
CHAPTER 

ARTIFICIAL 
NEURAL 

NETWORKS 

Artificial neural networks (ANNs) provide a general, practical method for learning 
real-valued, discrete-valued, and vector-valued functions from examples. Algorithms 
such as BACKPROPAGATION use gradient descent to tune network parameters to best 
fit a training set of input-output pairs. ANN learning is robust to errors in the training 
data and has been successfully applied to problems such as interpreting visual scenes, 
speech recognition, and learning robot control strategies. 

4.1 INTRODUCTION 

Neural network learning methods provide a robust approach to approximating 
real-valued, discrete-valued, and vector-valued target functions. For certain types 
of problems, such as learning to interpret complex real-world sensor data, artificial 
neural networks are among the most effective learning methods currently known. 
For example, the BACKPROPAGATION algorithm described in this chapter has proven 
surprisingly successful in many practical problems such as learning to recognize 
handwritten characters (LeCun et al. 1989), learning to recognize spoken words 
(Lang et al. 1990), and learning to recognize faces (Cottrell 1990). One survey of 
practical applications is provided by Rumelhart et al. (1994). 



4.1.1 Biological Motivation 

The study of artificial neural networks (ANNs) has been inspired in part by the 
observation that biological learning systems are built of very complex webs of 
interconnected neurons. In rough analogy, artificial neural networks are built out 
of a densely interconnected set of simple units, where each unit takes a number 
of real-valued inputs (possibly the outputs of other units) and produces a single 
real-valued output (which may become the input to many other units). 

To develop a feel for this analogy, let us consider a few facts from neuro- 
biology. The human brain, for example, is estimated to contain a densely inter- 
connected network of approximately 1011 neurons, each connected, on average, to 
lo4 others. Neuron activity is typically excited or inhibited through connections to 
other neurons. The fastest neuron switching times are known to be on the order of 
loe3 seconds--quite slow compared to computer switching speeds of 10-lo sec- 
onds. Yet humans are able to make surprisingly complex decisions, surprisingly 
quickly. For example, it requires approximately lo-' seconds to visually recognize 
your mother. Notice the sequence of neuron firings that can take place during this 
10-'-second interval cannot possibly be longer than a few hundred steps, given 
the switching speed of single neurons. This observation has led many to speculate 
that the information-processing abilities of biological neural systems must follow 
from highly parallel processes operating on representations that are distributed 
over many neurons. One motivation for ANN systems is to capture this kind 
of highly parallel computation based on distributed representations. Most ANN 
software runs on sequential machines emulating distributed processes, although 
faster versions of the algorithms have also been implemented on highly parallel 
machines and on specialized hardware designed specifically for ANN applications. 

While ANNs are loosely motivated by biological neural systems, there are 
many complexities to biological neural systems that are not modeled by ANNs, 
and many features of the ANNs we discuss here are known to be inconsistent 
with biological systems. For example, we consider here ANNs whose individual 
units output a single constant value, whereas biological neurons output a complex 
time series of spikes. 

Historically, two groups of researchers have worked with artificial neural 
networks. One group has been motivated by the goal of using ANNs to study 
and model biological learning processes. A second group has been motivated by 
the goal of obtaining highly effective machine learning algorithms, independent of 
whether these algorithms mirror biological processes. Within this book our interest 
fits the latter group, and therefore we will not dwell further on biological modeling. 
For more information on attempts to model biological systems using ANNs, see, 
for example, Churchland and Sejnowski (1992); Zornetzer et al. (1994); Gabriel 
and Moore (1990). 

4.2 NEURAL NETWORK REPRESENTATIONS 

A prototypical example of ANN learning is provided by Pomerleau's (1993) sys- 
tem ALVINN, which uses a learned ANN to steer an autonomous vehicle driving 



at normal speeds on public highways. The input to the neural network is a 30 x 32 
grid of pixel intensities obtained from a forward-pointed camera mounted on the 
vehicle. The network output is the direction in which the vehicle is steered. The 
ANN is trained to mimic the observed steering commands of a human driving the 
vehicle for approximately 5 minutes. ALVINN has used its learned networks to 
successfully drive at speeds up to 70 miles per hour and for distances of 90 miles 
on public highways (driving in the left lane of a divided public highway, with 
other vehicles present). 

Figure 4.1 illustrates the neural network representation used in one version 
of the ALVINN system, and illustrates the kind of representation typical of many 
ANN systems. The network is shown on the left side of the figure, with the input 
camera image depicted below it. Each node (i.e., circle) in the network diagram 
corresponds to the output of a single network unit, and the lines entering the node 
from below are its inputs. As can be seen, there are four units that receive inputs 
directly from all of the 30 x 32 pixels in the image. These are called "hidden" 
units because their output is available only within the network and is not available 
as part of the global network output. Each of these four hidden units computes a 
single real-valued output based on a weighted combination of its 960 inputs. These 
hidden unit outputs are then used as inputs to a second layer of 30 "output" units. 
Each output unit corresponds to a particular steering direction, and the output 
values of these units determine which steering direction is recommended most 
strongly. 

The diagrams on the right side of the figure depict the learned weight values 
associated with one of the four hidden units in this ANN. The large matrix of 
black and white boxes on the lower right depicts the weights from the 30 x 32 pixel 
inputs into the hidden unit. Here, a white box indicates a positive weight, a black 
box a negative weight, and the size of the box indicates the weight magnitude. 
The smaller rectangular diagram directly above the large matrix shows the weights 
from this hidden unit to each of the 30 output units. 

The network structure of ALYINN is typical of many ANNs. Here the in- 
dividual units are interconnected in layers that form a directed acyclic graph. In 
general, ANNs can be graphs with many types of structures-acyclic or cyclic, 
directed or undirected. This chapter will focus on the most common and practical 
ANN approaches, which are based on the BACKPROPAGATION algorithm. The BACK- 
PROPAGATION algorithm assumes the network is a fixed structure that corresponds 
to a directed graph, possibly containing cycles. Learning corresponds to choosing 
a weight value for each edge in the graph. Although certain types of cycles are 
allowed, the vast majority of practical applications involve acyclic feed-forward 
networks, similar to the network structure used by ALVINN. 

4.3 APPROPRIATE PROBLEMS FOR NEURAL NETWORK 
LEARNING 

ANN learning is well-suited to problems in which the training data corresponds 
to noisy, complex sensor data, such as inputs from cameras and microphones. 



E2' Straight 
Ahead 

1 1 1 
30 Output 

Units 

n 

30x32 Sensor 
Input Retina 

1 

FIGURE 4.1 
Neural network learning to steer an autonomous vehicle. The ALVINN system uses BACKPROPAGA- 
TION to learn to steer an autonomous vehicle (photo at top) driving at speeds up to 70 miles per hour. 
The diagram on the left shows how the image of a forward-mounted camera is mapped to 960 neural 
network inputs, which are fed forward to 4 hidden units, connected to 30 output units. Network 
outputs encode the commanded steering direction. The figure on the right shows weight values for 
one of the hidden units in this network. The 30 x 32 weights into the hidden unit are displayed in 
the large matrix, with white blocks indicating positive and black indicating negative weights. The 
weights from this hidden unit to the 30 output units are depicted by the smaller rectangular block 
directly above the large block. As can be seen from these output weights, activation of this particular 
hidden unit encourages a turn toward the left. 



~t is also applicable to problems for which more symbolic representations are 
often used, such as the decision tree learning tasks discussed in Chapter 3. In 
these cases ANN and decision tree learning often produce results of comparable 
accuracy. See Shavlik et al. (1991) and Weiss and Kapouleas (1989) for exper- 
imental comparisons of decision tree and ANN learning. The BACKPROPAGATION 
algorithm is the most commonly used ANN learning technique. It is appropriate 
for problems with the following characteristics: 

0 Instances are represented by many attribute-value pairs. The target function 
to be learned is defined over instances that can be described by a vector of 
predefined features, such as the pixel values in the ALVINN example. These 
input attributes may be highly correlated or independent of one another. 
Input values can be any real values. 
The target function output may be discrete-valued, real-valued, or a vector 
of several real- or discrete-valued attributes. For example, in the ALVINN 
system the output is a vector of 30 attributes, each corresponding to a rec- 
ommendation regarding the steering direction. The value of each output is 
some real number between 0 and 1, which in this case corresponds to the 
confidence in predicting the corresponding steering direction. We can also 
train a single network to output both the steering command and suggested 
acceleration, simply by concatenating the vectors that encode these two out- 
put predictions. 
The training examples may contain errors. ANN learning methods are quite 
robust to noise in the training data. 
Long training times are acceptable. Network training algorithms typically 
require longer training times than, say, decision tree learning algorithms. 
Training times can range from a few seconds to many hours, depending 
on factors such as the number of weights in the network, the number of 
training examples considered, and the settings of various learning algorithm 
parameters. 
Fast evaluation of the learned target function may be required. Although 
ANN learning times are relatively long, evaluating the learned network, in 
order to apply it to a subsequent instance, is typically very fast. For example, 
ALVINN applies its neural network several times per second to continually 
update its steering command as the vehicle drives forward. 

I The ability of humans to understand the learned target function is not impor- 
tant. The weights learned by neural networks are often difficult for humans to 
interpret. Learned neural networks are less easily communicated to humans 
than learned rules. 

The rest of this chapter is organized as follows: We first consider several 
alternative designs for the primitive units that make up artificial neural networks 
(perce~trons, linear units, and sigmoid units), along with learning algorithms for 
training single units. We then present the BACKPROPAGATION algorithm for training 



multilayer networks of such units and consider several general issues such as the 
representational capabilities of ANNs, nature of the hypothesis space search, over- 
fitting problems, and alternatives to the BACKPROPAGATION algorithm. A detailed 
example is also presented applying BACKPROPAGATION to face recognition, and 
directions are provided for the reader to obtain the data and code to experiment 
further with this application. 

4.4 PERCEPTRONS 

One type of ANN system is based on a unit called a perceptron, illustrated in 
Figure 4.2. A perceptron takes a vector of real-valued inputs, calculates a linear 
combination of these inputs, then outputs a 1 if the result is greater than some 
threshold and -1 otherwise. More precisely, given inputs xl through x,, the output 
o(x1, . . . , x,) computed by the perceptron is 

o(x1,.  . . , x , )  = 1 if wo + w l x l +  ~ 2 x 2  + - . + W , X ,  > 0 
-1 otherwise 

where each wi is a real-valued constant, or weight, that determines the contribution 
of input xi to the perceptron output. Notice the quantity ( -wO) is a threshold that 
the weighted combination of inputs wlxl + . . . + wnxn must surpass in order for 
the perceptron to output a 1. 

To simplify notation, we imagine an additional constant input xo = 1, al- 
lowing us to write the above inequality as C:=o wixi > 0, or in vector form as 
iir ..i! > 0. For brevity, we will sometimes write the perceptron function as 

where 

Learning a perceptron involves choosing values for the weights wo, . . . , w,. 
Therefore, the space H of candidate hypotheses considered in perceptron learning 
is the set of all possible real-valued weight vectors. 

4.4.1 Representational Power of Perceptrons 

We can view the perceptron as representing a hyperplane decision surface in the 
n-dimensional space of instances (i.e., points). The perceptron outputs a 1 for 
instances lying on one side of the hyperplane and outputs a -1 for instances 
lying on the other side, as illustrated in Figure 4.3. The equation for this decision 
hyperplane is iir . .i! = 0. Of course, some sets of positive and negative examples 
cannot be separated by any hyperplane. Those that can be separated are called 
linearly separable sets of examples. 



FIGURE 4 3  
A perceptron. 

A single perceptron can be used to represent many boolean functions. For 
example, if we assume boolean values of 1 (true) and -1 (false), then one way to 
use a two-input perceptron to implement the AND function is to set the weights 
wo = -3, and wl = wz = .5. This perceptron can be made to represent the OR 
function instead by altering the threshold to wo = -.3. In fact, AND and OR can 
be viewed as special cases of m-of-n functions: that is, functions where at least 
m of the n inputs to the perceptron must be true. The OR function corresponds to 
rn = 1 and the AND function to m = n. Any m-of-n function is easily represented 
using a perceptron by setting all input weights to the same value (e.g., 0.5) and 
then setting the threshold wo accordingly. 

Perceptrons can represent all of the primitive boolean functions AND, OR, 
NAND ( 1  AND), and NOR ( 1  OR). Unfortunately, however, some boolean func- 
tions cannot be represented by a single perceptron, such as the XOR function 
whose value is 1 if and only if xl # xz. Note the set of linearly nonseparable 
training examples shown in Figure 4.3(b) corresponds to this XOR function. 

