now what is the probability P(d;|h, x;) of observing d; = 1 for a single
instance x;, given a world in which hypothesis 2 holds? Recall that h is our
hypothesis regarding the target function, which computes this very probability.
Therefore, P(d; = 1|k, x;) = h(x;), and in general

h(xi) if di =1
P(d;|h, x;) = 6.9
(A-=h(x))ifd; =0

In order to substitute this into the Equation (6.8) for P(D|h), let us first
re-express it in a more mathematically manipulable form, as

P(dith, xi) = h(x)% (1 — h(x))! 4 (6.10)

It is easy to verify that the expressions in Equations (6.9) and (6.10) are equivalent.
Notice that when d; = 1, the second term from Equation (6.10), (1 — h(x;)i~4%,
becomes equal to 1. Hence P(d; = 1|k, x;) = h(x;), which is equivalent to the
first case in Equation (6.9). A similar analysis shows that the two equations are
also equivalent when d4; = 0. _

We can use Equation (6.10) to substitute for P(d;|h, x;) in Equation (6.8) to
obtain

P(D|h) = Hh(xi)d‘(l — ()% P(x;) (6.11)
i=1
Now we write an expression for the maximum likelihood hypothesis

ke, = argmax [[aGe)® (1 — k()= P(x)
heH ;9

The last term is a constant independent of &, so it can be dropped

hyr = argmax [[R(x)% (1 — h(xi))' ™4 (6.12)
heH 3

The expression on the right side of Equation (6.12) can be seen as a gen-
eralization of the Binomial distribution described in Table 5.3. The expression in
Equation (6.12) describes the probability that flipping each of m distinct coins will
produce the outcome (d; . ..d,,), assuming that each coin x; has probability A(x;)
of producing a heads. Note the Binomial distribution described in Table 5.3 is

170 MACHINE LEARNING

sirnilar, but makes the additional assumption that the coins have identical proba-
bilities of turning up heads (i.e., that 2 (x;) = h(x;), Vi, j). In both cases we assume
the outcomes of the coin flips are mutually independent—an assumption that fits
our current setting.

As in earlier cases, we will find it easier to work with the log of the likeli-
hood, yielding

hyr = argmade Inh(x) + 1 —d)In(l — h(x;)) (6.13)
heHd ;4

Equation (6.13) describes the quantity that must be maximized in order to
obtain the maximum likelihood hypothesis in our current problem setting. This
result is analogous to our earlier result showing that minimizing the sum of squared
errors produces the maximum likelihood hypothesis in the earlier problem setting.
Note the similarity between Equation (6.13) and the general form of the entropy
function, —), p; log p;, discussed in Chapter 3. Because of this similarity, the

negation of the above quantity is sometimes called the cross entropy.

6.5.1 Gradient Search to Maximize Likelihood in a Neural Net

Above we showed that maximizing the quantity in Equation (6.13) yields the
maximum likelihood hypothesis. Let us use G(k, D) to denote this quantity. In
this section we derive a weight-training rule for neural network learning that seeks
to maximize G(h, D) using gradient ascent.

As discussed in Chapter 4, the gradient of G(h, D) is given by the vector
of partial derivatives of G(h, D) with respect to the various network weights that
define the hypothesis h represented by the learned network (see Chapter 4 for a
general discussion of gradient-descent search and for details of the terminology
that we reuse here). In this case, the partial derivative of G (h, D) with respect to
weight wj from input k to unit j is

3G(h, D) _ <~ 3G(h, D) 3h(x))

aw,-k =1 3h(xi) 3ij
_ 2’": 3(diInh(x;) + (1 — d;) In(1 — h(x;))) dh(x;)
B dh(x:) dwjk
—h(x) 0h(x)
= 6.14
Z h(xz)(l —h(x)) Owj (614

To keep our analysis simple, suppose our neural network is constructed from
a single layer of sigmoid units. In this case we have
oh Xi ’
T — o eege = b1 — hCx)
Wik

where x;; is the kth input to unit j for the ith training example, and ¢'(x) is
the derivative of the sigmoid squashing function (again, see Chapter 4). Finally,

CHAPTER 6 BAYESIAN LEARNING 171

substituting this expression into Equation (6.14), we obtain a simple expression
for the derivatives that constitute the gradient

aG(h, D)
8w,-k

= Z(di — h(x;)) xijx
i=1

Because we seek to maximize rather than minimize P(D|h), we perform
gradient ascent rather than gradient descent search. On each iteration of the search
the weight vector is adjusted in the direction of the gradient, using the weight-
update rule

Wik < Wiy + Awy

where
m
Awye =1 Y _(di — h(x:)) xij (6.15)
i=1
and where n is a small positive constant that determines the step size of the
gradient ascent search.

