
CHAPTER

DECISION TREE
LEARNING

Decision tree learning is one of the most widely used and practical methods for
inductive inference. It is a method for approximating discrete-valued functions that
is robust to noisy data and capable of learning disjunctive expressions. This chapter
describes a family of decision tree learning algorithms that includes widely used
algorithms such as ID3, ASSISTANT, and C4.5. These decision tree learning meth-
ods search a completely expressive hypothesis space and thus avoid the difficulties
of restricted hypothesis spaces. Their inductive bias is a preference for small trees
over large trees.

3.1 INTRODUCTION

Decision tree learning is a method for approximating discrete-valued target func-
tions, in which the learned function is represented by a decision tree. Learned trees
can also be re-represented as sets of if-then rules to improve human readability.
These learning methods are among the most popular of inductive inference algo-
rithms and have been successfully applied to a broad range of tasks from learning
to diagnose medical cases to learning to assess credit risk of loan applicants.

3.2 DECISION TREE REPRESENTATION

Decision trees classify instances by sorting them down the tree from the root to
some leaf node, which provides the classification of the instance. Each node in the
tree specifies a test of some attribute of the instance, and each branch descending

CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

54 MACHINE LEARNWG

3.3 APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

Although a variety of decision tree learning methods have been developed with
somewhat differing capabilities and requirements, decision tree learning is gener-
ally best suited to problems with the following characteristics:

Znstances are represented by attribute-value pairs. Instances are described by
a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The
easiest situation for decision tree learning is when each attribute takes on a
small number of disjoint possible values (e.g., Hot, Mild, Cold). However,
extensions to the basic algorithm (discussed in Section 3.7.2) allow handling
real-valued attributes as well (e.g., representing Temperature numerically).
The targetfunction has discrete output values. The decision tree in Figure 3.1
assigns a boolean classification (e.g., yes or no) to each example. Decision
tree methods easily extend to learning functions with more than two possible
output values. A more substantial extension allows learning target functions
with real-valued outputs, though the application of decision trees in this
setting is less common.

0 Disjunctive descriptions may be required. As noted above, decision trees
naturally represent disjunctive expressions.

0 The training data may contain errors. Decision tree learning methods are
robust to errors, both errors in classifications of the training examples and
errors in the attribute values that describe these examples.

0 The training data may contain missing attribute values. Decision tree meth-
ods can be used even when some training examples have unknown values
(e.g., if the Humidity of the day is known for only some of the training
examples). This issue is discussed in Section 3.7.4.

Many practical problems have been found to fit these characteristics. De-
cision tree learning has therefore been applied to problems such as learning to
classify medical patients by their disease, equipment malfunctions by their cause,
and loan applicants by their likelihood of defaulting on payments. Such problems,
in which the task is to classify examples into one of a discrete set of possible
categories, are often referred to as classijication problems.

The remainder of this chapter is organized as follows. Section 3.4 presents
the basic ID3 algorithm for learning decision trees and illustrates its operation
in detail. Section 3.5 examines the hypothesis space search performed by this
learning algorithm, contrasting it with algorithms from Chapter 2. Section 3.6
characterizes the inductive bias of this decision tree learning algorithm and ex-
plores more generally an inductive bias called Occam's razor, which corresponds
to a preference for the most simple hypothesis. Section 3.7 discusses the issue of
overfitting the training data, as well as strategies such as rule post-pruning to deal
with this problem. This section also discusses a number of more advanced topics
such as extending the algorithm to accommodate real-valued attributes, training
data with unobserved attributes, and attributes with differing costs.

CHAPTER 3 DECISION TREE LEARMNG 55

3.4 THE BASIC DECISION TREE LEARNING ALGORITHM

Most algorithms that have been developed for learning decision trees are vari-
ations on a core algorithm that employs a top-down, greedy search through the
space of possible decision trees. This approach is exemplified by the ID3 algorithm
(Quinlan 1986) and its successor C4.5 (Quinlan 1993), which form the primary
focus of our discussion here. In this section we present the basic algorithm for
decision tree learning, corresponding approximately to the ID3 algorithm. In Sec-
tion 3.7 we consider a number of extensions to this basic algorithm, including
extensions incorporated into C4.5 and other more recent algorithms for decision
tree learning.

Our basic algorithm, ID3, learns decision trees by constructing them top-
down, beginning with the question "which attribute should be tested at the root
of the tree?'To answer this question, each instance attribute is evaluated using
a statistical test to determine how well it alone classifies the training examples.
The best attribute is selected and used as the test at the root node of the tree.
A descendant of the root node is then created for each possible value of this
attribute, and the training examples are sorted to the appropriate descendant node
(i.e., down the branch corresponding to the example's value for this attribute).
The entire process is then repeated using the training examples associated with
each descendant node to select the best attribute to test at that point in the tree.
This forms a greedy search for an acceptable decision tree, in which the algorithm
never backtracks to reconsider earlier choices. A simplified version of the algo-
rithm, specialized to learning boolean-valued functions (i.e., concept learning), is
described in Table 3.1.

3.4.1 Which Attribute Is the Best Classifier?

The central choice in the ID3 algorithm is selecting which attribute to test at
each node in the tree. We would like to select the attribute that is most useful
for classifying examples. What is a good quantitative measure of the worth of
an attribute? We will define a statistical property, called informution gain, that
measures how well a given attribute separates the training examples according to
their target classification. ID3 uses this information gain measure to select among
the candidate attributes at each step while growing the tree.

3.4.1.1 ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

In order to define information gain precisely, we begin by defining a measure com-
monly used in information theory, called entropy, that characterizes the (im)purity
of an arbitrary collection of examples. Given a collection S, containing positive
and negative examples of some target concept, the entropy of S relative to this
boolean classification is

ID3(Examples, Targetattribute, Attributes)
Examples are the training examples. Targetattribute is the attribute whose value is to be
predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classiJies the given Examples.

Create a Root node for the tree
I f all Examples are positive, Return the single-node tree Root, with label = +
I f all Examples are negative, Return the single-node tree Root, with label = -
I f Attributes is empty, Return the single-node tree Root, with label = most common value of
Targetattribute in Examples
Otherwise Begin

A t the attribute from Attributes that best* classifies Examples
0 The decision attribute for Root c A

For each possible value, vi, of A,
Add a new tree branch below Root, corresponding to the test A = vi

0 Let Examples,, be the subset of Examples that have value vi for A
If Examples,, is empty

Then below this new branch add a leaf node with label = most common
value of Target attribute in Examples
Else below this new branch add the subtree

ID3(Examples,,, Targetattribute, Attributes - (A)))

End
Return Root

* The best attribute is the one with highest information gain, as defined in Equation (3.4).

TABLE 3.1
Summary of the ID3 algorithm specialized to learning boolean-valued functions. ID3 is a greedy
algorithm that grows the tree top-down, at each node selecting the attribute that best classifies the
local training examples. This process continues until the tree perfectly classifies the training examples,
or until all attributes have been used.

where p, is the proportion of positive examples in S and p, is the proportion of
negative examples in S. In all calculations involving entropy we define 0 log 0 to
be 0.