The ability of perceptrons to represent AND, OR, NAND, and NOR is 
important because every boolean function can be represented by some network of 
interconnected units based on these primitives. In fact, every boolean function can 
be represented by some network of perceptrons only two levels deep, in which 

FIGURE 4.3 
The decision surface represented by a two-input perceptron. (a)  A set of training examples and the 
decision surface of a perceptron that classifies them correctly. (b) A set of training examples that is 
not linearly separable (i.e., that cannot be correctly classified by any straight line). xl and x2 are the 
Perceptron inputs. Positive examples are indicated by "+", negative by "-". 



the inputs are fed to multiple units, and the outputs of these units are then input to 
a second, final stage. One way is to represent the boolean function in disjunctive 
normal form (i.e., as the disjunction (OR) of a set of conjunctions (ANDs) of 
the inputs and their negations). Note that the input to an AND perceptron can be 
negated simply by changing the sign of the corresponding input weight. 

Because networks of threshold units can represent a rich variety of functions 
and because single units alone cannot, we will generally be interested in learning 
multilayer networks of threshold units. 

4.4.2 The Perceptron Training Rule 

Although we are interested in learning networks of many interconnected units, let 
us begin by understanding how to learn the weights for a single perceptron. Here 
the precise learning problem is to determine a weight vector that causes the per- 
ceptron to produce the correct f 1 output for each of the given training examples. 

Several algorithms are known to solve this learning problem. Here we con- 
sider two: the perceptron rule and the delta rule (a variant of the LMS rule used 
in Chapter 1 for learning evaluation functions). These two algorithms are guaran- 
teed to converge to somewhat different acceptable hypotheses, under somewhat 
different conditions. They are important to ANNs because they provide the basis 
for learning networks of many units. 

One way to learn an acceptable weight vector is to begin with random 
weights, then iteratively apply the perceptron to each training example, modify- 
ing the perceptron weights whenever it misclassifies an example. This process is 
repeated, iterating through the training examples as many times as needed until 
the perceptron classifies all training examples correctly. Weights are modified at 
each step according to the perceptron training rule, which revises the weight wi 
associated with input xi according to the rule 

where 

Here t is the target output for the current training example, o is the output generated 
by the perceptron, and q is a positive constant called the learning rate. The role 
of the learning rate is to moderate the degree to which weights are changed at 
each step. It is usually set to some small value (e.g., 0.1) and is sometimes made 
to decay as the number of weight-tuning iterations increases. 

Why should this update rule converge toward successful weight values? To 
get an intuitive feel, consider some specific cases. Suppose the training example is 
correctly classified already by the perceptron. In this case, ( t  - o) is zero, making 
Awi zero, so that no weights are updated. Suppose the perceptron outputs a -1, 
when the target output is + 1. To make the perceptron output a + 1 instead of - 1 in 
this case, the weights must be altered to increase the value of G . 2 .  For example, if 
xi r 0, then increasing wi will bring the perceptron closer to correctly classifying 



this example. Notice the training rule will increase w, in this case, because ( t  - o), 
7 ,  and Xi are all positive. For example, if xi = .8, q = 0.1, t = 1 ,  and o = - 1 ,  
then the weight update will be Awi = q(t - o)xi = O . 1 ( 1  - (-1))0.8 = 0.16. On 
the other hand, if t = - 1  and o = 1, then weights associated with positive xi will 
be decreased rather than increased. 

In fact, the above learning procedure can be proven to converge within a 
finite number of applications of the perceptron training rule to a weight vec- 
tor that correctly classifies all training examples, provided the training examples 
are linearly separable and provided a sufficiently small 7 is used (see Minsky 
and Papert 1969). If the data are not linearly separable, convergence is not as- 
sured. 

4.4.3 Gradient Descent and the Delta Rule 

Although the perceptron rule finds a successful weight vector when the training 
examples are linearly separable, it can fail to converge if the examples are not 
linearly separable. A second training rule, called the delta rule, is designed to 
overcome this difficulty. If the training examples are not linearly separable, the 
delta rule converges toward a best-fit approximation to the target concept. 

The key idea behind the delta rule is to use gradient descent to search the hy- 
pothesis space of possible weight vectors to find the weights that best fit the train- 
ing examples. This rule is important because gradient descent provides the basis 
for the BACKPROPAGATION algorithm, which can learn networks with many inter- 
connected units. It is also important because gradient descent can serve as the 
basis for learning algorithms that must search through hypothesis spaces contain- 
ing many different types of continuously parameterized hypotheses. 

The delta training rule is best understood by considering the task of training 
an unthresholded perceptron; that is, a linear unit for which the output o is given by 

Thus, a linear unit corresponds to the first stage of a perceptron, without the 
threshold. 

In order to derive a weight learning rule for linear units, let us begin by 
specifying a measure for the training error of a hypothesis (weight vector), relative 
to the training examples. Although there are many ways to define this error, one 
common measure that will turn out to be especially convenient is 

where D is the set of training examples, td is the target output for training example 
d,  and od is the output of the linear unit for training example d. By this definition, 
E ( 6 )  is simply half the squared difference between the target output td and the 
h e a r  unit output od, summed over all training examples. Here we characterize 
E as a function of 27, because the linear unit output o depends on this weight 
vector. Of course E also depends on the particular set of training examples, but 



we assume these are fixed during training, so we do not bother to write E as an 
explicit function of these. Chapter 6 provides a Bayesian justification for choosing 
this particular definition of E. In particular, there we show that under certain 
conditions the hypothesis that minimizes E is also the most probable hypothesis 
in H given the training data. 

4.4.3.1 VISUALIZING THE HYPOTHESIS SPACE 

To understand the gradient descent algorithm, it is helpful to visualize the entire 
hypothesis space of possible weight vectors and their associated E values, as 
illustrated in Figure 4.4. Here the axes wo and w l  represent possible values for 
the two weights of a simple linear unit. The wo, w l  plane therefore represents 
the entire hypothesis space. The vertical axis indicates the error E relative to 
some fixed set of training examples. The error surface shown in the figure thus 
summarizes the desirability of every weight vector in the hypothesis space (we 
desire a hypothesis with minimum error). Given the way in which we chose to 
define E, for linear units this error surface must always be parabolic with a single 
global minimum. The specific parabola will depend, of course, on the particular 
set of training examples. 

FIGURE 4.4 
Error of different hypotheses. For a linear unit with two weights, the hypothesis space H is the 
wg, wl  plane. The vertical axis indicates tk error of the corresponding weight vector hypothesis, 
relative to a fixed set of training examples. The arrow shows the negated gradient at one partic- 
ular point, indicating the direction in the wo, w l  plane producing steepest descent along the error 
surface. 



Gradient descent search determines a weight vector that minimizes E by 
starting with an arbitrary initial weight vector, then repeatedly modifying it in 
small steps. At each step, the weight vector is altered in the direction that produces 
the steepest descent along the error surface depicted in Figure 4.4. This process 
continues until the global minimum error is reached. 

4.4.3.2 DERIVATION OF THE GRADIENT DESCENT RULE 

How can we calculate the direction of steepest descent along the error surface? 
This direction can be found by computing the derivative of E with respect to each 
component of the vector 2. This vector derivative is called the gradient of E with 
respect to 221, written ~ ~ ( i i r ) .  

Notice VE(221) is itself a vector, whose components are the partial derivatives 
of E with respect to each of the wi. When interpreted as a vector in weight 
space, the gradient specijies the direction that produces the steepest increase in 
E .  The negative of this vector therefore gives the direction of steepest decrease. 
For example, the arrow in Figure 4.4 shows the negated gradient -VE(G) for a 
particular point in the wo, wl plane. 

Since the gradient specifies the direction of steepest increase of E, the train- 
ing rule for gradient descent is 

where 

Here r]  is a positive constant called the learning rate, which determines the step 
size in the gradient descent search. The negative sign is present because we want 
to move the weight vector in the direction that decreases E. This training rule 
can also be written in its component form 

where 

which makes it clear that steepest descent is achieved by altering each component 
w, of ii in proportion to E. 

To construct a practical algorithm for iteratively updating weights according 
to Equation ( 4 4 ,  we need an efficient way of calculating the gradient at each 
step. Fortunately, this is not difficult. The vector of derivatives that form the 



gradient can be obtained by differentiating E from Equation (4.2), as 

where xid denotes the single input component xi for training example d. We now 
have an equation that gives in terms of the linear unit inputs xid, outputs 
Od, and target values td associated with the training examples. Substituting Equa- 
tion (4.6) into Equation (4.5) yields the weight update rule for gradient descent 

To summarize, the gradient descent algorithm for training linear units is as 
follows: Pick an initial random weight vector. Apply the linear unit to all training 
examples, then compute Awi for each weight according to Equation (4.7). Update 
each weight wi by adding Awi, then repeat this process. This algorithm is given 
in Table 4.1. Because the error surface contains only a single global minimum, 
this algorithm will converge to a weight vector with minimum error, regardless 
of whether the training examples are linearly separable, given a sufficiently small 
learning rate q is used. If r )  is too large, the gradient descent search runs the risk 
of overstepping the minimum in the error surface rather than settling into it. For 
this reason, one common modification to the algorithm is to gradually reduce the 
value of r )  as the number of gradient descent steps grows. 

4.4.3.3 STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 

Gradient descent is an important general paradigm for learning. It is a strategy for 
searching through a large or infinite hypothesis space that can be applied whenever 
(1) the hypothesis space contains continuously parameterized hypotheses (e.g., the 
weights in a linear unit), and (2) the error can be differentiated with respect to 
these hypothesis parameters. The key practical difficulties in applying gradient 
descent are (1) converging to a local minimum can sometimes be quite slow (i.e., 
it can require many thousands of gradient descent steps), and (2) if there are 
multiple local minima in the error surface, then there is no guarantee that the 
procedure will find the global minimum. 



CHAF'l'ER 4 ARTIFICIAL NEURAL NETWORKS 93 

- - 

~ ~ A D I E N T - D E s c E N T ( ~ ~ ~ ~ ~ ~ ~ ~ ~ x ~ ~ ~ ~ ~ s ,  q )  
Each training example is a pair of the form (2, t ) ,  where x' is the vector of input values, and 
t is the target output value. q is the learning rate (e.g., .05). . Initialize each w, to some small random value . Until the termination condition is met, Do 

0 Initialize each Awi to zero. 
0 For each (2, t )  in trainingaxamples, Do 

w Input the instance x' to the unit and compute the output o 
For each linear unit weight w, ,  Do 

For each linear unit weight wi, Do 

TABLE 4.1 
GRADIENT DESCENT algorithm for training a linear unit. To implement the stochastic approximation 
to gradient descent, Equation (T4.2) is deleted, and Equation (T4.1) replaced by wi c wi +q(t  - o b i .  

One common variation on gradient descent intended to alleviate these diffi- 
culties is called incremental gradient descent, or alternatively stochastic gradient 
descent. Whereas the gradient descent training rule presented in Equation (4.7) 
computes weight updates after summing over a22 the training examples in D, the 
idea behind stochastic gradient descent is to approximate this gradient descent 
search by updating weights incrementally, following the calculation of the error 
for each individual example. The modified training rule is like the training rule 
given by Equation (4.7) except that as we iterate through each training example 
we update the weight according to 

where t, o, and xi are the target value, unit output, and ith input for the training 
example in question. To modify the gradient descent algorithm of Table 4.1 to 
implement this stochastic approximation, Equation (T4.2) is simply deleted and 
Equation (T4.1) replaced by wi t wi + v ( t  - o) xi. One way to view this stochastic 
gradient descent is to consider a distinct error function ~ ~ ( 6 )  defined for each 
individual training example d as follows 

1 
Ed (6) = - (td - 0 d )  

2 

2 
(4.11) 

where t, and od are the target value and the unit output value for training ex- 
ample d. Stochastic gradient descent iterates over the training examples d in D, 
at each iteration altering the weights according to the gradient with respect to 
Ed(;). The sequence of these weight updates, when iterated over all training 
examples, provides a reasonable approximation to descending the gradient with 
respect to our original error function E(G). By making the value of 7 (the gradient 



94 MACHINE LEARNING 

descent step size) sufficiently small, stochastic gradient descent can be made to 
approximate true gradient descent arbitrarily closely. The key differences between 
standard gradient descent and stochastic gradient descent are: 

0 In standard gradient descent, the error is summed over all examples before 
updating weights, whereas in stochastic gradient descent weights are updated 
upon examining each training example. . Summing over multiple examples in standard gradient descent requires more 
computation per weight update step. On the other hand, because it uses the 
true gradient, standard gradient descent is often used with a larger step size 
per weight update than stochastic gradient descent. 

r, In cases where there are multiple local minima with respect to E($ ,  stochas- 
tic gradient descent can sometimes avoid falling into these local minima 
because it uses the various V E d ( G )  rather than V E ( 6 )  to guide its search. 

