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The problem of inducing general functions from specific training examples is central 
to learning. This chapter considers concept learning: acquiring the definition of a 
general category given a sample of positive and negative training examples of the 
category. Concept learning can be formulated as a problem of searching through a 
predefined space of potential hypotheses for the hypothesis that best fits the train- 
ing examples. In many cases this search can be efficiently organized by taking 
advantage of a naturally occurring structure over the hypothesis space-a general- 
to-specific ordering of hypotheses. This chapter presents several learning algorithms 
and considers situations under which they converge to the correct hypothesis. We 
also examine the nature of inductive learning and the justification by which any 
program may successfully generalize beyond the observed training data. 

2.1 INTRODUCTION 

Much of learning involves acquiring general concepts from specific training exam- 
ples. People, for example, continually learn general concepts or categories such 
as "bird," "car," "situations in which I should study more in order to pass the 
exam," etc. Each such concept can be viewed as describing some subset of ob- 
jects or events defined over a larger set (e.g., the subset of animals that constitute 
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birds). Alternatively, each concept can be thought of as a boolean-valued function 
defined over this larger set (e.g., a function defined over all animals, whose value 
is true for birds and false for other animals). 

In this chapter we consider the problem of automatically inferring the general 
definition of some concept, given examples labeled as+.members or nonmembers 
of the concept. This task is commonly referred to as concept learning, or approx- 
imating a boolean-valued function from examples. 

Concept learning. Inferring a boolean-valued function from training examples of 
its input and output. 

2.2 A CONCEPT LEARNING TASK 

To ground our discussion of concept learning, consider the example task of learn- 
ing the target concept "days on which my friend Aldo enjoys his favorite water 
sport." Table 2.1 describes a set of example days, each represented by a set of 
attributes. The attribute EnjoySport indicates whether or not Aldo enjoys his 
favorite water sport on this day. The task is to learn to predict the value of 
EnjoySport for an arbitrary day, based on the values of its other attributes. 

What hypothesis representation shall we provide to the learner in this case? 
Let us begin by considering a simple representation in which each hypothesis 
consists of a conjunction of constraints on the instance attributes. In particular, 
let each hypothesis be a vector of six constraints, specifying the values of the six 
attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. For each attribute, 
the hypothesis will either 

0 indicate by a "?' that any value is acceptable for this attribute, 
0 specify a single required value (e.g., Warm) for the attribute, or 
0 indicate by a "0" that no value is acceptable. 

If some instance x satisfies all the constraints of hypothesis h, then h clas- 
sifies x as a positive example (h(x) = 1). To illustrate, the hypothesis that Aldo 
enjoys his favorite sport only on cold days with high humidity (independent of 
the values of the other attributes) is represented by the expression 

(?, Cold, High, ?, ?, ?) 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 
2 Sunny Warm High Strong Warm Same Yes 
3 Rainy Cold High Strong Warm Change No 
4 Sunny Warm High Strong Cool Change Yes 

TABLE 2.1 
Positive and negative training examples for the target concept EnjoySport. 
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The most general hypothesis-that every day is a positive example-is repre- 
sented by 

(?, ?, ?, ?, ?, ?) 

and the most specific possible hypothesis-that no day is a positive example-is 
represented by 

(0,0,0,0,0,0) 

To summarize, the EnjoySport concept learning task requires learning the 
set of days for which EnjoySport = yes, describing this set by a conjunction 
of constraints over the instance attributes. In general, any concept learning task 
can be described by the set of instances over which the target function is defined, 
the target function, the set of candidate hypotheses considered by the learner, and 
the set of available training examples. The definition of the EnjoySport concept 
learning task in this general form is given in Table 2.2. 

2.2.1 Notation 

Throughout this book, we employ the following terminology when discussing 
concept learning problems. The set of items over which the concept is defined 
is called the set of instances, which we denote by X. In the current example, X 
is the set of all possible days, each represented by the attributes Sky, AirTemp, 
Humidity, Wind, Water, and Forecast. The concept or function to be learned is 
called the target concept, which we denote by c. In general, c can be any boolean- 
valued function defined over the instances X; that is, c : X + {O,  1). In the current 
example, the target concept corresponds to the value of the attribute EnjoySport 
(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 

- 

0 Given: 
0 Instances X: Possible days, each described by the attributes 

0 Sky (with possible values Sunny, Cloudy, and Rainy), 
0 AirTemp (with values Warm and Cold), 
0 Humidity (with values Normal and High), 
0 Wind (with values Strong and Weak), 
0 Water (with values Warm and Cool), and 
0 Forecast (with values Same and Change). 