To illustrate, suppose S is a collection of 14 examples of some boolean
concept, including 9 positive and 5 negative examples (we adopt the notation
[9+, 5-1 to summarize such a sample of data). Then the entropy of S relative to
this boolean classification is

Notice that the entropy is 0 if all members of S belong to the same class. For
example, if all members are positive (pe = I), then p, is 0, and Entropy(S) =
-1 . log2(1) - 0 . log2 0 = -1 . 0 - 0 . log2 0 = 0. Note the entropy is 1 when
the collection contains an equal number of positive and negative examples. If
the collection contains unequal numbers of positive and negative examples, the

CHAPTER 3 DECISION TREE LEARNING 57

FIGURE 3.2
The entropy function relative to a boolean classification,

0.0 0.5 LO as the proportion, pe, of positive examples varies
pe between 0 and 1.

entropy is between 0 and 1. Figure 3.2 shows the form of the entropy function
relative to a boolean classification, as p, varies between 0 and 1.

One interpretation of entropy from information theory is that it specifies the
minimum number of bits of information needed to encode the classification of
an arbitrary member of S (i.e., a member of S drawn at random with uniform
probability). For example, if p, is 1, the receiver knows the drawn example will
be positive, so no message need be sent, and the entropy is zero. On the other hand,
if pe is 0.5, one bit is required to indicate whether the drawn example is positive
or negative. If pe is 0.8, then a collection of messages can be encoded using on
average less than 1 bit per message by assigning shorter codes to collections of
positive examples and longer codes to less likely negative examples.

Thus far we have discussed entropy in the special case where the target
classification is boolean. More generally, if the target attribute can take on c
different values, then the entropy of S relative to this c-wise classification is
defined as

C

Entropy(S) - -pi log, pi
i=l

where pi is the proportion of S belonging to class i . Note the logarithm is still
base 2 because entropy is a measure of the expected encoding length measured
in bits. Note also that if the target attribute can take on c possible values, the
entropy can be as large as log, c.

3.4.1.2 INFORMATION GAIN MEASURES THE EXPECTED REDUCTION
IN ENTROPY

Given entropy as a measure of the impurity in a collection of training examples,
we can now define a measure of the effectiveness of an attribute in classifying
the training data. The measure we will use, called information gain, is simply the
expected reduction in entropy caused by partitioning the examples according to
this attribute. More precisely, the information gain, Gain(S, A) of an attribute A,

relative to a collection of examples S, is defined as

ISVl Gain(S, A) I Entropy(S) - -Entropy (S,)
IS1

(3.4)
veValues(A)

where Values(A) is the set of all possible values for attribute A, and S, is the
subset of S for which attribute A has value v (i.e., S, = { s E SIA(s) = v)) . Note
the first term in Equation (3.4) is just the entropy of the original collection S,
and the second term is the expected value of the entropy after S is partitioned
using attribute A. The expected entropy described by this second term is simply
the sum of the entropies of each subset S,, weighted by the fraction of examples

that belong to S,. Gain(S, A) is therefore the expected reduction in entropy
caused by knowing the value of attribute A. Put another way, Gain(S, A) is the
information provided about the target &action value, given the value of some
other attribute A. The value of Gain(S, A) is the number of bits saved when
encoding the target value of an arbitrary member of S, by knowing the value of
attribute A.

For example, suppose S is a collection of training-example days described by
attributes including Wind, which can have the values Weak or Strong. As before,
assume S is a collection containing 14 examples, [9+, 5-1. Of these 14 examples,
suppose 6 of the positive and 2 of the negative examples have Wind = Weak, and
the remainder have Wind = Strong. The information gain due to sorting the
original 14 examples by the attribute Wind may then be calculated as

Values(Wind) = Weak, Strong

IS, l Gain(S, Wind) = Entropy(S) - -Entropy(S,)
v ~ (W e a k , S t r o n g] Is1

Information gain is precisely the measure used by ID3 to select the best attribute at
each step in growing the tree. The use of information gain to evaluate the relevance
of attributes is summarized in Figure 3.3. In this figure the information gain of two
different attributes, Humidity and Wind, is computed in order to determine which
is the better attribute for classifying the training examples shown in Table 3.2.

CHAPTER 3 DECISION TREE LEARNING 59

Which attribute is the best classifier?

S: [9+,5-I
E =0.940

Humidity

High

[3+,4-I [6t , l - l
E S.985 E S .592

Gain (S, Hurnidiry)

S: [9+,5-I
E S .940 wx Strong

[6+,2-I [3+,3-I
ES.811 E =1.00

Gain (S, Wind)

= ,940 - (8/14).811 - (6114)l.O
= ,048

FIGURE 3.3
Humidity provides greater information gain than Wind, relative to the target classification. Here, E
stands for entropy and S for the original collection of examples. Given an initial collection S of 9
positive and 5 negative examples, [9+, 5-1, sorting these by their Humidity produces collections of
[3+, 4-1 (Humidity = High) and [6+, 1-1 (Humidity = Normal). The information gained by this
partitioning is .151, compared to a gain of only .048 for the attribute Wind.

3.4.2 An Illustrative Example

To illustrate the operation of ID3, consider the learning task represented by the
training examples of Table 3.2. Here the target attribute PlayTennis, which can
have values yes or no for different Saturday mornings, is to be predicted based
on other attributes of the morning in question. Consider the first step through

Day Outlook Temperature Humidity Wind PlayTennis

D l Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
Dl0 Rain Mild Normal Weak Yes
Dl1 Sunny Mild Normal Strong Yes
Dl2 Overcast Mild High Strong Yes
Dl3 Overcast Hot Normal Weak Yes
Dl4 Rain Mild High Strong No

TABLE 3.2
Training examples for the target concept PlayTennis.

the algorithm, in which the topmost node of the decision tree is created. Which
attribute should be tested first in the tree? ID3 determines the information gain for
each candidate attribute (i.e., Outlook, Temperature, Humidity, and Wind), then
selects the one with highest information gain. The computation of information
gain for two of these attributes is shown in Figure 3.3. The information gain
values for all four attributes are

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029

where S denotes the collection of training examples from Table 3.2.
According to the information gain measure, the Outlook attribute provides

the best prediction of the target attribute, PlayTennis, over the training exam-
ples. Therefore, Outlook is selected as the decision attribute for the root node,
and branches are created below the root for each of its possible values (i.e.,
Sunny, Overcast, and Rain). The resulting partial decision tree is shown in Fig-
ure 3.4, along with the training examples sorted to each new descendant node.
Note that every example for which Outlook = Overcast is also a positive ex-
ample of PlayTennis. Therefore, this node of the tree becomes a leaf node with
the classification PlayTennis = Yes. In contrast, the descendants corresponding to
Outlook = Sunny and Outlook = Rain still have nonzero entropy, and the decision
tree will be further elaborated below these nodes.

The process of selecting a new attribute and partitioning the training exam-
ples is now repeated for each nontenninal descendant node, this time using only
the training examples associated with that node. Attributes that have been incor-
porated higher in the tree are excluded, so that any given attribute can appear at
most once along any path through the tree. This process continues for each new
leaf node until either of two conditions is met: (1) every attribute has already been
included along this path through the tree, or (2) the training examples associated
with this leaf node all have the same target attribute value (i.e., their entropy
is zero). Figure 3.4 illustrates the computations of information gain for the next
step in growing the decision tree. The final decision tree learned by ID3 from the
14 training examples of Table 3.2 is shown in Figure 3.1.

3.5 HYPOTHESIS SPACE SEARCH IN DECISION TREE
LEARNING

As with other inductive learning methods, ID3 can be characterized as searching a
space of hypotheses for one that fits the training examples. The hypothesis space
searched by ID3 is the set of possible decision trees. ID3 performs a simple-to-
complex, hill-climbing search through this hypothesis space, beginning with the
empty tree, then considering progressively more elaborate hypotheses in search of
a decision tree that correctly classifies the training data. The evaluation function

{Dl, D2, ..., Dl41

P+S-I

Which attribute should be tested here?