Both stochastic and standard gradient descent methods are commonly used in 
practice. 

The training rule in Equation (4.10) is known as the delta rule, or sometimes 
the LMS (least-mean-square) rule, Adaline rule, or Widrow-Hoff rule (after its 
inventors). In Chapter 1 we referred to it as the LMS weight-update rule when 
describing its use for learning an evaluation function for game playing. Notice 
the delta rule in Equation (4.10) is similar to the perceptron training rule in 
Equation (4.4.2). In fact, the two expressions appear to be identical. However, 
the rules are different because in the delta rule o refers to the linear unit output 
o ( 2 )  = i;) .?, whereas for the perceptron rule o refers to the thresholded output 
o(2 )  = sgn($ . 2 ) .  

Although we have presented the delta rule as a method for learning weights 
for unthresholded linear units, it can easily be used to train thresholded perceptron 
units, as well. Suppose that o = i;) . x' is the unthresholded linear unit output as 
above, and of = s g n ( G . 2 )  is the result of thresholding o as in the perceptron. Now 
if we wish to train a perceptron to fit training examples with target values o f f  1  for 
o', we can use these same target values and examples to train o instead, using the 
delta rule. Clearly, if the unthresholded output o can be trained to fit these values 
perfectly, then the threshold output of will fit them as well (because sgn(1) = 1, 
and sgn(-1)  = -1). Even when the target values cannot be fit perfectly, the 
thresholded of value will correctly fit the f 1  target value whenever the linear 
unit output o has the correct sign. Notice, however, that while this procedure will 
learn weights that minimize the error in the linear unit output o, these weights 
will not necessarily minimize the number of training examples misclassified by 
the thresholded output 0'. 

4.4.4 Remarks 

We have considered two similar algorithms for iteratively learning perceptron 
weights. The key difference between these algorithms is that the perceptron train- 



C H m R  4 ARTIFICIAL NEURAL NETWORKS 95 

ing rule updates weights based on the error in the thresholded perceptron output, 
whereas the delta rule updates weights based on the error in the unthresholded 
linear combination of inputs. 

The difference between these two training rules is reflected in different con- 
vergence properties. The perceptron training rule converges after a finite number 
of iterations to a hypothesis that perfectly classifies the training data, provided the 
training examples are linearly separable. The delta rule converges only asymp- 
totically toward the minimum error hypothesis, possibly requiring unbounded 
time, but converges regardless of whether the training data are linearly sepa- 
rable. A detailed presentation of the convergence proofs can be found in Hertz et 
al. (1991). 

A third possible algorithm for learning the weight vector is linear program- 
ming. Linear programming is a general, efficient method for solving sets of linear 
inequalities. Notice each training example corresponds to an inequality of the 
form zZI - x' > 0 or G . x' 5 0, and their solution is the desired weight vector. Un- 
fortunately, this approach yields a solution only when the training examples are 
linearly separable; however, Duda and Hart (1973, p. 168) suggest a more subtle 
formulation that accommodates the nonseparable case. In any case, the approach 
of linear programming does not scale to training multilayer networks, which is 
our primary concern. In contrast, the gradient descent approach, on which the 
delta rule is based, can be easily extended to multilayer networks, as shown in 
the following section. 

4.5 MULTILAYER NETWORKS AND THE BACKPROPAGATION 
ALGORITHM 

As noted in Section 4.4.1, single perceptrons can only express linear decision 
surfaces. In contrast, the kind of multilayer networks learned by the BACKPROPA- 
CATION algorithm are capable of expressing a rich variety of nonlinear decision 
surfaces. For example, a typical multilayer network and decision surface is de- 
picted in Figure 4.5. Here the speech recognition task involves distinguishing 
among 10 possible vowels, all spoken in the context of "h-d" (i.e., "hid," "had," 
"head," "hood," etc.). The input speech signal is represented by two numerical 
parameters obtained from a spectral analysis of the sound, allowing us to easily 
visualize the decision surface over the two-dimensional instance space. As shown 
in the figure, it is possible for the multilayer network to represent highly nonlinear 
decision surfaces that are much more expressive than the linear decision surfaces 
of single units shown earlier in Figure 4.3. 

This section discusses how to learn such multilayer networks using a gradient 
descent algorithm similar to that discussed in the previous section. 

4.5.1 A Differentiable Threshold Unit 

What type of unit shall we use as the basis for constructing multilayer networks? 
At first we might be tempted to choose the linear units discussed in the previous 



head hid 4 who'd hood 

0 b a d  . hid 
+ hod 
r had 
r hawed . hoard 
o heed 
c hud , who'd 
hood 

FIGURE 4.5 
Decision regions of a multilayer feedforward network. The network shown here was trained to 
recognize 1 of 10 vowel sounds occurring in the context "hd" (e.g., "had," "hid"). The network 
input consists of two parameters, F1 and F2, obtained from a spectral analysis of the sound. The 
10 network outputs correspond to the 10 possible vowel sounds. The network prediction is the 
output whose value is highest. The plot on the right illustrates the highly nonlinear decision surface 
represented by the learned network. Points shown on the plot are test examples distinct from the 
examples used to train the network. (Reprinted by permission from Haung and Lippmann (1988).) 

section, for which we have already derived a gradient descent learning rule. How- 
ever, multiple layers of cascaded linear units still produce only linear functions, 
and we prefer networks capable of representing highly nonlinear functions. The 
perceptron unit is another possible choice, but its discontinuous threshold makes 
it undifferentiable and hence unsuitable for gradient descent. What we need is a 
unit whose output is a nonlinear function of its inputs, but whose output is also 
a differentiable function of its inputs. One solution is the sigmoid unit-a unit 
very much like a perceptron, but based on a smoothed, differentiable threshold 
function. 

The sigmoid unit is illustrated in Figure 4.6. Like the perceptron, the sigmoid 
unit first computes a linear combination of its inputs, then applies a threshold to 
the result. In the case of the sigmoid unit, however, the threshold output is a 

net = C wi xi 1 o = @net) = - 
1 + kMf 

FIGURE 4.6 
The sigmoid threshold unit. 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 97 

continuous function of its input. More precisely, the sigmoid unit computes its 
output o as 

where 

a is often called the sigmoid function or, alternatively, the logistic function. Note 
its output ranges between 0 and 1, increasing monotonically with its input (see the 
threshold function plot in Figure 4.6.). Because it maps a very large input domain 
to a small range of outputs, it is often referred to as the squashingfunction of 
the unit. The sigmoid function has the useful property that its derivative is easily 
expressed in terms of its output [in particular, = 

d y  O(Y) . (1 - dy))] .  As 
we shall see, the gradient descent learning rule makes use of this derivative. 
Other differentiable functions with easily calculated derivatives are sometimes 
used in place of a. For example, the term e-y in the sigmoid function definition 
is sometimes replaced by e-k'y where k is some positive constant that determines 
the steepness of the threshold. The function tanh is also sometimes used in place 
of the sigmoid function (see Exercise 4.8). 

4.5.2 The BACKPROPAGATION Algorithm 

The BACKPROPAGATION algorithm learns the weights for a multilayer network, 
given a network with a fixed set of units and interconnections. It employs gradi- 
ent descent to attempt to minimize the squared error between the network output 
values and the target values for these outputs. This section presents the BACKPROP- 
AGATION algorithm, and the following section gives the derivation for the gradient 
descent weight update rule used by BACKPROPAGATION. 

Because we are considering networks with multiple output units rather than 
single units as before, we begin by redefining E to sum the errors over all of the 
network output units 

where outputs is the set of output units in the network, and tkd and OM are the 
I target and output values associated with the kth output unit and training example d. 

The learning problem faced by BACKPROPAGATION is to search a large hypoth- 
esis space defined by all possible weight values for all the units in the network. 
The situation can be visualized in terms of an error surface similar to that shown 
for linear units in Figure 4.4. The error in that diagram is replaced by our new 
definition of E, and the other dimensions of the space correspond now to all of 
the weights associated with all of the units in the network. As in the case of 
training a single unit, gradient descent can be used to attempt to find a hypothesis 
to minimize E. 



B~c~~~o~~GATIO~(trainingaxamp~es, q,  ni, , no,, , nhidden) 
Each training example is a pair of the form (2, i ), where x' is the vector of network input 
values, and is the vector of target network output values. 
q is the learning rate (e.g., .O5). ni, is the number of network inputs, nhidden the number of 
units in the hidden layer, and no,, the number of output units. 
The inputfiom unit i into unit j is denoted xji, and the weight from unit i to unit j is denoted 
wji. 

a Create a feed-forward network with ni, inputs, m i d d e n  hidden units, and nour output units. 
a Initialize all network weights to small random numbers (e.g., between -.05 and .05). 
r Until the termination condition is met, Do 

a For each (2, i ) in trainingaxamples, Do 

Propagate the input forward through the network: 

1, Input the instance x' to the network and compute the output o, of every unit u in 
the network. 

Propagate the errors backward through the network: 

2. For each network output unit k, calculate its error term Sk 

6k 4- ok(l - ok)(tk - 0 k )  

3. For each hidden unit h,  calculate its error term 6h 

4. Update each network weight wji 

where 
Aw.. - 

Jl - I 11 

TABLE 4.2 
The stochastic gradient descent version of the BACKPROPAGATION algorithm for feedforward networks 
containing two layers of sigmoid units. 

One major difference in the case of multilayer networks is that the error sur- 
face can have multiple local minima, in contrast to the single-minimum parabolic 
error surface shown in Figure 4.4. Unfortunately, this means that gradient descent 
is guaranteed only to converge toward some local minimum, and not necessarily 
the global minimum error. Despite this obstacle, in practice BACKPROPAGATION has 
been found to produce excellent results in many real-world applications. 

The BACKPROPAGATION algorithm is presented in Table 4.2. The algorithm as 
described here applies to layered feedforward networks containing two layers of 
sigmoid units, with units at each layer connected to all units from the preceding 
layer. This is the incremental, or stochastic, gradient descent version of BACK- 
PROPAGATION. The notation used here is the same as that used in earlier sections, 
with the following extensions: 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 99 

An index (e.g., an integer) is assigned to each node in the network,where 
a "node" is either an input to the network or the output of some unit in the 
network. 

0 xji denotes the input from node i to unit j ,  and wji denotes the corresponding 
weight. 

0 6, denotes the error term associated with unit n. It plays a role analogous 
to the quantity ( t  - o )  in our earlier discussion of the delta training rule. As 
we shall see later, 6, = - s. 
Notice the algorithm in Table 4.2 begins by constructing a network with the 

desired number of hidden and output units and initializing all network weights 
to small random values. Given this fixed network structure, the main loop of the 
algorithm then repeatedly iterates over the training examples. For each training 
example, it applies the network to the example, calculates the error of the network 
output for this example, computes the gradient with respect to the error on this 
example, then updates all weights in the network. This gradient descent step is 
iterated (often thousands of times, using the same training examples multiple 
times) until the network performs acceptably well. 

The gradient descent weight-update rule (Equation [T4.5] in Table 4.2) is 
similar to the delta training rule (Equation [4.10]). Like the delta rule, it updates 
each weight in proportion to the learning rate r ] ,  the input value xji to which 
the weight is applied, and the error in the output of the unit. The only differ- 
ence is that the error ( t  - o )  in the delta rule is replaced by a more complex 
error term, aj.  The exact form of aj  follows from the derivation of the weight- 
tuning rule given in Section 4.5.3. To understand it intuitively, first consider 
how ak is computed for each network output unit k (Equation [T4.3] in the al- 
gorithm). ak is simply the familiar (tk - ok) from the delta rule, multiplied by 
the factor ok( l  - ok),  which is the derivative of the sigmoid squashing function. 
The ah value for each hidden unit h has a similar form (Equation [T4.4] in the 
algorithm). However, since training examples provide target values tk only for 
network outputs, no target values are directly available to indicate the error of 
hidden units' values. Instead, the error term for hidden unit h is calculated by 
summing the error terms J k  for each output unit influenced by h,  weighting each 
of the ak's by wkh, the weight from hidden unit h to output unit k. This weight 
characterizes the degree to which hidden unit h is "responsible for" the error in 
output unit k. 