0 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at- 
tributes Sky, AirTemp, Humidity, Wind,  Water, and Forecast. The constraints may be "?" 
(any value is acceptable), " 0  (no value is acceptable), or a specific value. 

0 Target concept c: EnjoySport : X + (0, l )  
0 Training examples D: Positive and negative examples of the target function (see Table 2.1). 

0 Determine: 
0 A hypothesis h in H such that h(x)  = c(x) for all x in X. 

TABLE 2.2 
The EnjoySport concept learning task. 



When learning the target concept, the learner is presented a set of training 
examples, each consisting of an instance x  from X, along with its target concept 
value c ( x )  (e.g., the training examples in Table 2.1). Instances for which c ( x )  = 1 
are called positive examples, or members of the target concept. Instances for which 
C ( X )  = 0 are called negative examples, or nonmembers of the target concept. 
We will often write the ordered pair ( x ,  c ( x ) )  to describe the training example 
consisting of the instance x and its target concept value c ( x ) .  We use the symbol 
D to denote the set of available training examples. 

Given a set of training examples of the target concept c ,  the problem faced 
by the learner is to hypothesize, or estimate, c .  We use the symbol H to denote 
the set of all possible hypotheses that the learner may consider regarding the 
identity of the target concept. Usually H is determined by the human designer's 
choice of hypothesis representation. In general, each hypothesis h  in H represents 
a boolean-valued function defined over X; that is, h  : X --+ {O, 1). The goal of the 
learner is to find a hypothesis h  such that h ( x )  = c ( x )  for a" x  in X. 

2.2.2 The Inductive Learning Hypothesis 

Notice that although the learning task is to determine a hypothesis h identical 
to the target concept c  over the entire set of instances X, the only information 
available about c  is its value over the training examples. Therefore, inductive 
learning algorithms can at best guarantee that the output hypothesis fits the target 
concept over the training data. Lacking any further information, our assumption 
is that the best hypothesis regarding unseen instances is the hypothesis that best 
fits the observed training data. This is the fundamental assumption of inductive 
learning, and we will have much more to say about it throughout this book. We 
state it here informally and will revisit and analyze this assumption more formally 
and more quantitatively in Chapters 5, 6, and 7. 

The inductive learning hypothesis. Any hypothesis found to approximate the target 
function well over a sufficiently large set of training examples will also approximate 
the target function well over other unobserved examples. 

2.3 CONCEPT LEARNING AS SEARCH 

Concept learning can be viewed as the task of searching through a large space of 
hypotheses implicitly defined by the hypothesis representation. The goal of this 
search is to find the hypothesis that best fits the training examples. It is important 
to note that by selecting a hypothesis representation, the designer of the learning 
algorithm implicitly defines the space of all hypotheses that the program can 
ever represent and therefore can ever learn. Consider, for example, the instances 
X and hypotheses H in the EnjoySport learning task. Given that the attribute 
Sky has three possible values, and that AirTemp, Humidity, Wind, Water, and 
Forecast each have two possible values, the instance space X contains exactly 



3  . 2  2 . 2  2 . 2  = 96 distinct instances. A similar calculation shows that there are 
5 .4 -4  - 4  - 4 . 4  = 5  120 syntactically distinct hypotheses within H. Notice, however, 
that every hypothesis containing one or more "IZI" symbols represents the empty 
set of instances; that is, it classifies every instance as negative. Therefore, the 
number of semantically distinct hypotheses is only 1 + (4 .3 .3 .3 .3 .3 )  = 973. Our 
EnjoySport example is a very simple learning task, with a relatively small, finite 
hypothesis space. Most practical learning tasks involve much larger, sometimes 
infinite, hypothesis spaces. 

If we view learning as a search problem, then it is natural that our study 
of learning algorithms will e x a ~ t h e  different strategies for searching the hypoth- 
esis space. We will be particula ly interested in algorithms capable of efficiently 
searching very large or infinite hypothesis spaces, to find the hypotheses that best 
fit the training data. 