Gain (Ssunnyj Temperaare) = ,970 - (215) 0.0 - (Y5) 1.0 - (115) 0.0 = ,570

Gain (Sss,,,, Wind) = 970 - (215) 1.0 - (315) ,918 = ,019

FIGURE 3.4
The partially learned decision tree resulting from the first step of ID3. The training examples are
sorted to the corresponding descendant nodes. The Overcast descendant has only positive examples
and therefore becomes a leaf node with classification Yes. The other two nodes will be further
expanded, by selecting the attribute with highest information gain relative to the new subsets of
examples.

that guides this hill-climbing search is the information gain measure. This search
is depicted in Figure 3.5.

By viewing ID^ in terms of its search space and search strategy, we can get
some insight into its capabilities and limitations.

1 ~ 3 ' s hypothesis space of all decision trees is a complete space of finite
discrete-valued functions, relative to the available attributes. Because every
finite discrete-valued function can be represented by some decision tree, ID3
avoids one of the major risks of methods that search incomplete hypothesis
spaces (such as methods that consider only conjunctive hypotheses): that the
hypothesis space might not contain the target function.
ID3 maintains only a single current hypothesis as it searches through the
space of decision trees. This contrasts, for example, with the earlier ver-
sion space candidate-~l i rn inat -od, which maintains the set of all
hypotheses consistent with the available training examples. By determin-
ing only a single hypothesis, ID^ loses the capabilities that follow from

F: + - + FIGURE 3.5
Hypothesis space search by ID3.
ID3 searches throuah the mace of -
possible decision trees from simplest
to increasingly complex, guided by the

... ... information gain heuristic.

explicitly representing all consistent hypotheses. For example, it does not
have the ability to determine how many alternative decision trees are con-
sistent with the available training data, or to pose new instance queries that
optimally resolve among these competing hypotheses.

0 ID3 in its pure form performs no backtracking in its search. Once it,se-
lects an attribute to test at a particular level in the tree, it never backtracks
to reconsider this choice. Therefore, it is susceptible to the usual risks of
hill-climbing search without backtracking: converging to locally optimal so-
lutions that are not globally optimal. In the case of ID3, a locally optimal
solution corresponds to the decision tree it selects along the single search
path it explores. However, this locally optimal solution may be less desir-
able than trees that would have been encountered along a different branch of
the search. Below we discuss an extension that adds a form of backtracking
(post-pruning the decision tree).

0 ID3 uses all training examples at each step in the search to make statistically
based decisions regarding how to refine its current hypothesis. This contrasts
with methods that make decisions incrementally, based on individual train-
ing examples (e.g., FIND-S or CANDIDATE-ELIMINATION). One advantage of
using statistical properties of all the examples (e.g., information gain) is that
the resulting search is much less sensitive to errors in individual training
examples. ID3 can be easily extended to handle noisy training data by mod-
ifying its termination criterion to accept hypotheses that imperfectly fit the
training data.

3.6 INDUCTIVE BIAS IN DECISION TREE LEARNING

What is the policy by which ID3 generalizes from observed training examples
to classify unseen instances? In other words, what is its inductive bias? Recall
from Chapter 2 that inductive bias is the set of assumptions that, together with
the training data, deductively justify the classifications assigned by the learner to
future instances.

Given a collection of training examples, there are typically many decision
trees consistent with these examples. Describing the inductive bias of ID3 there-
fore consists of describing the basis by which it chooses one of these consis-
tent hypotheses over the others. Which of these decision trees does ID3 choose?
It chooses the first acceptable tree it encounters in its simple-to-complex, hill-
climbing search through the space of possible trees. Roughly speaking, then, the
ID3 search strategy (a) selects in favor of shorter trees over longer ones, and
(b) selects trees that place the attributes with highest information gain closest to
the root. Because of the subtle interaction between the attribute selection heuris-
tic used by ID3 and the particular training examples it encounters, it is difficult
to characterize precisely the inductive bias exhibited by ID3. However, we can
approximately characterize its bias as a preference for short decision trees over
complex trees.

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees.

In fact, one could imagine an algorithm similar to ID3 that exhibits precisely
this inductive bias. Consider an algorithm that begins with the empty tree and
searches breadth Jirst through progressively more complex trees, first considering
all trees of depth 1, then all trees of depth 2, etc. Once it finds a decision tree
consistent with the training data, it returns the smallest consistent tree at that
search depth (e.g., the tree with the fewest nodes). Let us call this breadth-first
search algorithm BFS-ID3. BFS-ID3 finds a shortest decision tree and thus exhibits
precisely the bias "shorter trees are preferred over longer trees." ID3 can be
viewed as an efficient approximation to BFS-ID3, using a greedy heuristic search
to attempt to find the shortest tree without conducting the entire breadth-first
search through the hypothesis space.

Because ID3 uses the information gain heuristic and a hill climbing strategy,
it exhibits a more complex bias than BFS-ID3. In particular, it does not always
find the shortest consistent tree, and it is biased to favor trees that place attributes
with high information gain closest to the root.

A closer approximation to the inductive bias of ID3: Shorter trees are preferred
over longer trees. Trees that place high information gain attributes close to the root
are preferred over those that do not.

3.6.1 Restriction Biases and Preference Biases

There is an interesting difference between the types of inductive bias exhibited
by ID3 and by the CANDIDATE-ELIMINATION algorithm discussed in Chapter 2.

Consider the difference between the hypothesis space search in these two ap-
proaches:

ID3 searches a complete hypothesis space (i.e., one capable of expressing
any finite discrete-valued function). It searches incompletely through this
space, from simple to complex hypotheses, until its termination condition is
met (e.g., until it finds a hypothesis consistent with the data). Its inductive
bias is solely a consequence of the ordering of hypotheses by its search
strategy. Its hypothesis space introduces no additional bias.

0 The version space CANDIDATE-ELIMINATION algorithm searches an incom-
plete hypothesis space (i.e., one that can express only a subset of the poten-
tially teachable concepts). It searches this space completely, finding every
hypothesis consistent with the training data. Its inductive bias is solely a
consequence of the expressive power of its hypothesis representation. Its
search strategy introduces no additional bias.

In brief, the inductive bias of ID3 follows from its search strategy, whereas
the inductive bias of the CANDIDATE-ELIMINATION algorithm follows from the def-
inition of its search space.

The inductive bias of ID3 is thus a preference for certain hypotheses over
others (e.g., for shorter hypotheses), with no hard restriction on the hypotheses that
can be eventually enumerated. This form of bias is typically called a preference
bias (or, alternatively, a search bias). In contrast, the bias of the CANDIDATE-
ELIMINATION algorithm is in the form of a categorical restriction on the set of
hypotheses considered. This form of bias is typically called a restriction bias (or,
alternatively, a language bias).

Given that some form of inductive bias is required in order to generalize
beyond the training data (see Chapter 2), which type of inductive bias shall we
prefer; a preference bias or restriction bias?

Typically, a preference bias is more desirable than a restriction bias, be-
cause it allows the learner to work within a complete hypothesis space that is
assured to contain the unknown target function. In contrast, a restriction bias that
strictly limits the set of potential hypotheses is generally less desirable, because
it introduces the possibility of excluding the unknown target function altogether.