It is interesting to compare this weight-update rule to the weight-update
rule used by the BACKPROPAGATION algorithm to minimize the sum of squared
errors between predicted and observed network outputs. The BACKPROPAGATION
update rule for output unit weights (see Chapter 4), re-expressed using our current
notation, is

Wi < Wi + Awj

where
Awy =1 h(x)(1 =k — h(x)) Xk
i=1
Notice this is similar to the rule given in Equation (6.15) except for the extra term
h(x;)(1 — h(x;)), which is the derivative of the sigmoid function.

To summarize, these two weight update rules converge toward maximum
likelihood hypotheses in two different settings. The rule that minimizes sum of
squared error seeks the maximum likelihood hypothesis under the assumption
that the training data can be modeled by Normally distributed noise added to the
target function value. The rule that minimizes cross entropy secks the maximum
likelihood hypothesis under the assumption that the observed boolean value is a
probabilistic function of the input instance.

6.6 MINIMUM DESCRIPTION LENGTH PRINCIPLE

Recall from Chapter 3 the discussion of Occam’s razor, a popular inductive bias
that can be summarized as “choose the shortest explanation for the observed
data.” In that chapter we discussed several arguments in the long-standing debate
regarding Occam’s razor. Here we consider a Bayesian perspective on this issue

172 MACHINE LEARNING

and a closely related principle called the Minimum Description Length (MDL)
principle.

The Minimum Description Length principle is motivated by interpreting the
definition of 4 p in the light of basic concepts from information theory. Consider
again the now familiar definition of Auap.

hyap = argmax P(D|h)P(h)
heH

which can be equivalently expressed in terms of maximizing the log,

huap = argmax log, P(D|h) + log, P(h)
heH

or alternatively, minimizing the negative of this quantity

hyap = argmin —log, P(D|h) —log, P(h) (6.16)
heH

Somewhat surprisingly, Equation (6.16) can be interpreted as a statement
that short hypotheses are preferred, assuming a particular representation scheme
for encoding hypotheses and data. To explain this, let us introduce a basic result
from information theory: Consider the problem of designing a code to transmit
messages drawn at random, where the probability of encountering message i is
pi. We are interested here in the most compact code; that is, we are interested in
the code that minimizes the expected number of bits we must transmit in order to
encode a message drawn at random. Clearly, to minimize the expected code length
we should assign shorter codes to messages that are more probable. Shannon and
Weaver (1949) showed that the optimal code (i.e., the code that minimizes the
expected message length) assigns — log, p; bits to encode message i. We will
refer to the number of bits required to encode message i using code C as the
description length of message i with respect to C, which we denote by Lc(i).

Let us interpret Equation (6.16) in light of the above result from coding
theory.

e —log, P(h) is the description length of 2 under the optimal encoding for
the hypothesis space H. In other words, this is the size of the description
of hypothesis 4 using this optimal representation. In our notation, L¢, (k) =
—log, P(h), where Cy is the optimal code for hypothesis space H.

e —log, P(D|h) is the description length of the training data D given
hypothesis #, under its optimal encoding. In our notation, Lc,,(Dlh) =
—log, P(D|k), where Cp), is the optimal code for describing data D assum-
ing that both the sender and receiver know the hypothesis .

T Notice the expected length for transmitting one message is therefore Zi —pi log, pi, the formula
for the entropy (see Chapter 3) of the set of possible messages.

CHAPTER 6 BAYESIAN LEARNING 173

o Therefore we can rewrite Equation (6.16) to show that 4,4 p is the hypothesis
h that minimizes the sum given by the description length of the hypothesis
plus the description length of the data given the hypothesis.

Ryap = argmin LCH (h) + Lcmh (D|h)
h

where CH and Cp, are the optimal encodings for H and for D given h,
respectively.