2.3.1 General-to-Specific Ordering of Hypotheses 

Many algorithms for concept learning organize the search through the hypothesis 
space by relying on a very useful structure that exists for any concept learning 
problem: a general-to-specific ordering of hypotheses. By taking advantage of this 
naturally occurring structure over the hypothesis space, we can design learning 
algorithms that exhaustively search even infinite hypothesis spaces without explic- 
itly enumerating every hypothesis. To illustrate the general-to-specific ordering, 
consider the two hypotheses 

hi = (Sunny, ?, ?, Strong, ?, ?) 

h2 = (Sunny, ?, ?, ?, ?, ?) 

Now consider the sets of instances that are classified positive by hl and by h2. 
Because h2 imposes fewer constraints on the instance, it classifies more instances 
as positive. In fact, any instance classified positive by hl will also be classified 
positive by h2. Therefore, we say that h2 is more general than hl. 

This intuitive "more general than" relationship between hypotheses can be 
defined more precisely as follows. First, for any instance x in X and hypothesis 
h in H, we say that x satisjies h if and only if h(x) = 1. We now define the 
more-general~han_or.-equal~o relation in terms of the sets of instances that sat- 
isfy the two hypotheses: Given hypotheses hj and hk, hj is more-general-thanm-- 
equaldo hk if and only if any instance that satisfies hk also satisfies hi. 

Definition: Let hj and hk be boolean-valued functions defined over X. Then hj is 
moregeneral-than-or-equal-to hk (written hj 2, h k )  if and only if 

We will also find it useful to consider cases where one hypothesis is strictly more 
general than the other. Therefore, we will say that hj is (strictly) more-generaldhan 
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I m t a n c e s  X H y p o t h e s e s  H 

I I 

A 
Specific 

General 

t 
i 

XI= <Sunny, W a n ,  High, Strong, Cool, Same> h l =  <Sunny, ?, ?, Strong, ?, ?> 

x = <Sunny, Warm, High, Light, Warm, Same> 
2 

h = <Sunny, ?, ?, ?, ?, ?> 
2 

h 3 = <Sunny, ?, ?, 7, Cool, ?> 

FIGURE 2.1 
Instances, hypotheses, and the m o r e - g e n e r a l - t h a n  relation. The box on the left represents the set X 
of all instances, the box on the right the set H of all hypotheses. Each hypothesis corresponds to 
some subset of X-the subset of instances that it classifies positive. The arrows connecting hypotheses 
represent the m o r e - g e n e r a l - t h a n  relation, with the arrow pointing toward the less general hypothesis. 
Note the subset of instances characterized by h2 subsumes the subset characterized by h l ,  hence h2 
is m o r e - g e n e r a l - t h a n  h l .  

hk (written hj >, hk)  if and only if (hj  p,  hk) A (hk 2 ,  hi) .  Finally, we will 
sometimes find the inverse useful and will say that hj  is morespecijkthan hk 
when hk is more_general-than h j .  

To illustrate these definitions, consider the three hypotheses h l ,  h2, and 
h3 from our Enjoysport  example, shown in Figure 2.1. How are these three 
hypotheses related by the p,  relation? As noted earlier, hypothesis h2 is more 
general than hl because every instance that satisfies hl also satisfies h2. Simi- 
larly, h2 is more general than h3. Note that neither hl nor h3 is more general 
than the other; although the instances satisfied by these two hypotheses intersect, 
neither set subsumes the other. Notice also that the p, and >, relations are de- 
fined independent of the target concept. They depend only on which instances 
satisfy the two hypotheses and not on the classification of those instances accord- 
ing to the target concept. Formally, the p,  relation defines a partial order over 
the hypothesis space H (the relation is reflexive, antisymmetric, and transitive). 
Informally, when we say the structure is a partial (as opposed to total) order, we 
mean there may be pairs of hypotheses such as hl and h3, such that hl 2 ,  h3 and 
h3 2,  h l .  

The pg relation is important because it provides a useful structure over the 
hypothesis space H for any concept learning problem. The following sections 
present concept learning algorithms that take advantage of this partial order to 
efficiently organize the search for hypotheses that fit the training data. 



1. Initialize h to the most specific hypothesis in H 

2. For each positive training instance x 
0 For each attribute constraint a, in h 

If the constraint a, is satisfied by x 
Then do nothing 
Else replace a, in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h 

TABLE 2.3 
FIND-S Algorithm. 