Whereas ID3 exhibits a purely preference bias and CANDIDATE-ELIMINATION
a purely restriction bias, some learning systems combine both. Consider, for ex-
ample, the program described in Chapter 1 for learning a numerical evaluation
function for game playing. In this case, the learned evaluation function is repre-
sented by a linear combination of a fixed set of board features, and the learning
algorithm adjusts the parameters of this linear combination to best fit the available
training data. In this case, the decision to use a linear function to represent the eval-
uation function introduces a restriction bias (nonlinear evaluation functions cannot
be represented in this form). At the same time, the choice of a particular parameter
tuning method (the LMS algorithm in this case) introduces a preference bias stem-
ming from the ordered search through the space of all possible parameter values.

3.6.2 Why Prefer Short Hypotheses?

Is ID3's inductive bias favoring shorter decision trees a sound basis for generaliz-
ing beyond the training data? Philosophers and others have debated this question
for centuries, and the debate remains unresolved to this day. William of Occam
was one of the first to discusst the question, around the year 1320, so this bias
often goes by the name of Occam's razor.

Occam's razor: Prefer the simplest hypothesis that fits the data.

Of course giving an inductive bias a name does not justify it. Why should one
prefer simpler hypotheses? Notice that scientists sometimes appear to follow this
inductive bias. Physicists, for example, prefer simple explanations for the motions
of the planets, over more complex explanations. Why? One argument is that
because there are fewer short hypotheses than long ones (based on straightforward
combinatorial arguments), it is less likely that one will find a short hypothesis that
coincidentally fits the training data. In contrast there are often many very complex
hypotheses that fit the current training data but fail to generalize correctly to
subsequent data. Consider decision tree hypotheses, for example. There are many
more 500-node decision trees than 5-node decision trees. Given a small set of
20 training examples, we might expect to be able to find many 500-node deci-
sion trees consistent with these, whereas we would be more surprised if a 5-node
decision tree could perfectly fit this data. We might therefore believe the 5-node
tree is less likely to be a statistical coincidence and prefer this hypothesis over
the 500-node hypothesis.

Upon closer examination, it turns out there is a major difficulty with the
above argument. By the same reasoning we could have argued that one should
prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf nodes, that
use the decision attribute A1 at the root, and test attributes A2 through Al l , in
numerical order. There are relatively few such trees, and we might argue (by the
same reasoning as above) that our a priori chance of finding one consistent with
an arbitrary set of data is therefore small. The difficulty here is that there are very
many small sets of hypotheses that one can define-most of them rather arcane.
Why should we believe that the small set of hypotheses consisting of decision
trees with short descriptions should be any more relevant than the multitude of
other small sets of hypotheses that we might define?

A second problem with the above argument for Occam's razor is that the size
of a hypothesis is determined by the particular representation used internally by
the learner. Two learners using different internal representations could therefore
anive at different hypotheses, both justifying their contradictory conclusions by
Occam's razor! For example, the function represented by the learned decision
tree in Figure 3.1 could be represented as a tree with just one decision node, by a
learner that uses the boolean attribute XYZ, where we define the attribute XYZ to

~ ~ p r e n t l ~ while shaving.

be true for instances that are classified positive by the decision tree in Figure 3.1
and false otherwise. Thus, two learners, both applying Occam's razor, would
generalize in different ways if one used the XYZ attribute to describe its examples
and the other used only the attributes Outlook, Temperature, Humidity, and Wind.

This last argument shows that Occam's razor will produce two different
hypotheses from the same training examples when it is applied by two learners
that perceive these examples in terms of different internal representations. On this
basis we might be tempted to reject Occam's razor altogether. However, consider
the following scenario that examines the question of which internal representa-
tions might arise from a process of evolution and natural selection. Imagine a
population of artificial learning agents created by a simulated evolutionary pro-
cess involving reproduction, mutation, and natural selection of these agents. Let
us assume that this evolutionary process can alter the perceptual systems of these
agents from generation to generation, thereby changing the internal attributes by
which they perceive their world. For the sake of argument, let us also assume that
the learning agents employ a fixed learning algorithm (say ID3) that cannot be
altered by evolution. It is reasonable to assume that over time evolution will pro-
duce internal representation that make these agents increasingly successful within
their environment. Assuming that the success of an agent depends highly on its
ability to generalize accurately, we would therefore expect evolution to develop
internal representations that work well with whatever learning algorithm and in-
ductive bias is present. If the species of agents employs a learning algorithm whose
inductive bias is Occam's razor, then we expect evolution to produce internal rep-
resentations for which Occam's razor is a successful strategy. The essence of the
argument here is that evolution will create internal representations that make the
learning algorithm's inductive bias a self-fulfilling prophecy, simply because it
can alter the representation easier than it can alter the learning algorithm.

For now, we leave the debate regarding Occam's razor. We will revisit it in
Chapter 6, where we discuss the Minimum Description Length principle, a version
of Occam's razor that can be interpreted within a Bayesian framework.

3.7 ISSUES IN DECISION TREE LEARNING

Practical issues in learning decision trees include determining how deeply to grow
the decision tree, handling continuous attributes, choosing an appropriate attribute
selection measure, andling training data with missing attribute values, handling
attributes with differing costs, and improving computational efficiency. Below
we discuss each of these issues and extensions to the basic ID3 algorithm that
address them. ID3 has itself been extended to address most of these issues, with
the resulting system renamed C4.5 (Quinlan 1993).

3.7.1 Avoiding Overfitting the Data

The algorithm described in Table 3.1 grows each branch of the tree just deeply
enough to perfectly classify the training examples. While this is sometimes a

reasonable strategy, in fact it can lead to difficulties when there is noise in the data,
or when the number of training examples is too small to produce a representative
sample of the true target function. In either of these cases, this simple algorithm
can produce trees that overjt the training examples.

We will say that a hypothesis overfits the training examples if some other
hypothesis that fits the training examples less well actually performs better over the
entire distribution of instances (i.e., including instances beyond the training set).

Definition: Given a hypothesis space H, a hypothesis h E H is said to overlit the
training data if there exists some alternative hypothesis h' E H, such that h has
smaller error than h' over the training examples, but h' has a smaller error than h
over the entire distribution of instances.

Figure 3.6 illustrates the impact of overfitting in a typical application of deci-
sion tree learning. In this case, the ID3 algorithm is applied to the task of learning
which medical patients have a form of diabetes. The horizontal axis of this plot
indicates the total number of nodes in the decision tree, as the tree is being con-
structed. The vertical axis indicates the accuracy of predictions made by the tree.
The solid line shows the accuracy of the decision tree over the training examples,
whereas the broken line shows accuracy measured over an independent set of test
examples (not included in the training set). Predictably, the accuracy of the tree
over the training examples increases monotonically as the tree is grown. How-
ever, the accuracy measured over the independent test examples first increases,
then decreases. As can be seen, once the tree size exceeds approximately 25 nodes,

On training data -
On test data ---- i

Size of tree (number of nodes)

FIGURE 3.6
Overfitting in decision tree learning. As ID3 adds new nodes to grow the decision tree, the accuracy of
the tree measured over the training examples increases monotonically. However, when measured over
a set of test examples independent of the training examples, accuracy first increases, then decreases.
Software and data for experimenting with variations on this plot are available on the World Wide
Web at http://www.cs.cmu.edu/-torn/mlbook.html.

further elaboration of the tree decreases its accuracy over the test examples despite
increasing its accuracy on the training examples.