I 

The algorithm in Table 4.2 updates weights incrementally, following the 
I 

Presentation of each training example. This corresponds to a stochastic approxi- 
mation to gradient descent. To obtain the true gradient of E one would sum the 
6, x,, values over all training examples before altering weight values. 

The weight-update loop in BACKPROPAGATION may be iterated thousands of 
times in a typical application. A variety of termination conditions can be used 
to halt the procedure. One may choose to halt after a fixed number of iterations 
through the loop, or once the error on the training examples falls below some 
threshold, or once the error on a separate validation set of examples meets some 



100 MACHINE LEARNING 

criterion. The choice of termination criterion is an important one, because too few 
iterations can fail to reduce error sufficiently, and too many can lead to overfitting 
the training data. This issue is discussed in greater detail in Section 4.6.5. 

4.5.2.1 ADDING MOMENTUM 

Because BACKPROPAGATION is such a widely used algorithm, many variations have 
been developed. Perhaps the most common is to alter the weight-update rule in 
Equation (T4.5) in the algorithm by making the weight update on the nth iteration 
depend partially on the update that occurred during the (n - 1)th iteration, as 
follows: 

Here Awji(n) is the weight update performed during the nth iteration through the 
main loop of the algorithm, and 0 5 a < 1 is a constant called the momentum. 
Notice the first term on the right of this equation is just the weight-update rule of 
Equation (T4.5) in the BACKPROPAGATION algorithm. The second term on the right 
is new and is called the momentum term. To see the effect of this momentum 
term, consider that the gradient descent search trajectory is analogous to that 
of a (momentumless) ball rolling down the error surface. The effect of a! is to 
add momentum that tends to keep the ball rolling in the same direction from 
one iteration to the next. This can sometimes have the effect of keeping the ball 
rolling through small local minima in the error surface, or along flat regions in 
the surface where the ball would stop if there were no momentum. It also has 
the effect of gradually increasing the step size of the search in regions where the 
gradient is unchanging, thereby speeding convergence. 

4.5.2.2 LEARNING IN ARBITRARY ACYCLIC NETWORKS 

The definition of BACKPROPAGATION presented in Table 4.2 applies o h y  to two- 
layer networks. However, the algorithm given there easily generalizes to feedfor- 
ward networks of arbitrary depth. The weight update rule seen in Equation (T4.5) 
is retained, and the only change is to the procedure for computing 6 values. In 
general, the 6, value for a unit r in layer rn is computed from the 6 values at the 
next deeper layer rn + 1 according to 

Notice this is identical to Step 3 in the algorithm of Table 4.2, so all we are really 
saying here is that this step may be repeated for any number of hidden layers in 
the network. 

It is equally straightforward to generalize the algorithm to any directed 
acyclic graph, regardless of whether the network units are arranged in uniform 
layers as we have assumed up to now. In the case that they are not, the rule for 
calculating 6 for any internal unit (i.e., any unit that is not an output) is 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 101 

where Downstream(r) is the set of units immediately downstream from unit r in 
the network: that is, all units whose inputs include the output of unit r. It is this 
gneral form of the weight-update rule that we derive in Section 4.5.3. 

4.5.3 Derivation of the BACKPROPAGATION Rule 

This section presents the derivation of the BACKPROPAGATION weight-tuning rule. 
It may be skipped on a first reading, without loss of continuity. 

The specific problem we address here is deriving the stochastic gradient de- 
scent rule implemented by the algorithm in Table 4.2. Recall from Equation (4 .  l l )  
that stochastic gradient descent involves iterating through the training examples 
one at a time, for each training example d descending the gradient of the error 
Ed with respect to this single example. In other words, for each training example 
d every weight wji is updated by adding to it Awji 

where Ed is the error on training example d, summed over all output units in the 
network 

Here outputs is the set of output units in the network, tk is the target value of unit 
k for training example d, and ok is the output of unit k given training example d. 

The derivation of the stochastic gradient descent rule is conceptually straight- 
forward, but requires keeping track of a number of subscripts and variables. We 
will follow the notation shown in Figure 4.6, adding a subscript j to denote to 
the jth unit of the network as follows: 

xji = the ith input to unit j 

wji  = the weight associated with the ith input to unit j 
netj = xi wjixji (the weighted sum of inputs for unit j )  

oj = the output computed by unit j 
t, = the target output for unit j 
a = the sigmoid function 

outputs = the set of units in the final layer of the network 

Downstream(j) = the set of units whose immediate inputs include the 
output of unit j 

We now derive an expression for 2 in order to implement the stochastic 
gradient descent rule seen in Equation (4:2l) .  To begin, notice that weight wji 
can influence the rest of the network only through netj. Therefore, we can use the 



102 MACHINE LEARNING 

chain rule to write 

Given Equation (4.22), our remaining task is to derive a convenient expression 
for z. We consider two cases in turn: the case where unit j is an output unit 
for the network, and the case where j is an internal unit. 

Case 1:  raini in^ Rule for Output Unit Weights. Just as wji can influence the 
rest of the network only through net,, net, can influence the network only through 
o j .  Therefore, we can invoke the chain rule again to write 

To begin, consider just the first term in Equation (4.23) 

The derivatives &(tk - ok12 will be zero for all output units k except when k = j. 
We therefore drop the summation over output units and simply set k = j. 

Next consider the second term in Equation (4.23). Since oj = a(net j ) ,  the 
derivative $ is just the derivative of the sigmoid function, which we have 
already noted is equal to a(net j ) ( l  - a(net j ) ) .  Therefore, 

Substituting expressions (4.24) and (4.25) into (4.23), we obtain 



and combining this with Equations (4.21) and (4.22), we have the stochastic 
gradient descent rule for output units 

Note this training rule is exactly the weight update rule implemented by Equa- 
tions (T4.3) and (T4.5) in the algorithm of Table 4.2. Furthermore, we can see 
now that Sk in Equation (T4.3) is equal to the quantity -$. In the remainder 
of this section we will use Si  to denote the quantity -% for an arbitrary unit i .  

Case 2: Training Rule for Hidden Unit Weights. In the case where j is an 
internal, or hidden unit in the network, the derivation of the training rule for wji 
must take into account the indirect ways in which wji can influence the network 
outputs and hence Ed. For this reason, we will find it useful to refer to the 
set of all units immediately downstream of unit j in the network (i.e., all units 
whose direct inputs include the output of unit j). We denote this set of units by 
Downstream( j). Notice that netj can influence the network outputs (and therefore 
E d )  only through the units in Downstream(j). Therefore, we can write 

Rearranging terms and using S j  to denote -$, we have 

and 

which is precisely the general rule from Equation (4.20) for updating internal 
unit weights in arbitrary acyclic directed graphs. Notice Equation (T4.4) from 
Table 4.2 is just a special case of this rule, in which Downstream(j) = outputs. 



4.6 REMARKS ON THE BACKPROPAGATION ALGORITHM 

4.6.1 Convergence and Local Minima 

As shown above, the BACKPROPAGATION algorithm implements a gradient descent 
search through the space of possible network weights, iteratively reducing the 
error E between the training example target values and the network outputs. 
Because the error surface for multilayer networks may contain many different 
local minima, gradient descent can become trapped in any of these. As a result, 
BACKPROPAGATION over multilayer networks is only guaranteed to converge toward 
some local minimum in E and not necessarily to the global minimum error. 

Despite the lack of assured convergence to the global minimum error, BACK- 
PROPAGATION is a highly effective function approximation method in practice. In 
many practical applications the problem of local minima has not been found to 
be as severe as one might fear. To develop some intuition here, consider that 
networks with large numbers of weights correspond to error surfaces in very high 
dimensional spaces (one dimension per weight). When gradient descent falls into 
a local minimum with respect to one of these weights, it will not necessarily be 
in a local minimum with respect to the other weights. In fact, the more weights in 
the network, the more dimensions that might provide "escape routes" for gradient 
descent to fall away from the local minimum with respect to this single weight. 

A second perspective on local minima can be gained by considering the 
manner in which network weights evolve as the number of training iterations 
increases. Notice that if network weights are initialized to values near zero, then 
during early gradient descent steps the network will represent a very smooth 
function that is approximately linear in its inputs. This is because the sigmoid 
threshold function itself is approximately linear when the weights are close to 
zero (see the plot of the sigmoid function in Figure 4.6). Only after the weights 
have had time to grow will they reach a point where they can represent highly 
nonlinear network functions. One might expect more local minima to exist in the 
region of the weight space that represents these more complex functions. One 
hopes that by the time the weights reach this point they have already moved 
close enough to the global minimum that even local minima in this region are 
acceptable. 

Despite the above comments, gradient descent over the complex error sur- 
faces represented by ANNs is still poorly understood, and no methods are known to 
predict with certainty when local minima will cause difficulties. Common heuris- 
tics to attempt to alleviate the problem of local minima include: 

Add a momentum term to the weight-update rule as described in Equa- 
tion (4.18). Momentum can sometimes carry the gradient descent procedure 
through narrow local minima (though in principle it can also carry it through 
narrow global minima into other local minima!). 
Use stochastic gradient descent rather than true gradient descent. As dis- 
cussed in Section 4.4.3.3, the stochastic approximation to gradient descent 
effectively descends a different error surface for each training example, re- 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 105 

lying on the average of these to approximate the gradient with respect to the 
full training set. These different error surfaces typically will have different 
local minima, making it less likely that the process will get stuck in any one 
of them. 

0 Train multiple networks using the same data, but initializing each network 
with different random weights. If the different training efforts lead to dif- 
ferent local minima, then the network with the best performance over a 
separate validation data set can be selected. Alternatively, all networks can 
be retained and treated as a "committee" of networks whose output is the 
(possibly weighted) average of the individual network outputs. 

4.6.2 Representational Power of Feedforward Networks 

What set of functions can be represented by feedfonvard networks? Of course 
the answer depends on the width and depth of the networks. Although much is 
still unknown about which function classes can be described by which types of 
networks, three quite general results are known: 

Boolean functions. Every boolean function can be represented exactly by 
some network with two layers of units, although the number of hidden units 
required grows exponentially in the worst case with the number of network 
inputs. To see how this can be done, consider the following general scheme 
for representing an arbitrary boolean function: For each possible input vector, 
create a distinct hidden unit and set its weights so that it activates if and only 
if this specific vector is input to the network. This produces a hidden layer 
that will always have exactly one unit active. Now implement the output 
unit as an OR gate that activates just for the desired input patterns. 

0 Continuous functions. Every bounded continuous function can be approxi- 
mated with arbitrarily small error (under a finite norm) by a network with 
two layers of units (Cybenko 1989; Hornik et al. 1989). The theorem in 
this case applies to networks that use sigmoid units at the hidden layer and 
(unthresholded) linear units at the output layer. The number of hidden units 
required depends on the function to be approximated. 
Arbitraryfunctions. Any function can be approximated to arbitrary accuracy 
by a network with three layers of units (Cybenko 1988). Again, the output 
layer uses linear units, the two hidden layers use sigmoid units, and the 
number of units required at each layer is not known in general. The proof 
of this involves showing that any function can be approximated by a lin- 
ear combination of many localized functions that have value 0 everywhere 
except for some small region, and then showing that two layers of sigmoid 
units are sufficient to produce good local approximations. 

These results show that limited depth feedfonvard networks provide a very 
expressive hypothesis space for BACKPROPAGATION. However, it is important to 



keep in mind that the network weight vectors reachable by gradient descent from 
the initial weight values may not include all possible weight vectors. Hertz et al. 
(1991) provide a more detailed discussion of the above results. 

4.6.3 Hypothesis Space Search and Inductive Bias 

It is interesting to compare the hypothesis space search of BACKPROPAGATION to 
the search performed by other learning algorithms. For BACKPROPAGATION, every 
possible assignment of network weights represents a syntactically distinct hy- 
pothesis that in principle can be considered by the learner. In other words, the 
hypothesis space is the n-dimensional Euclidean space of the n network weights. 
Notice this hypothesis space is continuous, in contrast to the hypothesis spaces 
of decision tree learning and other methods based on discrete representations. 
The fact that it is continuous, together with the fact that E is differentiable with 
respect to the continuous parameters of the hypothesis, results in a well-defined 
error gradient that provides a very useful structure for organizing the search for 
the best hypothesis. This structure is quite different from the general-to-specific 
ordering used to organize the search for symbolic concept learning algorithms, 
or the simple-to-complex ordering over decision trees used by the ID3 and C4.5 
algorithms. 