2.4 FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS 

How can we use the more-general-than partial ordering to organize the search for 
a hypothesis consistent with the observed training examples? One way is to begin 
with the most specific possible hypothesis in H, then generalize this hypothesis 
each time it fails to cover an observed positive training example. (We say that 
a hypothesis "covers" a positive example if it correctly classifies the example as 
positive.) To be more precise about how the partial ordering is used, consider the 
FIND-S algorithm defined in Table 2.3. 

To illustrate this algorithm, assume the learner is given the sequence of 
training examples from Table 2.1 for the EnjoySport task. The first step of FIND- 
S is to initialize h to the most specific hypothesis in H 

Upon observing the first training example from Table 2.1, which happens to be a 
positive example, it becomes clear that our hypothesis is too specific. In particular, 
none of the "0" constraints in h are satisfied by this example, so each is replaced 
by the next more general constraint {hat fits the example; namely, the attribute 
values for this training example. 

h -+ (Sunny, Warm, Normal, Strong, Warm, Same) 

This h is still very specific; it asserts that all instances are negative except for 
the single positive training example we have observed. Next, the second training 
example (also positive in this case) forces the algorithm to further generalize h, 
this time substituting a "?' in place of any attribute value in h that is not satisfied 
by the new example. The refined hypothesis in this case is 

h -+ (Sunny, Warm, ?, Strong, Warm, Same) 

Upon encountering the third training example-in this case a negative exam- 
ple-the algorithm makes no change to h. In fact, the FIND-S algorithm simply 
ignores every negative example! While this may at first seem strange, notice that 
in the current case our hypothesis h is already consistent with the new negative ex- 
ample (i-e., h correctly classifies this example as negative), and hence no revision 



is needed. In the general case, as long as we assume that the hypothesis space H 
contains a hypothesis that describes the true target concept c and that the training 
data contains no errors, then the current hypothesis h can never require a revision 
in response to a negative example. To see why, recall that the current hypothesis 
h is the most specific hypothesis in H consistent with the observed positive exam- 
ples. Because the target concept c is also assumed to be in H and to be consistent 
with the positive training examples, c must be more.general_than-or-equaldo h. 
But the target concept c will never cover a negative example, thus neither will 
h (by the definition of more-general~han). Therefore, no revision to h will be 
required in response to any negative example. 

To complete our trace of FIND-S, the fourth (positive) example leads to a 
further generalization of h 

h t (Sunny, Warm, ?, Strong, ?, ?) 

The FIND-S algorithm illustrates one way in which the more-generaldhan 
partial ordering can be used to organize the search for an acceptable hypothe- 
sis. The search moves from hypothesis to hypothesis, searching from the most 
specific to progressively more general hypotheses along one chain of the partial 
ordering. Figure 2.2 illustrates this search in terms of the instance and hypoth- 
esis spaces. At each step, the hypothesis is generalized only as far as neces- 
sary to cover the new positive example. Therefore, at each stage the hypothesis 
is the most specific hypothesis consistent with the training examples observed 
up to this point (hence the name FIND-S). The literature on concept learning is 

Instances X Hypotheses H 

specific 

General 

* 1 = <Sunny Warm Normal Strong Warm Same>, + h ,  = <Sunny Warm Normal Strong Warm Same> 
x2 = <Sunny Warm High Strong Warm Same>, + h2 = <Sunny Warm ? Strong Warm Same> 

X3 = <Rainy Cold High Strong Warm Change>, - h = <Sunny Warm ? Strong Warm Same> 
3 

x - <Sunny Warm High Strong Cool Change>, + h - <Sunny Warm ? Strong ? ? > 4- 4 - 

FIGURE 2.2 
'The hypothesis space search performed by FINDS. The search begins (ho) with the most specific 
hypothesis in H, then considers increasingly general hypotheses (hl  through h4) as mandated by the 
training examples. In the instance space diagram, positive training examples are denoted by "+," 
negative by "-," and instances that have not been presented as training examples are denoted by a 
solid circle. 



populated by many different algorithms that utilize this same more-general-than 
partial ordering to organize the search in one fashion or another. A number of 
such algorithms are discussed in this chapter, and several others are presented in 
Chapter 10. 