The Minimum Description Length (MDL) principle recommends choosing
the hypothesis that minimizes the sum of these two description lengths. Of course
to apply this principle in practice we must choose specific encodings or represen-
tations appropriate for the given learning task. Assuming we use the codes C; and
C; to represent the hypothesis and the data given the hypothesis, we can state the
MDL principle as

Minimum Description Length principle: Choose Ay p; where

hypr = argmin L¢, () + Lc,(D|h) 6.17)
heH

The above analysis shows that if we choose C; to be the optimal encoding
of hypotheses Cy, and if we choose C, to be the optimal encoding Cpy,, then
hupr = hmap-

Intuitively, we can think of the MDL principle as recommending the shortest
method for re-encoding the training data, where we count both the size of the
hypothesis and any additional cost of encoding the data given this hypothesis.

Let us consider an example. Suppose we wish to apply the MDL prin-
ciple to the problem of learning decision trees from some training data. What
should we choose for the representations C; and C; of hypotheses and data?
For C; we might naturally choose some obvious encoding of decision trees, in
which the description length grows with the number of nodes in the tree and
with the number of edges. How shall we choose the encoding C» of the data
given a particular decision tree hypothesis? To keep things simple, suppose that
the sequence of instances (x;...x,) is already known to both the transmitter
and receiver, so that we need only transmit the classifications {f(x1)... f(xpm)).
(Note the cost of transmitting the instances themselves is independent of the cor-
rect hypothesis, so it does not affect the selection of Ay p; in any case.) Now if
the training classifications {f(x1)... f(x»)) are identical to the predictions of the
hypothesis, then there is no need to transmit any information about these exam-
ples (the receiver can compute these values once it has received the hypothesis).
The description length of the classifications given the hypothesis in this case is,
therefore, zero. In the case where some examples are misclassified by &, then
for each misclassification we need to transmit a message that identifies which
example is misclassified (which can be done using at most log, m bits) as well

174 MACHINE LEARNING

as its correct classification (which can be done using at most log, k bits, where
k is the number of possible classifications). The hypothesis A3 p; under the en-
codings C; and C; is just the one that minimizes the sum of these description
lengths.

Thus the MDL principle provides a way of trading off hypothesis complexity
for the number of errors committed by the hypothesis. It might select a shorter
hypothesis that makes a few errors over a longer hypothesis that perfectly classifies
the training data. Viewed in this light, it provides one method for dealing with
the issue of overfitting the data.

Quinlan and Rivest (1989) describe experiments applying the MDL principle
to choose the best size for a decision tree. They report that the MDL-based method
produced learned trees whose accuracy was comparable to that of the standard tree-
pruning methods discussed in Chapter 3. Mehta et al. (1995) describe an alternative
MDL-based approach to decision tree pruning, and describe experiments in which
an MDL-based approach produced results comparable to standard tree-pruning
methods. »

What shall we conclude from this analysis of the Minimum Description
Length principle? Does this prove once and for all that short hypotheses are best?
No. What we have shown is only that if a representation of hypotheses is chosen so
that the size of hypothesis 4 is —log, P(h), and if a representation for exceptions
is chosen so that the encoding length of D given & is equal to —log, P(D|h),
then the MDL principle produces MAP hypotheses. However, to show that we
have such a representation we must know all the prior probabilities P(h), as well
as the P(D|h). There is no reason to believe that the MDL hypothesis relative to
arbitrary encodings C; and C; should be preferred. As a practical matter it might
sometimes be easier for a human designer to specify a representation that captures
knowledge about the relative probabilities of hypotheses than it is to fully specify
the probability of each hypothesis. Descriptions in the literature on the application
of MDL to practical learning problems often include arguments providing some
form of justification for the encodings chosen for C; and C.

6.7 BAYES OPTIMAL CLASSIFIER

So far we have considered the question “what is the most probable hypothesis
given the training data?” In fact, the question that is often of most significance is
the closely related question “what is the most probable classification of the new
instance given the training data?” Although it may seem that this second question
can be answered by simply applying the MAP hypothesis to the new instance, in
fact it is possible to do better.