What is the inductive bias by which BACKPROPAGATION generalizes beyond 
the observed data? It is difficult to characterize precisely the inductive bias of 
BACKPROPAGATION learning, because it depends on the interplay between the gra- 
dient descent search and the way in which the weight space spans the space of 
representable functions. However, one can roughly characterize it as smooth in- 
terpolation between data points. Given two positive training examples with no 
negative examples between them, BACKPROPAGATION will tend to label points in 
between as positive examples as well. This can be seen, for example, in the de- 
cision surface illustrated in Figure 4.5, in which the specific sample of training 
examples gives rise to smoothly varying decision regions. 

4.6.4 Hidden Layer Representations 

One intriguing property of BACKPROPAGATION is its ability to discover useful in- 
termediate representations at the hidden unit layers inside the network. Because 
training examples constrain only the network inputs and outputs, the weight-tuning 
procedure is free to set weights that define whatever hidden unit representation is 
most effective at minimizing the squared error E. This can lead BACKPROPAGATION 
to define new hidden layer features that are not explicit in the input representa- 
tion, but which capture properties of the input instances that are most relevant to 
learning the target function. 

Consider, for example, the network shown in Figure 4.7. Here, the eight 
network inputs are connected to three hidden units, which are in turn connected 
to the eight output units. Because of this structure, the three hidden units will 
be forced to re-represent the eight input values in some way that captures their 



Inputs Outputs Input 

10000000 
0 1000000 
00 100000 
00010000 
00001000 
00000 100 
ooOOOo 10 
0000000 1 

Hidden 
Values 

.89 .04 .08 + 

.15 .99 .99 + 

.01 .97 .27 + 

.99 .97 .71 + 

.03 .05 .02 + 

.01 .ll .88 + 

.80 .01 .98 + 

.60 .94 .01 + 

output 

10000000 
0 1000000 
00 100000 
000 10000 
0000 1000 
00000 100 
000000 10 
0000000 1 

FIGURE 4.7 
Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity 
function, using the eight training examples shown. After 5000 training epochs, the three hidden unit 
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded 
values are rounded to zero or one, the result is the standard binary encoding for eight distinct values. 

relevant features, so that this hidden layer representation can be used by the output 
units to compute the correct target values. 

Consider training the network shown in Figure 4.7 to learn the simple target 
function f (2) = 2, where 2 is a vector containing seven 0's and a single 1. The 
network must learn to reproduce the eight inputs at the corresponding eight output 
units. Although this is a simple function, the network in this case is constrained 
to use only three hidden units. Therefore, the essential information from all eight 
input units must be captured by the three learned hidden units. 

When BACKPROPAGATION is applied to this task, using each of the eight pos- 
sible vectors as training examples, it successfully learns the target function. What 
hidden layer representation is created by the gradient descent BACKPROPAGATION 
algorithm? By examining the hidden unit values generated by the learned network 
for each of the eight possible input vectors, it is easy to see that the learned en- 
coding is similar to the familiar standard binary encoding of eight values using 
three bits (e.g., 000,001,010,. . . , 111). The exact values of the hidden units for 
one typical run of BACKPROPAGATION are shown in Figure 4.7. 

This ability of multilayer networks to automatically discover useful repre- 
sentations at the hidden layers is a key feature of ANN learning. In contrast to 
learning methods that are constrained to use only predefined features provided by 
the human designer, this provides an important degree of flexibility that allows 
the learner to invent features not explicitly introduced by the human designer. Of 
course these invented features must still be computable as sigmoid unit functions 
of the provided network inputs. Note when more layers of units are used in the 
network, more complex features can be invented. Another example of hidden layer 
features is provided in the face recognition application discussed in Section 4.7. 

In order to develop a better intuition for the operation of BACKPROPAGATION 
in this example, let us examine the operation of the gradient descent procedure in 



greater detailt. The network in Figure 4.7 was trained using the algorithm shown 
in Table 4.2, with initial weights set to random values in the interval (-0.1,0.1), 
learning rate q = 0.3, and no weight momentum (i.e., a! = 0). Similar results 
were obtained by using other learning rates and by including nonzero momentum. 
The hidden unit encoding shown in Figure 4.7 was obtained after 5000 training 
iterations through the outer loop of the algorithm (i.e., 5000 iterations through each 
of the eight training examples). Most of the interesting weight changes occurred, 
however, during the first 2500 iterations. 

We can directly observe the effect of BACKPROPAGATION'S gradient descent 
search by plotting the squared output error as a function of the number of gradient 
descent search steps. This is shown in the top plot of Figure 4.8. Each line in 
this plot shows the squared output error summed over all training examples, for 
one of the eight network outputs. The horizontal axis indicates the number of 
iterations through the outermost loop of the BACKPROPAGATION algorithm. As this 
plot indicates, the sum of squared errors for each output decreases as the gradient 
descent procedure proceeds, more quickly for some output units and less quickly 
for others. 

The evolution of the hidden layer representation can be seen in the second 
plot of Figure 4.8. This plot shows the three hidden unit values computed by the 
learned network for one of the possible inputs (in particular, 01000000). Again, the 
horizontal axis indicates the number of training iterations. As this plot indicates, 
the network passes through a number of different encodings before converging to 
the final encoding given in Figure 4.7. 

Finally, the evolution of individual weights within the network is illustrated 
in the third plot of Figure 4.8. This plot displays the evolution of weights con- 
necting the eight input units (and the constant 1 bias input) to one of the three 
hidden units. Notice that significant changes in the weight values for this hidden 
unit coincide with significant changes in the hidden layer encoding and output 
squared errors. The weight that converges to a value near zero in this case is the 
bias weight wo. 

4.6.5 Generalization, Overfitting, and Stopping Criterion 

In the description of t'le BACKPROPAGATION algorithm in Table 4.2, the termination 
condition for the algcrithm has been left unspecified. What is an appropriate con- 
dition for terrninatinp the weight update loop? One obvious choice is to continue 
training until the errcr E on the training examples falls below some predetermined 
threshold. In fact, this is a poor strategy because BACKPROPAGATION is suscepti- 
ble to overfitting the training examples at the cost of decreasing generalization 
accuracy over other unseen examples. 

To see the dangers of minimizing the error over the training data, consider 
how the error E varies with the number of weight iterations. Figure 4.9 shows 

t ~ h e  source code to reproduce this example is available at http://www.cs.cmu.edu/-tom/mlbook.hhnl. 



Sum of squared errors for each output unit 

Hidden unit encoding for input 01000000 

FIGURE 4.8 
Learning the 8 x 3 x 8 Network. The top plot shows the evolving sum of squared errors for each of 
the eight output units, as the number of training iterations (epochs) increases. The middle plot shows 
the evolving hidden layer representation for the input string "01000000." The bottom plot shows the 
evolving weights for one of the three hidden units. 

Weights from inputs to one hidden unit 
4 

3 

2 

1 

-1 

-2 

I .................. ...:........... ......... .:siii..... ziiii 

.. ..................... ...... .... ....-- --- . .  ...---- 
....---.-- .... - _.. __-. .->-.------ 

/-,-.<-- 

........... ,*' ,.. ... - , . 
... .>, 

... ,'... ... ,,,.- -.. 
................................................ .. ....;, - ..< , . , 

,I' ,I ./;. /- ,/' &:>::.--= <, " -I-- ... '.,.. ....... - . ... .. '.. 
. .:. 

- , - -. -- . - - - - - . . _ .., . . . _ . . _ . . 
. . . .  . . . . . . . . . . . . . . . . . . . . .  - 

.-.. ......."... ..... - _  
.._ -_ . -. 

-- _ _ _ _ _ _ _ ...... ......................................... 1 



110 MACHINE LEARNING 

Error versus weight updates (example 1) 

Validation set error 
0.008 

0.007 

0 5000 loo00 15000 20000 
Number of weight updates 

0 lo00 2000 3000 4000 5000 6000 
Number of weight updates 

Error versus weight updates (example 2) 

0.08 %** I r 8 

FIGURE 4.9 
Plots of error E as a function of the number of weight updates, for two different robot perception 
tasks. In both learning cases, error E over the training examples decreases monotonically, as gradient 
descent minimizes this measure of error. Error over the separate "validation" set of examples typically 
decreases at first, then may later increase due to overfitting the training examples. The network most 
IikeIy to generalize correctly to unseen data is the network with the lowest error over the validation 
set. Notice in the second plot, one must be careful to not stop training too soon when the validation 
set error begins to increase. 

0.07 

0.06 

this variation for two fairly typical applications of BACKPROPAGATION. Consider 
first the top plot in this figure. The lower of the two lines shows the monotoni- 
cally decreasing error E over the training set, as the number of gradient descent 
iterations grows. The upper line shows the error E measured over a different vali- 
dation set of examples, distinct from the training examples. This line measures the 
generalization accuracy of the network-the accuracy with which it fits examples 
beyond the training data. 

- Training set error * - 
Validation set error + y+:L 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 111 

Notice the generalization accuracy measured over the validation examples 
first decreases, then increases, even as the error over the training examples contin- 
ues to decrease. How can this occur? This occurs because the weights are being 
tuned to fit idiosyncrasies of the training examples that are not representative of 
the general distribution of examples. The large number of weight parameters in 
ANNs provides many degrees of freedom for fitting such idiosyncrasies. 

Why does overfitting tend to occur during later iterations, but not during ear- 
lier iterations? Consider that network weights are initialized to small random val- 
ues. With weights of nearly identical value, only very smooth decision surfaces are 
describable. As training proceeds, some weights begin to grow in order to reduce 
the error over the training data, and the complexity of the learned decision surface 
increases. Thus, the effective complexity of the hypotheses that can be reached by 
BACKPROPAGATION increases with the number of weight-tuning iterations. Given 
enough weight-tuning iterations, BACKPROPAGATION will often be able to create 
overly complex decision surfaces that fit noise in the training data or unrepresen- 
tative characteristics of the particular training sample. This overfitting problem is 
analogous to the overfitting problem in decision tree learning (see Chapter 3). 

Several techniques are available to address the overfitting problem for BACK- 
PROPAGATION learning. One approach, known as weight decay, is to decrease each 
weight by some small factor during each iteration. This is equivalent to modifying 
the definition of E to include a penalty term corresponding to the total magnitude 
of the network weights. The motivation for this approach is to keep weight values 
small, to bias learning against complex decision surfaces. 

One of the most successful methods for overcoming the overfitting problem 
is to simply provide a set of validation data to the algorithm in addition to the 
training data. The algorithm monitors the error with respect to this validation set, 
while using the training set to drive the gradient descent search. In essence, this 
allows the algorithm itself to plot the two curves shown in Figure 4.9. How many 
weight-tuning iterations should the algorithm perform? Clearly, it should use the 
number of iterations that produces the lowest error over the validation set, since 
this is the best indicator of network performance over unseen examples. In typical 
implementations of this approach, two copies of the network weights are kept: 
one copy for training and a separate copy of the best-performing weights thus far, 
measured by their error over the validation set. Once the trained weights reach a 
significantly higher error over the validation set than the stored weights, training 
is terminated and the stored weights are returned as the final hypothesis. When 
this procedure is applied in the case of the top plot of Figure 4.9, it outputs the 
network weights obtained after 9100 iterations. The second plot in Figure 4.9 
shows that it is not always obvious when the lowest error on the validation set 
has been reached. In this plot, the validation set error decreases, then increases, 
then decreases again. Care must be taken to avoid the mistaken conclusion that 
the network has reached its lowest validation set error at iteration 850. 

In general, the issue of overfitting and how to overcome it is a subtle one. 
The above cross-validation approach works best when extra data are available to 
provide a validation set. Unfortunately, however, the problem of overfitting is most 



112 MACHINE LEARNWG 
I 

severe for small training sets. In these cases, a k-fold cross-validation approach 
is sometimes used, in which cross validation is performed k different times, each 
time using a different partitioning of the data into training and validation sets, 
and the results are then averaged. In one version of this approach, the m available 
examples are partitioned into k disjoint subsets, each of size m/k. The cross- 
validation procedure is then run k times, each time using a different one of these 
subsets as the validation set and combining the other subsets for the training set. 
Thus, each example is used in the validation set for one of the experiments and 
in the training set for the other k - 1 experiments. On each experiment the above 
cross-validation approach is used to determine the number of iterations i that yield 
the best performance on the validation set. The mean i of these estimates for i 
is then calculated, and a final run of BACKPROPAGATION is performed training on 
all n examples for i iterations, with no validation set. This procedure is closely 
related to the procedure for comparing two learning methods based on limited 
data, described in Chapter 5. 