How can it be possible for tree h to fit the training examples better than h',
but for it to perform more poorly over subsequent examples? One way this can
occur is when the training examples contain random errors or noise. To illustrate,
consider the effect of adding the following positive training example, incorrectly
labeled as negative, to the (otherwise correct) examples in Table 3.2.

(Outlook = Sunny, Temperature = Hot , Humidity = Normal,

Wind = Strong, PlayTennis = No)

Given the original error-free data, ID3 produces the decision tree shown in Fig-
ure 3.1. However, the addition of this incorrect example will now cause ID3 to
construct a more complex tree. In particular, the new example will be sorted into
the second leaf node from the left in the learned tree of Figure 3.1, along with the
previous positive examples D9 and Dl 1. Because the new example is labeled as
a negative example, ID3 will search for further refinements to the tree below this
node. Of course as long as the new erroneous example differs in some arbitrary
way from the other examples affiliated with this node, ID3 will succeed in finding
a new decision attribute to separate out this new example from the two previous
positive examples at this tree node. The result is that ID3 will output a decision
tree (h) that is more complex than the original tree from Figure 3.1 (h'). Of course
h will fit the collection of training examples perfectly, whereas the simpler h' will
not. However, given that the new decision node is simply a consequence of fitting
the noisy training example, we expect h to outperform h' over subsequent data
drawn from the same instance distribution.

The above example illustrates how random noise in the training examples
can lead to overfitting. In fact, overfitting is possible even when the training data
are noise-free, especially when small numbers of examples are associated with leaf
nodes. In this case, it is quite possible for coincidental regularities to occur, in
which some attribute happens to partition the examples very well, despite being
unrelated to the actual target function. Whenever such coincidental regularities
exist, there is a risk of overfitting.

Overfitting is a significant practical difficulty for decision tree learning and
many other learning methods. For example, in one experimental study of ID3
involving five different learning tasks with noisy, nondeterministic data (Mingers
1989b), overfitting was found to decrease the accuracy of learned decision trees
by 10-25% on most problems.

There are several approaches to avoiding overfitting in decision tree learning.
These can be grouped into two classes:

approaches that stop growing the tree earlier, before it reaches the point
where it perfectly classifies the training data,

0 approaches that allow the tree to overfit the data, and then post-prune the
tree.

Although the first of these approaches might seem.more direct, the second
approach of post-pruning overfit trees has been found to be more successful in
practice. This is due to the difficulty in the first approach of estimating precisely
when to stop growing the tree.

Regardless of whether the correct tree size is found by stopping early or
by post-pruning, a key question is what criterion is to be used to determine the
correct final tree size. Approaches include:

0 Use a separate set of examples, distinct from the training examples, to eval-
uate the utility of post-pruning nodes from the tree.

0 Use all the available data for training, but apply a statistical test to estimate
whether expanding (or pruning) a particular node is likely to produce an
improvement beyond the training set. For example, Quinlan (1986) uses a
chi-square test to estimate whether further expanding a node is likely to
improve performance over the entire instance distribution, or only on the
current sample of training data.

0 Use an explicit measure of the complexity for encoding the training exam-
ples and the decision tree, halting growth of the tree when this encoding
size is minimized. This approach, based on a heuristic called the Minimum
Description Length principle, is discussed further in Chapter 6, as well as
in Quinlan and Rivest (1989) and Mehta et al. (199.5).

The first of the above approaches is the most common and is often referred
to as a training and validation set approach. We discuss the two main variants of
this approach below. In this approach, the available data are separated into two
sets of examples: a training set, which is used to form the learned hypothesis, and
a separate validation set, which is used to evaluate the accuracy of this hypothesis
over subsequent data and, in particular, to evaluate the impact of pruning this
hypothesis. The motivation is this: Even though the learner may be misled by
random errors and coincidental regularities within the training set, the validation
set is unlikely to exhibit the same random fluctuations. Therefore, the validation
set can be expected to provide a safety check against overfitting the spurious
characteristics of the training set. Of course, it is important that the validation set
be large enough to itself provide a statistically significant sample of the instances.
One common heuristic is to withhold one-third of the available examples for the
validation set, using the other two-thirds for training.

3.7.1.1 REDUCED ERROR PRUNING

How exactly might we use a validation set to prevent overfitting? One approach,
called reduced-error pruning (Quinlan 1987), is to consider each of the decision
nodes in the.tree to be candidates for pruning. Pruning a decision node consists of
removing the subtree rooted at that node, making it a leaf node, and assigning it
the most common classification of the training examples affiliated with that node.
Nodes are removed only if the resulting pruned tree performs no worse than-the

original over the validation set. This has the effect that any leaf node added due
to coincidental regularities in the training set is likely to be pruned because these
same coincidences are unlikely to occur in the validation set. Nodes are pruned
iteratively, always choosing the node whose removal most increases the decision
tree accuracy over the validation set. Pruning of nodes continues until further
pruning is harmful (i.e., decreases accuracy of the tree over the validation set).

The impact of reduced-error pruning on the accuracy of the decision tree
is illustrated in Figure 3.7. As in Figure 3.6, the accuracy of the tree is shown
measured over both training examples and test examples. The additional line in
Figure 3.7 shows accuracy over the test examples as the tree is pruned. When
pruning begins, the tree is at its maximum size and lowest accuracy over the test
set. As pruning proceeds, the number of nodes is reduced and accuracy over the
test set increases. Here, the available data has been split into three subsets: the
training examples, the validation examples used for pruning the tree, and a set of
test examples used to provide an unbiased estimate of accuracy over future unseen
examples. The plot shows accuracy over the training and test sets. Accuracy over
the validation set used for pruning is not shown.

Using a separate set of data to guide pruning is an effective approach pro-
vided a large amount of data is available. The major drawback of this approach
is that when data is limited, withholding part of it for the validation set reduces
even further the number of examples available for training. The following section
presents an alternative approach to pruning that has been found useful in many
practical situations where data is limited. Many additional techniques have been
proposed as well, involving partitioning the available data several different times in

7

---..--..._.._.._~~
" .------.------- 2--... -, .--.. -..... -... .-...

_____..
--... -.... --... -.___._..___...-_--------

On training data -
On test data ----

On test data (during pruning) - - - - -

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

FIGURE 3.7
Effect of reduced-error pruning in decision tree learning. This plot shows the same curves of training
and test set accuracy as in Figure 3.6. In addition, it shows the impact of reduced error pruning of
the tree produced by ID3. Notice the increase in accuracy over the test set as nodes are pruned from
the tree. Here, the validation set used for pruning is distinct from both the training and test sets.

multiple ways, then averaging the results. Empirical evaluations of alternative tree
pruning methods are reported by Mingers (1989b) and by Malerba et al. (1995).

3.7.1.2 RULE POST-PRUNING

In practice, one quite successful method for finding high accuracy hypotheses is
a technique we shall call rule post-pruning. A variant of this pruning method is
used by C4.5 (Quinlan 1993), which is an outgrowth of the original ID3 algorithm.
Rule post-pruning involves the following steps:

1. Infer the decision tree from the training set, growing the tree until the training
data is fit as well as possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule
for each path from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in
improving its estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this
sequence when classifying subsequent instances.