To develop some intuitions consider a hypothesis space containing three
hypotheses, k1, hy, and h3. Suppose that the posterior probabilities of these hy-
potheses given the training data are .4, .3, and .3 respectively. Thus, h; is the
MAP hypothesis. Suppose a new instance x is encountered, which is classified
positive by ki, but negative by h; and k3. Taking all hypotheses into account,
the probability that x is positive is .4 (the probability associated with A1), and

CHAPTER 6 BAYESIAN LEARNING 175

the probability that it is negative is therefore .6. The most probable classification
(negative) in this case is different from the classification generated by the MAP
hypothesis.

In general, the most probable classification of the new instance is obtained
by combining the predictions of all hypotheses, weighted by their posterior prob-
abilities. If the possible classification of the new example can take on any value
v; from some set V, then the probability P(v;|D) that the correct classification
for the new instance is v;, is just

P(viD) = Y P(v;lh:)P(hi| D)

h;eH

The optimal classification of the new instance is the value v;, for which
P(vj|D) is maximum.

Bayes optimal classification:

argmax » P(v;|h)P (| D) (6.18)

u,-eV hieH

To illustrate in terms of the above example, the set of possible classifications
of the new instance is V = {®, 6}, and

P(h1\D) = .4, P(6lhy) =0, P(®lhy) =1
P(hy)D) = .3, P(Slhy) =1, P(®|hy) =0
P(h3|D) = .3, P(&lh3) =1, P(®lh3) =0

therefore
> P(®lh)P(h;|D) = .4
hiGH
> P©Ih)P(h:\D) = .6
h,'EH

and

argmax) P(v;lh;)P(h;|D) = ©
vi€(®. o} h,-Zg;I s

Any system that classifies new instances according to Equation (6.18) is
called a Bayes optimal classifier, or Bayes optimal learner. No other classification
method using the same hypothesis space and same prior knowledge can outperform
this method on average. This method maximizes the probability that the new
instance is classified correctly, given the available data, hypothesis space, and
prior probabilities over the hypotheses.

176 MACHINE LEARNING

For example, in learning boolean concepts using version spaces as in the
earlier section, the Bayes optimal classification of a new instance is obtained
by taking a weighted vote among all members of the version space, with each
candidate hypothesis weighted by its posterior probability. ‘

Note one curious property of the Bayes optimal classifier is that the pre-
dictions it makes can correspond to a hypothesis not contained in H! Imagine
using Equation (6.18) to classify every instance in X. The labeling of instances
defined in this way need not correspond to the instance labeling of any single
hypothesis 4 from H. One way to view this situation is to think of the Bayes
optimal classifier as effectively considering a hypothesis space H' different from
the space of hypotheses H to which Bayes theorem is being applied. In particu-
lar, H' effectively includes hypotheses that perform comparisons between linear
combinations of predictions from multiple hypotheses in H.

6.8 GIBBS ALGORITHM

Although the Bayes optimal classifier obtains the best performance that can be
achieved from the given training data, it can be quite costly to apply. The expense
is due to the fact that it computes the posterior probability for every hypothesis
in H and then combines the predictions of each hypothesis to classify each new
instance.

An alternative, less optimal method is the Gibbs algorithm (see Opper and
Haussler 1991), defined as follows:

1.- Choose a hypothesis A from H at random, according to the posterior prob-
ability distribution over H.

2. Use h to predict the classification of the next instance x.

Given a new instance to classify, the Gibbs algorithm simply applies a
hypothesis drawn at random according to the current posterior probability distri-
bution. Surprisingly, it can be shown that under certain conditions the expected
misclassification error for the Gibbs algorithm is at most twice the expected error
of the Bayes optimal classifier (Haussler et al. 1994). More precisely, the ex-
pected value is taken over target concepts drawn at random according to the prior
probability distribution assumed by the learner. Under this condition, the expected
value of the error of the Gibbs algorithm is at worst twice the expected value of
the error of the Bayes optimal classifier.

This result has an interesting implication for the concept learning problem
described earlier. In particular, it implies that if the learner assumes a uniform
prior over H, and if target concepts are in fact drawn from such a distribution
when presented to the learner, then classifying the next instance according to
a hypothesis drawn at random from the current version space (according to a
uniform distribution), will have expected error at most twice that of the Bayes
optimal classifier. Again, we have an example where a Bayesian analysis of a
non-Bayesian algorithm yields insight into the performance of that algorithm.