4.7 AN ILLUSTRATIVE EXAMPLE: FACE RECOGNITION 

To illustrate some of the practical design choices involved in applying BACKPROPA- 
GATION, this section discusses applying it to a learning task involving face recogni- 
tion. All image data and code used to produce the examples described in this sec- 
tion are available at World Wide Web site http://www.cs.cmu.edu/-tomlmlbook. 
html, along with complete documentation on how to use the code. Why not try it 
yourself? 

4.7.1 The Task 

The learning task here involves classifying camera images of faces of various 
people in various poses. Images of 20 different people were collected, including 
approximately 32 images per person, varying the person's expression (happy, sad, 
angry, neutral), the direction in which they were looking (left, right, straight ahead, 
up), and whether or not they were wearing sunglasses. As can be seen from the 
example images in Figure 4.10, there is also variation in the background behind 
the person, the clothing worn by the person, and the position of the person's 
face within the image. In total, 624 greyscale images were collected, each with a 
resolution of 120 x 128, with each image pixel described by a greyscale intensity 
value between 0 (black) and 255 (white). 

A variety of target functions can be learned from this image data. For ex- 
ample, given an image as input we could train an ANN to output the identity of 
the person, the direction in which the person is facing, the gender of the person, 
whether or not they are wearing sunglasses, etc. All of these target functions can 
be learned to high accuracy from this image data, and the reader is encouraged 
to try out these experiments. In the remainder of this section we consider one 
particular task: learning the direction in which the person is facing (to their left, 
right, straight ahead, or upward). I 



30 x 32 resolution input images 

left straight right 
L 

Network weights after 1 iteration through each training example 

left 

Network weights after 100 iterations through each training example 

FIGURE 4.10 
Learning an artificial neural network to recognize face pose. Here a 960 x 3 x 4 network is trained 
on grey-level images of faces (see top), to predict whether a person is looking to their left, right, 
ahead, or up. After training on 260 such images, the network achieves an accuracy of 90% over a 
separate test set. The learned network weights are shown after one weight-tuning iteration through 
the training examples and after 100 iterations. Each output unit (left, straight, right, up) has four 
weights, shown by dark (negative) and light (positive) blocks. The leftmost block corresponds to 
the weight wg, which determines the unit threshold, and the three blocks to the right correspond to 
weights on inputs from the three hidden units. The weights from the image pixels into each hidden 
unit are also shown, with each weight plotted in the position of the corresponding image pixel. 

4.7.2 Design Choices 

In applying BACKPROPAGATION to any given task, a number of design choices 
must be made. We summarize these choices below for our task of learning the 
direction in which a person is facing. Although no attempt was made to determine 
the precise optimal design choices for this task, the design described here learns 



the target function quite well. After training on a set of 260 images, classification 
accuracy over a separate test set is 90%. In contrast, the default accuracy achieved 
by randomly guessing one of the four possible face directions is 25%. 

Input encoding. Given that the ANN input is to be some representation of the 
image, one key design choice is how to encode this image. For example, we could 
preprocess the image to extract edges, regions of uniform intensity, or other local 
image features, then input these features to the network. One difficulty with this 
design option is that it would lead to a variable number of features (e.g., edges) 
per image, whereas the ANN has a fixed number of input units. The design option 
chosen in this case was instead to encode the image as a fixed set of 30 x 32 pixel 
intensity values, with one network input per pixel. The pixel intensity values 
ranging from 0 to 255 were linearly scaled to range from 0 to 1 so that network 
inputs would have values in the same interval as the hidden unit and output unit 
activations. The 30 x 32 pixel image is, in fact, a coarse resolution summary of 
the original 120 x 128 captured image, with each coarse pixel intensity calculated 
as the mean of the corresponding high-resolution pixel intensities. Using this 
coarse-resolution image reduces the number of inputs and network weights to 
a much more manageable size, thereby reducing computational demands, while 
maintaining sufficient resolution to correctly classify the images. Recall from 
Figure 4.1 that the ALVINN system uses a similar coarse-resolution image as 
input to the network. One interesting difference is that in ALVINN, each coarse 
resolution pixel intensity is obtained by selecting the intensity of a single pixel at 
random from the appropriate region within the high-resolution image, rather than 
taking the mean of all pixel intensities within this region. The motivation for this 
ic ALVINN is that it significantly reduces the computation required to produce the 
coarse-resolution image from the available high-resolution image. This efficiency 
is especially important when the network must be used to process many images 
per second while autonomously driving the vehicle. 

Output encoding. The ANN must output one of four values indicating the di- 
rection in which the person is looking (left, right, up, or straight). Note we could 
encode this four-way classification using a single output unit, assigning outputs 
of, say, 0.2,0.4,0.6, and 0.8 to encode these four possible values. Instead, we 
use four distinct output units, each representing one of the four possible face di- 
rections, with the highest-valued output taken as the network prediction. This is 
often called a 1 -0f-n output encoding. There are two motivations for choosing the 
1-of-n output encoding over the single unit option. First, it provides more degrees 
of freedom to the network for representing the target function (i.e., there are n 
times as many weights available in the output layer of units). Second, in the 1-of-n 
encoding the difference between the highest-valued output and the second-highest 
can be used as a measure of the confidence in the network prediction (ambiguous 
classifications may result in near or exact ties). A further design choice here is 
"what should be the target values for these four output units?' One obvious choice 
would be to use the four target values (1,0,0,O) to encode a face looking to the 



left, (0,1,0,O) to encode a face looking straight, etc. Instead of 0 and 1 values, 
we use values of 0.1 and 0.9, so that (0.9,O. 1,0.1,0.1) is the target output vector 
for a face looking to the left. The reason for avoiding target values of 0 and 1 
is that sigmoid units cannot produce these output values given finite weights. If 
we attempt to train the network to fit target values of exactly 0 and 1, gradient 
descent will force the weights to grow without bound. On the other hand, values 
of 0.1 and 0.9 are achievable using a sigmoid unit with finite weights. 

Network graph structure. As described earlier, BACKPROPAGATION can be ap- 
plied to any acyclic directed graph of sigmoid units. Therefore, another design 
choice we face is how many units to include in the network and how to inter- 
connect them. The most common network structure is a layered network with 
feedforward connections from every unit in one layer to every unit in the next. 
In the current design we chose this standard structure, using two layers of sig- 
moid units (one hidden layer and one output layer). It is common to use one or 
two layers of sigmoid units and, occasionally, three layers. It is not common to 
use more layers than this because training times become very long and because 
networks with three layers of sigmoid units can already express a rich variety of 
target functions (see Section 4.6.2). Given our choice of a layered feedforward 
network with one hidden layer, how many hidden units should we include? In the 
results reported in Figure 4.10, only three hidden units were used, yielding a test 
set accuracy of 90%. In other experiments 30 hidden units were used, yielding a 
test set accuracy one to two percent higher. Although the generalization accuracy 
varied only a small amount between these two experiments, the second experiment 
required significantly more training time. Using 260 training images, the training 
time was approximately 1 hour on a Sun Sparc5 workstation for the 30 hidden unit 
network, compared to approximately 5 minutes for the 3 hidden unit network. In 
many applications it has been found that some minimum number of hidden units 
is required in order to learn the target function accurately and that extra hidden 
units above this number do not dramatically affect generalization accuracy, pro- 
vided cross-validation methods are used to determine how many gradient descent 
iterations should be performed. If such methods are not used, then increasing the 
number of hidden units often increases the tendency to overfit the training data, 
thereby reducing generalization accuracy. 

Other learning algorithm parameters. In these learning experiments the learn- 
ing rate r]  was set to 0.3, and the momentum a! was set to 0.3. Lower values for both 
parameters produced roughly equivalent generalization accuracy, but longer train- 
ing times. If these values are set too high, training fails to converge to a network 
with acceptable error over the training set. Full gradient descent was used in all 
these experiments (in contrast to the stochastic approximation to gradient descent 
in the algorithm of Table 4.2). Network weights in the output units were initial- 
ized to small random values. However, input unit weights were initialized to zero, 
because this yields much more intelligible visualizations of the learned weights 
(see Figure 4.10), without any noticeable impact on generalization accuracy. The 



number of training iterations was selected by partitioning the available data into 
a training set and a separate validation set. Gradient descent was used to min- 
imize the error over the training set, and after every 50 gradient descent steps 
the performance of the network was evaluated over the validation set. The final 
selected network was the one with the highest accuracy over the validation set. 
See Section 4.6.5 for an explanation and justification of this procedure. The final 
reported accuracy (e-g., 90% for the network in Figure 4.10) was measured over 
yet a third set of test examples that were not used in any way to influence training. 

4.7.3 Learned Hidden Representations 

It is interesting to examine the learned weight values for the 2899 weights in the 
network. Figure 4.10 depicts the values of each of these weights after one iteration 
through the weight update for all training examples, and again after 100 iterations. 

To understand this diagram, consider first the four rectangular blocks just 
below the face images in the figure. Each of these rectangles depicts the weights 
for one of the four output units in the network (encoding left, straight, right, and 
up). The four squares within each rectangle indicate the four weights associated 
with this output unit-the weight wo, which determines the unit threshold (on 
the left), followed by the three weights connecting the three hidden units to this 
output. The brightness of the square indicates the weight value, with bright white 
indicating a large positive weight, dark black indicating a large negative weight, 
and intermediate shades of grey indicating intermediate weight values. For ex- 
ample, the output unit labeled "up" has a near zero wo threshold weight, a large 
positive weight from the first hidden unit, and a large negative weight from the 
second hidden unit. 

The weights of the hidden units are shown directly below those for the output 
units. Recall that each hidden unit receives an input from each of the 30 x 32 
image pixels. The 30 x 32 weights associated with these inputs are displayed so 
that each weight is in the position of the corresponding image pixel (with the wo 
threshold weight superimposed in the top left of the array). Interestingly, one can 
see that the weights have taken on values that are especially sensitive to features 
in the region of the image in which the face and body typically appear. 

The values of the network weights after 100 gradient descent iterations 
through each training example are shown at the bottom of the figure. Notice the 
leftmost hidden unit has very different weights than it had after the first iteration, 
and the other two hidden units have changed as well. It is possible to understand 
to some degree the encoding in this final set of weights. For example, consider the 
output unit that indicates a person is looking to his right. This unit has a strong 
positive weight from the second hidden unit and a strong negative weight from 
the third hidden unit. Examining the weights of these two hidden units, it is easy 
to see that if the person's face is turned to his right (i.e., our left), then his bright 
skin will roughly align with strong positive weights in this hidden unit, and his 
dark hair will roughly align with negative weights, resulting in this unit outputting 
a large value. The same image will cause the third hidden unit to output a value 



close to zero, as the bright face will tend to align with the large negative weights 
in this case. 

4.8 ADVANCED TOPICS IN ARTIFICIAL NEURAL NETWORKS 

4.8.1 Alternative Error Functions 

As noted earlier, gradient descent can be performed for any function E that is 
differentiable with respect to the parameterized hypothesis space. While the basic 
BAcWROPAGATION algorithm defines E in terms of the sum of squared errors 
of the network, other definitions have been suggested in order to incorporate 
other constraints into the weight-tuning rule. For each new definition of E a new 
weight-tuning rule for gradient descent must be derived. Examples of alternative 
definitions of E include 

a Adding a penalty term for weight magnitude. As discussed above, we can 
add a term to E that increases with the magnitude of the weight vector. 
This causes the gradient descent search to seek weight vectors with small 
magnitudes, thereby reducing the risk of overfitting. One way to do this is 
to redefine E as 

which yields a weight update rule identical to the BACKPROPAGATION rule, 
except that each weight is multiplied by the constant (1 - 2yq)  upon each 
iteration. Thus, choosing this definition of E is equivalent to using a weight 
decay strategy (see Exercise 4.10.) 

a Adding a term for errors in the slope, or derivative of the target func- 
tion. In some cases, training information may be available regarding desired 
derivatives of the target function, as well as desired values. For example, 
Simard et al. (1992) describe an application to character recognition in which 
certain training derivatives are used to constrain the network to learn char- 
acter recognition functions that are invariant of translation within the im- 
age. Mitchell and Thrun (1993) describe methods for calculating training 
derivatives based on the learner's prior knowledge. In both of these sys- 
tems (described in Chapter 12), the error function is modified to add a term 
measuring the discrepancy between these training derivatives and the actual 
derivatives of the learned network. One example of such an error function is 

Here x: denotes the value of the jth input unit for training example d. 
Thus, 2 is the training derivative describing how the target output value 



118 MACHINE LEARNING 

tkd should vary with a change in the input xi. Similarly, 9 denotes the 
ax, 

corresponding derivative of the actual learned network. The constant ,u de- 
termines the relative weight placed on fitting the training values versus the 
training derivatives. 