To illustrate, consider again the decision tree in Figure 3.1. In rule post-
pruning, one rule is generated for each leaf node in the tree. Each attribute test
along the path from the root to the leaf becomes a rule antecedent (precondition)
and the classification at the leaf node becomes the rule consequent (postcondition).
For example, the leftmost path of the tree in Figure 3.1 is translated into the rule

IF (Outlook = Sunny) A (Humidity = High)

THEN PlayTennis = No

Next, each such rule is pruned by removing any antecedent, or precondi-
tion, whose removal does not worsen its estimated accuracy. Given the above
rule, for example, rule post-pruning would consider removing the preconditions
(Outlook = Sunny) and (Humidity = High). It would select whichever of these
pruning steps produced the greatest improvement in estimated rule accuracy, then
consider pruning the second precondition as a further pruning step. No pruning
step is performed if it reduces the estimated rule accuracy.

As noted above, one method to estimate rule accuracy is to use a validation
set of examples disjoint from the training set. Another method, used by C4.5,
is to evaluate performance based on the training set itself, using a pessimistic
estimate to make up for the fact that the training data gives an estimate biased
in favor of the rules. More precisely, C4.5 calculates its pessimistic estimate by
calculating the rule accuracy over the training examples to which it applies, then
calculating the standard deviation in this estimated accuracy assuming a binomial
distribution. For a given confidence level, the lower-bound estimate is then taken
as the measure of rule performance (e.g., for a 95% confidence interval, rule
accuracy is pessimistically estimated by the observed accuracy over the training

set, minus 1.96 times the estimated standard deviation). The net effect is that for
large data sets, the pessimistic estimate is very close to the observed accuracy
(e.g., the standard deviation is very small), whereas it grows further from the
observed accuracy as the size of the data set decreases. Although this heuristic
method is not statistically valid, it has nevertheless been found useful in practice.
See Chapter 5 for a discussion of statistically valid approaches to estimating means
and confidence intervals.

Why convert the decision tree to rules before pruning? There are three main
advantages.

Converting to rules allows distinguishing among the different contexts in
which a decision node is used. Because each distinct path through the deci-
sion tree node produces a distinct rule, the pruning decision regarding that
attribute test can be made differently for each path. In contrast, if the tree
itself were pruned, the only two choices would be to remove the decision
node completely, or to retain it in its original form.
Converting to rules removes the distinction between attribute tests that occur
near the root of the tree and those that occur near the leaves. Thus, we avoid
messy bookkeeping issues such as how to reorganize the tree if the root node
is pruned while retaining part of the subtree below this test.
Converting to rules improves readability. Rules are often easier for
to understand.

3.7.2 Incorporating Continuous-Valued Attributes

Our initial definition of ID3 is restricted to attributes that take on a discrete set
of values. First, the target attribute whose value is predicted by the learned tree
must be discrete valued. Second, the attributes tested in the decision nodes of
the tree must also be discrete valued. This second restriction can easily be re-
moved so that continuous-valued decision attributes can be incorporated into the
learned tree. This can be accomplished by dynamically defining new discrete-
valued attributes that partition the continuous attribute value into a discrete set
of intervals. In particular, for an attribute A that is continuous-valued, the algo-
rithm can dynamically create a new boolean attribute A, that is true if A < c
and false otherwise. The only question is how to select the best value for the
threshold c.

As an example, suppose we wish to include the continuous-valued attribute
Temperature in describing the training example days in the learning task of Ta-
ble 3.2. Suppose further that the training examples associated with a particular
node in the decision tree have the following values for Temperature and the target
attribute PlayTennis.

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes NO

CHAPTER 3 DECISION TREE LEARNING 73

What threshold-based boolean attribute should be defined based on Temper-
ature? Clearly, we would like to pick a threshold, c, that produces the greatest
information gain. By sorting the examples according to the continuous attribute
A , then identifying adjacent examples that differ in their target classification, we
can generate a set of candidate thresholds midway between the corresponding
values of A. It can be shown that the value of c that maximizes information gain
must always lie at such a boundary (Fayyad 1991). These candidate thresholds
can then be evaluated by computing the information gain associated with each.
In the current example, there are two candidate thresholds, corresponding to the
values of Temperature at which the value of PlayTennis changes: (48 + 60)/2,
and (80 + 90)/2. The information gain can then be computed for each of the
candidate attributes, T e m p e r a t ~ r e , ~ ~ and Tempera t~re ,~~ , and the best can be
selected (Temperat~re ,~~) . This dynamically created boolean attribute can then
compete with the other discrete-valued candidate attributes available for growing
the decision tree. Fayyad and Irani (1993) discuss an extension to this approach
that splits the continuous attribute into multiple intervals rather than just two in-
tervals based on a single threshold. Utgoff and Brodley (1991) and Murthy et al.
(1994) discuss approaches that define features by thresholding linear combinations
of several continuous-valued attributes.

3.7.3 Alternative Measures for Selecting Attributes

There is a natural bias in the information gain measure that favors attributes with
many values over those with few values. As an extreme example, consider the
attribute Date, which has a very large number of possible values (e.g., March 4,
1979). If we were to add this attribute to the data in Table 3.2, it would have
the highest information gain of any of the attributes. This is because Date alone
perfectly predicts the target attribute over the training data. Thus, it would be
selected as the decision attribute for the root node of the tree and lead to a (quite
broad) tree of depth one, which perfectly classifies the training data. Of course,
this decision tree would fare poorly on subsequent examples, because it is not a
useful predictor despite the fact that it perfectly separates the training data.

What is wrong with the attribute Date? Simply put, it has so many possible
values that it is bound to separate the training examples into very small subsets.
Because of this, it will have a very high information gain relative to the training
examples, despite being a very poor predictor of the target function over unseen
instances.

One way to avoid this difficulty is to select decision attributes based on some
measure other than information gain. One alternative measure that has been used
successfully is the gain ratio (Quinlan 1986). The gain ratio measure penalizes
attributes such as Date by incorporating a term, called split informution, that is
sensitive to how broadly and uniformly the attribute splits the data:

74 MACHINE LEARNING

where S1 through S, are the c subsets of examples resulting from partitioning S
by the c-valued attribute A. Note that Splitlnfomzation is actually the entropy of
S with respect to the values of attribute A. This is in contrast to our previous
uses of entropy, in which we considered only the entropy of S with respect to the
target attribute whose value is to be predicted by the learned tree.

The Gain Ratio measure is defined in terms of the earlier Gain measure, as
well as this Splitlnfomzation, as follows

Gain (S, A)
GainRatio(S, A) r

Split Inf ormation(S, A)

Notice that the Splitlnfomzation term discourages the selection of attributes with
many uniformly distributed values. For example, consider a collection of n ex-
amples that are completely separated by attribute A (e.g., Date). In this case, the
Splitlnfomzation value will be log, n. In contrast, a boolean attribute B that splits
the same n examples exactly in half will have Splitlnfomzation of 1. If attributes
A and B produce the same information gain, then clearly B will score higher
according to the Gain Ratio measure.

One practical issue that arises in using GainRatio in place of Gain to
select attributes is that the denominator can be zero or very small when ISi 1 x IS1
for one of the Si. This either makes the GainRatio undefined or very large for
attributes that happen to have the same value for nearly all members of S. To
avoid selecting attributes purely on this basis, we can adopt some heuristic such
as first calculating the Gain of each attribute, then applying the GainRatio test
only considering those attributes with above average Gain (Quinlan 1986).

An alternative to the GainRatio, designed to directly address the above
difficulty, is a distance-based measure introduced by Lopez de Mantaras (1991).
This measure is based on defining a distance metric between partitions of'the
data. Each attribute is evaluated based on the distance between the data partition
it creates and the perfect partition (i.e., the partition that perfectly classifies the
training data). The attribute whose partition is closest to the perfect partition is
chosen. Lopez de Mantaras (1991) defines this distance measure, proves that it
is not biased toward attributes with large numbers of values, and reports experi-
mental studies indicating that the predictive accuracy of the induced trees is not
significantly different from that obtained with the Gain and Gain Ratio measures.
However, this distance measure avoids the practical difficulties associated with the
GainRatio measure, and in his experiments it produces significantly smaller trees
in the case of data sets whose attributes have very different numbers of values.