CHAPTER 6 BAYESIAN LEARNING 177

6.9 NAIVE BAYES CLASSIFIER

One highly practical Bayesian learning method is the naive Bayes learner, often
called the naive Bayes classifier. In some domains its performance has been shown
to be comparable to that of neural network and decision tree learning. This section
introduces the naive Bayes classifier; the next section applies it to the practical
problem of learning to classify natural language text documents.

The naive Bayes classifier applies to learning tasks where each instance x
is described by a conjunction of attribute values and where the target function
f(x) can take on any value from some finite set V. A set of training examples of
the target function is provided, and a new instance is presented, described by the
tuple of attribute values {(aj, a;...a,). The learner is asked to predict the target
value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most
probable target value, vy4p, given the attribute values (a;, a3 . .. a,) that describe
the instance.

vmap = argmax P(vjlay, az ... an)
v]'GV

We can use Bayes theorem to rewrite this expression as
Pay,az...a,|v))P(vj)

Umap = argmax

eV P(a, a...a,)
= argmax P(ai,az ... a,|v;) P(v;) (6.19)
vjEV

Now we could attempt to estimate the two terms in Equation (6.19) based on
the training data. It is easy to estimate each of the P(v;) simply by counting the
frequency with which each target value v; occurs in the training data. However,
estimating the different P(ai, a2 ...ax|v;) terms in this fashion is not feasible
unless we have a very, very large set of training data. The problem is that the
number of these terms is equal to the number of possible instances times the
number of possible target values. Therefore, we need to see every instance in
the instance space many times in order to obtain reliable estimates.

The naive Bayes classifier is based on the simplifying assumption that the
attribute values are conditionally independent given the target value. In other
words, the assumption is that given the target value of the instance, the probability
of observing the conjunction aj, a;...a, is just the product of the probabilities
for the individual attributes: P(ai,az...aslv;) = []; P(ailvy). Substituting this
into Equation (6.19), we have the approach used by the naive Bayes classifier.

Naive Bayes classifier:

vy = argmax P(op) [| P(ailvy) (6.20)

1713%

where vy denotes the target value output by the naive Bayes classifier. Notice
that in a naive Bayes classifier the number of distinct P(a;|v;) terms that must

178 MACHINE LEARNING

be estimated from the training data is just the number of distinct attribute values
times the number of distinct target values—a much smaller number than if we
were to estimate the P(a1,az...a,|v;) terms as first contemplated.

To summarize, the naive Bayes learning method involves a learning step in
which the various P(v;) and P(a;|v;) terms are estimated, based on their frequen-
cies over the training data. The set of these estimates corresponds to the learned
hypothesis. This hypothesis is then used to classify each new instance by applying
the rule in Equation (6.20). Whenever the naive Bayes assumption of conditional
independence is satisfied, this naive Bayes classification vyp is identical to the
MAP classification.

One interesting difference between the naive Bayes learning method and
other learning methods we have considered is that there is no explicit search
through the space of possible hypotheses (in this case, the space of possible
hypotheses is the space of possible values that can be assigned to the various P (v;)
and P(a;|v;) terms). Instead, the hypothesis is formed without searching, simply by
counting the frequency of various data combinations within the training examples.

6.9.1 An Illustrative Example

Let us apply the naive Bayes classifier to a concept learning problem we consid-
ered during our discussion of decision tree learning: classifying days according
to whether someone will play tennis. Table 3.2 from Chapter 3 provides a set
of 14 training examples of the target concept PlayTennis, where each day is
described by the attributes Qutlook, Temperature, Humidity, and Wind. Here we
use the naive Bayes classifier and the training data from this table to classify the
following novel instance:

{Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong)

Our task is to predict the target value (yes or no) of the target concept
PlayTennis for this new instance. Instantlatmg Equation (6.20) to fit the current
task, the target value vyp is given by
vyp = argmax P(v))[]; P(ailv))

vj€{yes,no}

= argmax P(v;) P(Outlook = sunnylv;) P(Temperature = cool|v;)

vj €{yes,no}
- P(Humidity = high|v;) P(Wind = strong|v;) (6.21)

Notice in the final expression that ¢; has been instantiated using the particular
attribute values of the new instance. To calculate vy we now require 10 proba-
bilities that can be estimated from the training data. First, the probabilities of the
different target values can easily be estimated based on their frequencies over the
14 training examples

P(PlayT ennis = yes) = 9/14 = .64
P(PlayT ennis = no) =5/14 = .36