0 Minimizing the cross entropy of the network with respect to the target values. 
Consider learning a probabilistic function, such as predicting whether a loan 
applicant will pay back a loan based on attributes such as the applicant's age 
and bank balance. Although the training examples exhibit only boolean target 
values (either a 1 or 0, depending on whether this applicant paid back the 
loan), the underlying target function might be best modeled by outputting the 
probability that the given applicant will repay the loan, rather than attempting 
to output the actual 1 and 0 value for each input instance. Given such 
situations in which we wish for the network to output probability estimates, 
it can be shown that the best (i.e., maximum likelihood) probability estimates 
are given by the network that minimizes the cross entropy, defined as 

Here od is the probability estimate output by the network for training ex- 
ample d, and td is the 1 or 0 target value for training example d. Chapter 6 
discusses when and why the most probable network hypothesis is the one 
that minimizes this cross entropy and derives the corresponding gradient 
descent weight-tuning rule for sigmoid units. That chapter also describes 
other conditions under which the most probable hypothesis is the one that 
minimizes the sum of squared errors. 

0 Altering the effective error function can also be accomplished by weight 
sharing, or "tying together" weights associated with different units or inputs. 
The idea here is that different network weights are forced to take on identical 
values, usually to enforce some constraint known in advance to the human 
designer. For example, Waibel et al. (1989) and Lang et al. (1990) describe 
an application of neural networks to speech recognition, in which the net- 
work inputs are the speech frequency components at different times within a 
144 millisecond time window. One assumption that can be made in this ap- 
plication is that the frequency components that identify a specific sound (e.g., 
"eee") should be independent of the exact time that the sound occurs within 
the 144 millisecond window. To enforce this constraint, the various units that 
receive input from different portions of the time window are forced to share 
weights. The net effect is to constrain the space of potential hypotheses, 
thereby reducing the risk of overfitting and improving the chances for accu- 
rately generalizing to unseen situations. Such weight sharing is typically im- 
plemented by first updating each of the shared weights separately within each 
unit that uses the weight, then replacing each instance of the shared weight by 
the mean of their values. The result of this procedure is that shared weights 
effectively adapt to a different error function than do the unshared weights. 



4.8.2 Alternative Error Minimization Procedures 

While gradient descent is one of the most general search methods for finding a 
hypothesis to minimize the error function, it is not always the most efficient. It 
is not uncommon for BACKPROPAGATION to require tens of thousands of iterations 
through the weight update loop when training complex networks. For this reason, 
a number of alternative weight optimization algorithms have been proposed and 
explored. To see some of the other possibilities, it is helpful to think of a weight- 
update method as involving two decisions: choosing a direction in which to alter 
the current weight vector and choosing a distance to move. In BACKPROPAGATION, 
the direction is chosen by taking the negative of the gradient, and the distance is 
determined by the learning rate constant q. 

One optimization method, known as line search, involves a different ap- 
proach to choosing the distance for the weight update. In particular, once a line is 
chosen that specifies the direction of the update, the update distance is chosen by 
finding the minimum of the error function along this line. Notice this can result 
in a very large or very small weight update, depending on the position of the 
point along the line that minimizes error. A second method, that builds on the 
idea of line search, is called the conjugate gradient method. Here, a sequence of 
line searshes is performed to search for a minimum in the error surface. On the 
first step in this sequence, the direction chosen is the negative of the gradient. 
On each subsequent step, a new direction is chosen so that the component of the 
error gradient that has just been made zero, remains zero. 

While alternative error-minimization methods sometimes lead to improved 
efficiency in training the network, methods such as conjugate gradient tend to 
have no significant impact on the generalization error of the final network. The 
only likely impact on the final error is that different error-minimization procedures 
may fall into different local minima. Bishop (1996) contains a general discussion 
of several parameter optimization methods for training networks. 

4.8.3 Recurrent Networks 

Up to this point we have considered only network topologies that correspond 
to acyclic directed graphs. Recurrent networks are artificial neural networks that 
apply to time series data and that use outputs of network units at time t as the 
input to other units at time t + 1 .  In this way, they support a form of directed 
cycles in the network. To illustrate, consider the time series prediction task of 
predicting the next day's stock market average y(t + 1 )  based on the current day's 
economic indicators x(t) .  Given a time series of such data, one obvious approach 
is to train a feedforward network to predict y(t + 1 )  as its output, based on the 
input values x(t) .  Such a network is shown in Figure 4.11(a). 

One limitation of such a network is that the prediction of y(t + 1 )  depends 
only on x( t )  and cannot capture possible dependencies of y ( t  + 1 )  on earlier values 
of x. This might be necessary, for example, if tomorrow's stock market average 
~ ( t  + 1 )  depends on the difference between today's economic indicator values 
x ( t )  and yesterday's values x(t - 1 ) .  Of course we could remedy this difficulty 



I 120 MACHINE LEARNING 

(4 Feedforward network (b) Recurrent network 

x(t - 2) c(t - 2) 
( d  Recurrent network 

unfolded in time 

FIGURE 4.11 
Recurrent networks. 

by making both x(t) and x(t - 1) inputs to the feedforward network. However, 
if we wish the network to consider an arbitrary window of time in the past when 
predicting y(t + l), then a different solution is required. The recurrent network 
shown in Figure 4.1 1(b) provides one such solution. Here, we have added a new 
unit b to the hidden layer, and new input unit c(t). The value of c(t) is defined 
as the value of unit b at time t - 1; that is, the input value c(t) to the network at 
one time step is simply copied from the value of unit b on the previous time step. 
Notice this implements a recurrence relation, in which b represents information 
about the history of network inputs. Because b depends on both x(t) and on c(t), 
it is possible for b to summarize information from earlier values of x that are 
arbitrarily distant in time. Many other network topologies also can be used to 



CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 121 

represent recurrence relations. For example, we could have inserted several layers 
of units between the input and unit b, and we could have added several context 

in parallel where we added the single units b and c. 
How can such recurrent networks be trained? There are several variants of 

recurrent networks, and several training methods have been proposed (see, for 
example, Jordan 1986; Elman 1990; Mozer 1995; Williams and Zipser 1995). 
Interestingly, recurrent networks such as the one shown in Figure 4.1 1(b) can be 
trained using a simple variant of BACKPROPAGATION. TO understand how, consider 
Figure 4.11(c), which shows the data flow of the recurrent network "unfolded 
in time. Here we have made several copies of the recurrent network, replacing 
the feedback loop by connections between the various copies. Notice that this 
large unfolded network contains no cycles. Therefore, the weights in the unfolded 
network can be trained directly using BACKPROPAGATION. Of course in practice 
we wish to keep only one copy of the recurrent network and one set of weights. 
Therefore, after training the unfolded network, the final weight wji in the recurrent 
network can be taken to be the mean value of the corresponding wji weights in 
the various copies. Mozer (1995) describes this training process in greater detail. 
In practice, recurrent networks are more difficult to train than networks with no 
feedback loops and do not generalize as reliably. However, they remain important 
due to their increased representational power. 

4.8.4 Dynamically Modifying Network Structure 

Up to this point we have considered neural network learning as a problem of 
adjusting weights within a fixed graph structure. A variety of methods have been 
proposed to dynamically grow or shrink the number of network units and intercon- 
nections in an attempt to improve generalization accuracy and training efficiency. 

One idea is to begin with a network containing no hidden units, then grow 
the network as needed by adding hidden units until the training error is reduced 
to some acceptable level. The CASCADE-CORRELATION algorithm (Fahlman and 
Lebiere 1990) is one such algorithm. CASCADE-CORRELATION begins by construct- 
ing a network with no hidden units. In the case of our face-direction learning task, 
for example, it would construct a network containing only the four output units 
completely connected to the 30 x 32 input nodes. After this network is trained for 
some time, we may well find that there remains a significant residual error due 
to the fact that the target function cannot be perfectly represented by a network 
with this single-layer structure. In this case, the algorithm adds a hidden unit, 
choosing its weight values to maximize the correlation between the hidden unit 
value and the residual error of the overall network. The new unit is now installed 
into the network, with its weight values held fixed, and a new connection from 
this new unit is added to each output unit. The process is now repeated. The 
original weights are retrained (holding the hidden unit weights fixed), the residual 
error is checked, and a second hidden unit added if the residual error is still above 
threshold. Whenever a new hidden unit is added, its inputs include all of the orig- 
inal network inputs plus the outputs of any existing hidden units. The network is 



122 MACHINE LEARNING 

grown in this fashion, accumulating hidden units until the network residual enor 
is reduced to some acceptable level. Fahlman and Lebiere (1990) report cases in 
which CASCADE-CORRELATION significantly reduces training times, due to the fact 
that only a single layer of units is trained at each step. One practical difficulty 
is that because the algorithm can add units indefinitely, it is quite easy for it to 
overfit the training data, and precautions to avoid overfitting must be taken. 

A second idea for dynamically altering network structure is to take the 
opposite approach. Instead of beginning with the simplest possible network and 
adding complexity, we begin with a complex network and prune it as we find that 
certain connections are inessential. One way to decide whether a particular weight 
is inessential is to see whether its value is close to zero. A second way, which 
appears to be more successful in practice, is to consider the effect that a small 
variation in the weight has on the error E. The effect on E of varying w (i.e., g) 
can be taken as a measure of the salience of the connection. LeCun et al. (1990) 
describe a process in which a network is trained, the least salient connections 
removed, and this process iterated until some termination condition is met. They 
refer to this as the "optimal brain damage" approach, because at each step the 
algorithm attempts to remove the least useful connections. They report that in 
a character recognition application this approach reduced the number of weights 
in a large network by a factor of 4, with a slight improvement in generalization 
accuracy and a significant improvement in subsequent training efficiency. 

In general, techniques for dynamically modifying network structure have 
met with mixed success. It remains to be seen whether they can reliably improve 
on the generalization accuracy of BACKPROPAGATION. However, they have been 
shown in some cases to provide significant improvements in training times. 

4.9 SUMMARY AND FURTHER READING 

Main points of this chapter include: 

0 Artificial neural network learning provides a practical method for learning 
real-valued and vector-valued functions over continuous and discrete-valued 
attributes, in a way that is robust to noise in the training data. The BACKPROP- 
AGATION algorithm is the most common network learning method and has 
been successfully applied to a variety of learning tasks, such as handwriting 
recognition and robot control. 

0 The hypothesis space considered by the BACKPROPAGATION algorithm is the 
space of all functions that can be represented by assigning weights to the 
given, fixed network of interconnected units. Feedforward networks contain- 
ing three layers of units are able to approximate any function to arbitrary 
accuracy, given a sufficient (potentially very large) number of units in each 
layer. Even networks of practical size are capable of representing a rich 
space of highly nonlinear functions, making feedforward networks a good 
choice for learning discrete and continuous functions whose general form is 
unknown in advance. 



BACKPROPAGATION searches the space of possible hypotheses using gradient 
descent to iteratively reduce the error in the network fit to the training 
examples. Gradient descent converges to a local minimum in the training 
error with respect to the network weights. More generally, gradient descent is 
a potentially useful method for searching many continuously parameterized 
hypothesis spaces where the training error is a differentiable function of 
hypothesis parameters. 

One of the most intriguing properties of BACKPROPAGATION is its ability to 
invent new features that are not explicit in the input to the network. In par- 
ticular, the internal (hidden) layers of multilayer networks learn to represent 
intermediate features that are useful for learning the target function and that 
are only implicit in the network inputs. This capability is illustrated, for ex- 
ample, by the ability of the 8 x 3 x 8 network in Section 4.6.4 to invent the 
boolean encoding of digits from 1 to 8 and by the image features represented 
by the hidden layer in the face-recognition application of Section 4.7. 

Overfitting the training data is an important issue in ANN learning. Overfit- 
ting results in networks that generalize poorly to new data despite excellent 
performance over the training data. Cross-validation methods can be used to 
estimate an appropriate stopping point for gradient descent search and thus 
to minimize the risk of overfitting. 

0 Although BACKPROPAGATION is the most common ANN learning algorithm, 
many others have been proposed, including algorithms for more specialized 
tasks. For example, recurrent neural network methods train networks con- 
taining directed cycles, and algorithms such as CASCADE CORRELATION alter 
the network structure as well as the network weights. 