A variety of other selection measures have been proposed as well (e.g.,
see Breiman et al. 1984; Mingers 1989a; Kearns and Mansour 1996; Dietterich
et al. 1996). Mingers (1989a) provides an experimental analysis of the relative
effectiveness of several selection measures over a variety of problems. He reports
significant differences in the sizes of the unpruned trees produced by the different
selection measures. However, in his experimental domains the choice of attribute
selection measure appears to have a smaller impact on final accuracy than does
the extent and method of post-pruning.

CHAPTER 3 DECISION TREE LEARNING 75

3.7.4 Handling Training Examples with Missing Attribute Values

In certain cases, the available data may be missing values for some attributes.
For example, in a medical domain in which we wish to predict patient outcome
based on various laboratory tests, it may be that the lab test Blood-Test-Result is
available only for a subset of the patients. In such cases, it is common to estimate
the missing attribute value based on other examples for which this attribute has a
known value.

Consider the situation in which Gain(S, A) is to be calculated at node n in
the decision tree to evaluate whether the attribute A is the best attribute to test
at this decision node. Suppose that (x , c (x)) is one of the training examples in S
and that the value A(x) is unknown.

One strategy for dealing with the missing attribute value is to assign it the
value that is most common among training examples at node n. Alternatively, we
might assign it the most common value among examples at node n that have the
classification c (x) . The elaborated training example using this estimated value for
A(x) can then be used directly by the existing decision tree learning algorithm.
This strategy is examined by Mingers (1989a).

A second, more complex procedure is to assign a probability to each of the
possible values of A rather than simply assigning the most common value to A(x).
These probabilities can be estimated again based on the observed frequencies of
the various values for A among the examples at node n. For example, given a
boolean attribute A, if node n contains six known examples with A = 1 and four
with A = 0, then we would say the probability that A(x) = 1 is 0.6, and the
probability that A(x) = 0 is 0.4. A fractional 0.6 of instance x is now distributed
down the branch for A = 1, and a fractional 0.4 of x down the other tree branch.
These fractional examples are used for the purpose of computing information
Gain and can be further subdivided at subsequent branches of the tree if a second
missing attribute value must be tested. This same fractioning of examples can
also be applied after learning, to classify new instances whose attribute values
are unknown. In this case, the classification of the new instance is simply the
most probable classification, computed by summing the weights of the instance
fragments classified in different ways at the leaf nodes of the tree. This method
for handling missing attribute values is used in C4.5 (Quinlan 1993).

3.7.5 Handling Attributes with Differing Costs

In some learning tasks the instance attributes may have associated costs. For
example, in learning to classify medical diseases we might describe patients in
terms of attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults,
etc. These attributes vary significantly in their costs, both in terms of monetary
cost and cost to patient comfort. In such tasks, we would prefer decision trees that
use low-cost attributes where possible, relying on high-cost attributes only when
needed to produce reliable classifications.

ID3 can be modified to take into account attribute costs by introducing a cost
term into the attribute selection measure. For example, we might divide the Gpin

by the cost of the attribute, so that lower-cost attributes would be preferred. While
such cost-sensitive measures do not guarantee finding an optimal cost-sensitive
decision tree, they do bias the search in favor of low-cost attributes.

Tan and Schlimmer (1990) and Tan (1993) describe one such approach and
apply it to a robot perception task in which the robot must learn to classify dif-
ferent objects according to how they can be grasped by the robot's manipulator.
In this case the attributes correspond to different sensor readings obtained by a
movable sonar on the robot. Attribute cost is measured by the number of seconds
required to obtain the attribute value by positioning and operating the sonar. They
demonstrate that more efficient recognition strategies are learned, without sacri-
ficing classification accuracy, by replacing the information gain attribute selection
measure by the following measure

Cost (A)

Nunez (1988) describes a related approach and its application to learning
medical diagnosis rules. Here the attributes are different symptoms and laboratory
tests with differing costs. His system uses a somewhat different attribute selection
measure

2 G a W S . A) - 1

(Cost(A) +
where w E [0, 11 is a constant that determines the relative importance of cost
versus information gain. Nunez (1991) presents an empirical comparison of these
two approaches over a range of tasks.

3.8 SUMMARY AND FURTHER READING

The main points of this chapter include:

Decision tree learning provides a practical method for concept learning and
for learning other discrete-valued functions. The ID3 family of algorithms
infers decision trees by growing them from the root downward, greedily
selecting the next best attribute for each new decision branch added to the
tree.
ID3 searches a complete hypothesis space (i.e., the space of decision trees
can represent any discrete-valued function defined over discrete-valued in-
stances). It thereby avoids the major difficulty associated with approaches
that consider only restricted sets of hypotheses: that the target function might
not be present in the hypothesis space.
The inductive bias implicit in ID3 includes a preference for smaller trees;
that is, its search through the hypothesis space grows the tree only as large
as needed in order to classify the available training examples.
Overfitting the training data is an important issue in decision tree learning.
Because the training examples are only a sample of all possible instances,

CHAFER 3 DECISION TREE LEARNING 77

it is possible to add branches to the tree that improve performance on the
training examples while decreasing performance on other instances outside
this set. Methods for post-pruning the decision tree are therefore important
to avoid overfitting in decision tree learning (and other inductive inference
methods that employ a preference bias).
A large variety of extensions to the basic ID3 algorithm has been developed
by different researchers. These include methods for post-pruning trees, han-
dling real-valued attributes, accommodating training examples with miss-
ing attribute values, incrementally refining decision trees as new training
examples become available, using attribute selection measures other than
information gain, and considering costs associated with instance attributes.

Among the earliest work on decision tree learning is Hunt's Concept Learn-
ing System (CLS) (Hunt et al. 1966) and Friedman and Breiman's work resulting
in the CART system (Friedman 1977; Breiman et al. 1984). Quinlan's ID3 sys-
tem (Quinlan 1979, 1983) forms the basis for the discussion in this chapter. Other
early work on decision tree learning includes ASSISTANT (Kononenko et al. 1984;
Cestnik et al. 1987). Implementations of decision tree induction algorithms are
now commercially available on many computer platforms.

For further details on decision tree induction, an excellent book by Quinlan
(1993) discusses many practical issues and provides executable code for C4.5.
Mingers (1989a) and Buntine and Niblett (1992) provide two experimental studies
comparing different attribute-selection measures. Mingers (1989b) and Malerba et
al. (1995) provide studies of different pruning strategies. Experiments comparing
decision tree learning and other learning methods can be found in numerous
papers, including (Dietterich et al. 1995; Fisher and McKusick 1989; Quinlan
1988a; Shavlik et al. 1991; Thrun et al. 1991; Weiss and Kapouleas 1989).

EXERCISES

Give decision trees to represent the following boolean functions:
(a) A A -B
(b) A V [B A C]
(c) A X O R B
(d) [A A B] v [C A Dl
Consider the following set of training examples:

Instance Classification a1 a2

(a) What is the entropy of this collection of training examples with respect to the
target function classification?