Additional information on ANN learning can be found in several other chap- 
ters in this book. A Bayesian justification for choosing to minimize the sum of 
squared errors is given in Chapter 6, along with a justification for minimizing 
the cross-entropy instead of the sum of squared errors in other cases. Theoretical 
results characterizing the number of training examples needed to reliably learn 
boolean functions and the Vapnik-Chervonenkis dimension of certain types of 
networks can be found in Chapter 7. A discussion of overfitting and how to avoid 
it can be found in Chapter 5. Methods for using prior knowledge to improve the 
generalization accuracy of ANN learning are discussed in Chapter 12. 

Work on artificial neural networks dates back to the very early days of 
computer science. McCulloch and Pitts (1943) proposed a model of a neuron 
that corresponds to the perceptron, and a good deal of work through the 1960s 
explored variations of this model. During the early 1960s Widrow and Hoff (1960) 
explored perceptron networks (which they called "adelines") and the delta rule, 
and Rosenblatt (1962) proved the convergence of the perceptron training rule. 
However, by the late 1960s it became clear that single-layer perceptron networks 
had limited representational capabilities, and no effective algorithms were known 
for training multilayer networks. Minsky and Papert (1969) showed that even 



simple functions such as XOR could not be represented or learned with single- 
layer perceptron networks, and work on ANNs receded during the 1970s. 

During the mid-1980s work on ANNs experienced a resurgence, caused in 
large part by the invention of BACKPROPAGATION and related algorithms for train- 
ing multilayer networks (Rumelhart and McClelland 1986; Parker 1985). These 
ideas can be traced to related earlier work (e.g., Werbos 1975). Since the 1980s, 
BACKPROPAGATION has become a widely used learning method, and many other 
ANN approaches have been actively explored. The advent of inexpensive com- 
puters during this same period has allowed experimenting with computationally 
intensive algorithms that could not be thoroughly explored during the 1960s. 

A number of textbooks are devoted to the topic of neural network learning. 
An early but still useful book on parameter learning methods for pattern recog- 
nition is Duda and Hart (1973). The text by Widrow and Stearns (1985) covers 
perceptrons and related single-layer networks and their applications. Rumelhart 
and McClelland (1986) produced an edited collection of papers that helped gen- 
erate the increased interest in these methods beginning in the mid-1980s. Recent 
books on neural network learning include Bishop (1996); Chauvin and Rumelhart 
(1995); Freeman and Skapina (1991); Fu (1994); Hecht-Nielsen (1990); and Hertz 
et al. (1991). 

EXERCISES 

4.1. What are the values of weights wo, w l ,  and w2 for the perceptron whose decision 
surface is illustrated in Figure 4.3? Assume the surface crosses the xl axis at -1, 
and the x2 axis at 2. 

4.2. Design a two-input perceptron that implements the boolean function A A -. B. Design 
a two-layer network of perceptrons that implements A XO R B. 

4.3. Consider two perceptrons defined by the threshold expression wo + w l x l +  ~ 2 x 2  > 0. 
Perceptron A has weight values 

and perceptron B has the weight values 

True or false? Perceptron A is more-general~han perceptron B. (more-general~han 
is defined in Chapter 2.) 

4.4. Implement the delta training rule for a two-input linear unit. Train it to fit the target 
concept -2 + X I +  2x2 > 0. Plot the error E as a function of the number of training 
iterations. Plot the decision surface after 5, 10, 50, 100, . . . , iterations. 
(a )  Try this using various constant values for 17 and using a decaying learning rate 

of qo/i for the ith iteration. Which works better? 
(b) Try incremental and batch learning. Which converges more quickly? Consider 

both number of weight updates and total execution time. 
4.5. Derive a gradient descent training rule for a single unit with output o, where 



4.6. Explain informally why the delta training rule in Equation (4.10) is only an approx- 
imation to the true gradient descent rule of Equation (4.7). 

4.7. Consider a two-layer feedforward ANN with two inputs a and b, one hidden unit c, 
and one output unit d. This network has five weights (w,, web, wd, wdc, wdO), where 
w,o represents the threshold weight for unit x .  Initialize these weights to the values 
(. 1, . l ,  . l ,  . l ,  .I), then give their values after each of the first two training iterations of 
the BACKPROPAGATION algorithm. Assume learning rate 17 = .3, momentum a! = 0.9, 
incremental weight updates, and the following training examples: 

a b d  
1 0 1  
0 1 0  

4.8. Revise the BACKPROPAGATION algorithm in Table 4.2 so that it operates on units 
using the squashing function tanh in place of the sigmoid function. That is, assume 
the output of a single unit is o = t anh(6 .x ' ) .  Give the weight update rule for output 
layer weights and hidden layer weights. Hint: tanh'(x) = 1 - tanh2(x) .  

4.9. Recall the 8 x 3 x 8 network described in Figure 4.7. Consider trying to train a 8 x 1 x 8 
network for the same task; that is, a network with just one hidden unit. Notice the 
eight training examples in Figure 4.7 could be represented by eight distinct values for 
the single hidden unit (e.g., 0.1,0.2, . . . ,0.8). Could a network with just one hidden 
unit therefore learn the identity function defined over these training examples? Hint: 
Consider questions such as "do there exist values for the hidden unit weights that 
can create the hidden unit encoding suggested above?'"do there exist values for 
the output unit weights that could correctly decode this encoding of the input?'and 
"is gradient descent likely to find such weights?' 

4.10. Consider the alternative error function described in Section 4.8.1 

Derive the gradient descent update rule for this definition of E. Show that it can be 
implemented by multiplying each weight by some constant before performing the 
standard gradient descent update given in Table 4.2. 

4.11. Apply BACKPROPAGATION to the task of face recognition. See World Wide Web 
URL http://www.cs.cmu.edu/-tomlbook.html for details, including face-image data, 
BACKPROPAGATION code, and specific tasks. 

4.12. Consider deriving a gradient descent algorithm to learn target concepts corresponding 
to rectangles in the x ,  y plane. Describe each hypothesis by the x and y coordinates 
of the lower-left and upper-right comers of the rectangle - Ilx, Ily, urn,  and ury  
respectively. An instance ( x ,  y )  is labeled positive by hypothesis ( l l x ,  l l y ,  u rx ,  u ry )  
if and only if the point ( x ,  y )  lies inside the corresponding rectangle. Define error 
E as in the chapter. Can you devise a gradient descent algorithm to learn such 
rectangle hypotheses? Notice that E is not a continuous function of l l x ,  Ily, u rx ,  
and ury ,  just as in the case of perceptron learning. (Hint: Consider the two solutions 
used for perceptrons: (1) changing the classification rule to make output predictions 
continuous functions of the inputs, and (2) defining an alternative error-such as 
distance to the rectangle center-as in using the delta rule to train perceptrons.) 
Does your algorithm converge to the minimum error hypothesis when the positive 
and negative examples are separable by a rectangle? When they are not? Do you 



have problems with local minima? How does your algorithm compare to symbolic 
methods for learning conjunctions of feature constraints? 

REFERENCES 
Bishop, C. M. (1996). Neural networks for pattern recognition. Oxford, England: Oxford University 

Press. 
Chauvin, Y., & Rumelhart, D. (1995). BACKPROPAGATION: Theory, architectures, and applications 

(edited collection). Hillsdale, NJ: Lawrence Erlbaum Assoc. 
Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: The MIT 

Press. 
Cyhenko, G. (1988). Continuous valued neural networks with two hidden layers are sufficient (Tech- 

nical Report). Department of Computer Science, Tufts University, Medford, MA. 
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Con- 

trol, Signals, and Systems, 2, 303-3 14. 
Cottrell, G. W. (1990). Extracting features from faces using compression networks: Face, identity, 

emotion and gender recognition using holons. In D. Touretzky (Ed.), Connection Models: 
Proceedings of the 1990 Summer School. San Mateo, CA: Morgan Kaufmann. 

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A comparison of ID3 and BACKPROPAGATION for 
English text-to-speech mapping. Machine Learning, 18(1), 51-80. 

Duda, R., & Hart, P. (1973). Pattern class@cation and scene analysis. New York: John Wiley & 
Sons. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-21 1. 
Fahlman, S., & Lebiere, C. (1990). The CASCADE-CORRELATION learning architecture (Technical 

Report CMU-CS-90-100). Computer Science Department, Carnegie Mellon University, Pitts- 
burgh, PA. 

Freeman, J. A., & Skapura, D. M. (1991). Neural networks. Reading, MA: Addison Wesley. 
Fu, L. (1994). Neural networks in computer intelligence. New York: McGraw Hill. 
Gabriel, M. & Moore, J. (1990). Learning and computational neuroscience: Foundations of adaptive 

networks (edited collection). Cambridge, MA: The MIT Press. 
Hecht-Nielsen, R. (1990). Neurocomputing. Reading, MA: Addison Wesley. 
Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the theory of neural computation. Read- 

ing, MA: Addison Wesley. 
Homick, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal 

approximators. Neural Networks, 2, 359-366. 
Huang, W. Y., & Lippmann, R. P. (1988). Neural net and traditional classifiers. In Anderson (Ed.), 

Neural Information Processing Systems (pp. 387-396). 
Jordan, M. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. Pro- 

ceedings of the Eighth Annual Conference of the Cognitive Science Society (pp. 531-546). 
Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag. 
Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network architecture for 

isolated word recognition. Neural Networks, 3, 3343. 
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L.D. 

(1989). BACKPROPAGATION applied to handwritten zip code recognition. Neural Computa- 
tion, l(4). 

LeCun, Y.,  Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. Touretzky (Ed.), 
Advances in Neural Information Processing Systems (Vol. 2, pp. 598405). San Mateo, CA: 
Morgan Kaufmann. 

Manke, S., Finke, M. & Waibel, A. (1995). NPEN++: a writer independent, large vocabulary on- 
line cursive handwriting recognition system. Proceedings of the International Conference on 
Document Analysis and Recognition. Montreal, Canada: IEEE Computer Society. 

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. 
Bulletin of Mathematical Biophysics, 5 ,  115-133. 



Mitchell, T. M., & Thrun, S. B. (1993). Explanation-based neural network learning for robot control. 
In Hanson, Cowan, & Giles (Eds.), Advances in neural informution processing systems 5 
(pp. 287-294). San Francisco: Morgan Kaufmann. 

Mozer, M. (1995). A focused BACKPROPAGATION algorithm for temporal pattern recognition. In 
Y. Chauvin & D. Rumelhart (Eds.), Backpropagation: Theory, architectures, and applications 
(pp. 137-169). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press. 
Nilsson, N. J. (1965). Learning machines. New York: McGraw Hill. 
Parker, D. (1985). Learning logic (MIT Technical Report TR-47). MIT Center for Research in 

Computational Economics and Management Science. 
pomerleau, D. A. (1993). Knowledge-based training of artificial neural networks for autonomous 

robot driving. In J. Come11 & S. Mahadevan (Eds.), Robot Learning (pp. 19-43). Boston: 
Kluwer Academic Publishers. 

Rosenblatt, F. (1959). The perceptron: a probabilistic model for information storage and organization 
in the brain. Psychological Review, 65, 386-408. 

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan Books. 
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: exploration in the 

microstructure of cognition (Vols. 1 & 2). Cambridge, MA: MIT Press. 
Rumelhart, D., Widrow, B., & Lehr, M. (1994). The basic ideas in neural networks. Communications 

of the ACM, 37(3), 87-92. 
Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms: 

An experimental comparison. Machine Learning, 6(2), 11 1-144. 
Simard, P. S., Victorri, B., LeCun, Y., & Denker, J. (1992). Tangent prop--A formalism for specifying 

selected invariances in an adaptive network. In Moody, et al. (Eds.), Advances in Neural 
Information Processing Systems 4 (pp. 895-903). San Francisco: Morgan Kaufmann. 

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme recognition using 
time-delay neural networks. ZEEE Transactions on Acoustics, Speech and Signal Processing. 

Weiss, S., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets, and 
machine learning classification methods. Proceedings of the Eleventh ZJCAI @p. 781-787). 
San Francisco: Morgan Kaufmann. 

Werbos, P. (1975). Beyond regression: New tools for prediction and analysis in the behavioral sciences 
(Ph.D. dissertation). Harvard University. 

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record, 
4,96104. 

Widrow, B., & Stearns, S. D. (1985). Adaptive signalprocessing. Signal Processing Series. Englewood 
Cliffs, NJ: Prentice Hall. 

Williams, R., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and their 
computational complexity. In Y. Chauvin & D. Rumelhart (Eds.), Backpropagation: Theory, 
architectures, and applications (pp. 433-486). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Zometzer, S. F., Davis, J. L., & Lau, C. (1994). An introduction to neural and electronic neiworks 
(edited collection) (2nd ed.). New York: Academic Press. 