(b) What is the information gain of a2 relative to these training examples?
3.3. True or false: If decision tree D2 is an elaboration of tree Dl, then D l is more-

general-than D2. Assume D l and D2 are decision trees representing arbitrary boolean
functions, and that D2 is an elaboration of D l if ID3 could extend D l into D2. If true,
give a proof; if false, a counterexample. (More-general-than is defined in Chapter 2.)

3.4. ID3 searches for just one consistent hypothesis, whereas the CANDIDATE-
ELIMINATION algorithm finds all consistent hypotheses. Consider the correspondence
between these two learning algorithms.
(a) Show the decision tree that would be learned by ID3 assuming it is given the

four training examples for the Enjoy Sport? target concept shown in Table 2.1
of Chapter 2.

(b) What is the relationship between the learned decision tree and the version space
(shown in Figure 2.3 of Chapter 2) that is learned from these same examples?
Is the learned tree equivalent to one of the members of the version space?

(c) Add the following training example, and compute the new decision tree. This
time, show the value of the information gain for each candidate attribute at each
step in growing the tree.

Sky Air-Temp Humidity Wind Water Forecast Enjoy-Sport?
Sunny Warm Normal Weak Warm Same No

(d) Suppose we wish to design a learner that (like ID3) searches a space of decision
tree hypotheses and (like CANDIDATE-ELIMINATION) finds all hypotheses con-
sistent with the data. In short, we wish to apply the CANDIDATE-ELIMINATION
algorithm to searching the space of decision tree hypotheses. Show the S and
G sets that result from the first training example from Table 2.1. Note S must
contain the most specific decision trees consistent with the data, whereas G must
contain the most general. Show how the S and G sets are refined by thesecond
training example (you may omit syntactically distinct trees that describe the same
concept). What difficulties do you foresee in applying CANDIDATE-ELIMINATION
to a decision tree hypothesis space?

REFERENCES
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, P. 1. (1984). ClassiJication and regression

trees. Belmont, CA: Wadsworth International Group.
Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45-77.
Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induction.

Machine Learning, 8, 75-86.
Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT-86: A knowledge-elicitation tool for

sophisticated users. In I. Bratko & N. LavraE (Eds.), Progress in machine learning. Bled,
Yugoslavia: Sigma Press.

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A comparison of ID3 and BACKPROPAGATION for
English text-to-speech mapping. Machine Learning, 18(1), 51-80.

Dietterich, T. G., Kearns, M., & Mansour, Y. (1996). Applying the weak learning framework to
understand and improve C4.5. Proceedings of the 13th International Conference on Machine
Learning (pp. 96104). San Francisco: Morgan Kaufmann.

Fayyad, U. M. (1991). On the induction of decision trees for multiple concept leaning, (Ph.D. dis-
sertation). EECS Department, University of Michigan.

C m 3 DECISION TREE LEARNING 79

Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision
tree generation. Machine Learning, 8, 87-102.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. In R. Bajcsy (Ed.), Proceedings of the 13th International Joint
Conference on ArtiJcial Intelligence (pp. 1022-1027). Morgan-Kaufmann.

Fayyad, U. M., Weir, N., & Djorgovski, S. (1993). SKICAT: A machine learning system for auto-
mated cataloging of large scale sky surveys. Proceedings of the Tenth International Conference
on Machine Learning (pp. 112-1 19). Amherst, MA: Morgan Kaufmann.

Fisher, D. H., and McKusick, K. B. (1989). An empirical comparison of ID3 and back-propagation.
Proceedings of the Eleventh International Joint Conference on A1 (pp. 788-793). Morgan
Kaufmann.

Fnedman, J. H. (1977). A recursive partitioning decision rule for non-parametric classification. IEEE
Transactions on Computers @p. 404408).

Hunt, E. B. (1975). Art$cial Intelligence. New Yorc Academic Press.
Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in Induction. New York: Academic Press.
Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree learning

algorithms. Proceedings of the 28th ACM Symposium on the Theory of Computing. New York:
ACM Press.

Kononenko, I., Bratko, I., & Roskar, E. (1984). Experiments in automatic learning of medical diag-
nostic rules (Technical report). Jozef Stefan Institute, Ljubljana, Yugoslavia.

Lopez de Mantaras, R. (1991). A distance-based attribute selection measure for decision tree induc-
tion. Machine Learning, 6(1), 81-92.

Malerba, D., Floriana, E., & Semeraro, G. (1995). A further comparison of simplification methods for
decision tree. induction. In D. Fisher & H. Lenz (Eds.), Learningfrom data: AI and statistics.
Springer-Verlag.

Mehta, M., Rissanen, J., & Agrawal, R. (1995). MDL-based decision tree pruning. Proceedings of
the First International Conference on Knowledge Discovery and Data Mining (pp. 216-221).
Menlo Park, CA: AAAI Press.

Mingers, J. (1989a). An empirical comparison of selection measures for decision-tree induction.
Machine Learning, 3(4), 319-342.

Mingers, J. (1989b). An empirical comparison of pruning methods for decision-tree induction.
Machine Learning, 4(2), 227-243.

Murphy, P. M., & Pazzani, M. J. (1994). Exploring the decision forest: An empirical investigation
of Occam's razor in decision tree induction. Journal of Artijicial Intelligence Research, 1,
257-275.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees.
Journal of Art$cial Intelligence Research, 2, 1-33.

Nunez, M. (1991). The use of background knowledge in decision tree induction. Machine Learning,
6(3), 23 1-250.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learn-
ing, 5, 71-100.

Qulnlan, J. R. (1979). Discovering rules by induction from large collections of examples. In D.
Michie (Ed.), Expert systems in the micro electronic age. Edinburgh Univ. Press.

Qulnlan, J. R. (1983). Learning efficient classification procedures and their application to chess end
games. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. San Matw, CA: Morgan Kaufmann.

Qulnlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Qulnlan, J. R. (1987). Rule induction with statistical data-a comparison with multiple regression.

Journal of the Operational Research Society, 38,347-352.
Quinlan, J.R. (1988). An empirical comparison of genetic and decision-tree classifiers. Proceedings

of the Fifrh International Machine Learning Conference (135-141). San Matw, CA: Morgan
Kaufmann.

Quinlan, J.R. (1988b). Decision trees and multi-valued attributes. In Hayes, Michie, & Richards
(Eds.), Machine Intelligence 1 1 , (pp. 305-318). Oxford, England: Oxford University Press.

80 MACHINE LEARNING

Quinlan, J. R., & Rivest, R. (1989). Information and Computation, (go), 227-248.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.

Annals of Statistics 11 (2), 416-431.
Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 113-152.
Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms: an

experimental comparison. Machine kaming , 6(2), 11 1-144.
Tan, M. (1993). Cost-sensitive learning of classification knowledge and its applications in robotics.

Machine Learning, 13(1), 1-33.
Tan, M., & Schlimmer, J. C. (1990). Two case studies in cost-sensitive concept acquisition. Pro-

ceedings of the AAAZ-90.
Thrun, S. B. et al. (1991). The Monk's problems: A pe~ormance comparison of different learn-

ing algorithms, (Technical report CMU-FS-91-197). Computer Science Department, Carnegie
Mellon Univ., Pittsburgh, PA.

Turney, P. D. (1995). Cost-sensitive classification: empirical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of A1 Research, 2, 369409.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4(2), 161-186.
Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees, (COINS Technical Report

91-10). University of Massachusetts, Amherst, MA.
Weiss, S., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets,

and machine learning classification methods. Proceedings of the Eleventh IJCAI, (781-787),
Morgan Kaufmann.