The key property of the FIND-S algorithm is that for hypothesis spaces de- 
scribed by conjunctions of attribute constraints (such as H for the EnjoySport 
task), FIND-S is guaranteed to output the most specific hypothesis within H 
that is consistent with the positive training examples. Its final hypothesis will 
also be consistent with the negative examples provided the correct target con- 
cept is contained in H, and provided the training examples are correct. How- 
ever, there are several questions still left unanswered by this learning algorithm, 
such as: 

Has the learner converged to the correct target concept? Although FIND-S 
will find a hypothesis consistent with the training data, it has no way to 
determine whether it has found the only hypothesis in H consistent with 
the data (i.e., the correct target concept), or whether there are many other 
consistent hypotheses as well. We would prefer a learning algorithm that 
could determine whether it had converged and, if not, at least characterize 
its uncertainty regarding the true identity of the target concept. 

0 Why prefer the most specific hypothesis? In case there are multiple hypothe- 
ses consistent with the training examples, FIND-S will find the most specific. 
It is unclear whether we should prefer this hypothesis over, say, the most 
general, or some other hypothesis of intermediate generality. 

0 Are the training examples consistent? In most practical learning problems 
there is some chance that the training examples will contain at least some 
errors or noise. Such inconsistent sets of training examples can severely 
mislead FIND-S, given the fact that it ignores negative examples. We would 
prefer an algorithm that could at least detect when the training data is in- 
consistent and, preferably, accommodate such errors. 

0 What if there are several maximally specific consistent hypotheses? In the 
hypothesis language H for the EnjoySport task, there is always a unique, 
most specific hypothesis consistent with any set of positive examples. How- 
ever, for other hypothesis spaces (discussed later) there can be several maxi- 
mally specific hypotheses consistent with the data. In this case, FIND-S must 
be extended to allow it to backtrack on its choices of how to generalize the 
hypothesis, to accommodate the possibility that the target concept lies along 
a different branch of the partial ordering than the branch it has selected. Fur- 
thermore, we can define hypothesis spaces for which there is no maximally 
specific consistent hypothesis, although this is more of a theoretical issue 
than a practical one (see Exercise 2.7). 



2.5 VERSION SPACES AND THE CANDIDATE-ELIMINATION 
ALGORITHM 

This section describes a second approach to concept learning, the CANDIDATE- 
ELIMINATION algorithm, that addresses several of the limitations of FIND-S. Notice 
that although FIND-S outputs a hypothesis from H,that is consistent with the 
training examples, this is just one of many hypotheses from H that might fit the 
training data equally well. The key idea in the CANDIDATE-ELIMINATION algorithm 
is to output a description of the set of all hypotheses consistent with the train- 
ing examples. Surprisingly, the CANDIDATE-ELIMINATION algorithm computes the 
description of this set without explicitly enumerating all of its members. This is 
accomplished by again using the more-general-than partial ordering, this time 
to maintain a compact representation of the set of consistent hypotheses and to 
incrementally refine this representation as each new training example is encoun- 
tered. 

The CANDIDATE-ELIMINATION algorithm has been applied to problems such 
as learning regularities in chemical mass spectroscopy (Mitchell 1979) and learn- 
ing control rules for heuristic search (Mitchell et al. 1983). Nevertheless, prac- 
tical applications of the CANDIDATE-ELIMINATION and FIND-S algorithms are lim- 
ited by the fact that they both perform poorly when given noisy training data. 
More importantly for our purposes here, the CANDIDATE-ELIMINATION algorithm 
provides a useful conceptual framework for introducing several fundamental is- 
sues in machine learning. In the remainder of this chapter we present the algo- 
rithm and discuss these issues. Beginning with the next chapter, we will ex- 
amine learning algorithms that are used more frequently with noisy training 
data. 

2.5.1 Representation 

The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are 
consistent with the observed training examples. In order to define this algorithm 
precisely, we begin with a few basic definitions. First, let us say that a hypothesis 
is consistent with the training examples if it correctly classifies these examples. 

Definition: A hypothesis h is consistent with a set of training examples D if and 
only if h(x) = c(x) for each example (x, c(x))  in D. 

Notice the key difference between this definition of consistent and our earlier 
definition of satisfies. An example x is said to satisfy hypothesis h  when h(x) = 1, 
regardless of whether x is a positive or negative example of the target concept. 
However, whether such an example is consistent with h  depends on the target 
concept, and in particular, whether h(x )  = c (x ) .  

The CANDIDATE-ELIMINATION algorithm represents the set of all hypotheses 
consistent with the observed training examples. This subset of all hypotheses is 



called the version space with respect to the hypothesis space H and the training 
examples D, because it contains all plausible versions of the target concept. 

Dejnition: The version space, denoted V S H V D ,  with respect to hypothesis space H 
and training examples D, is the subset of hypotheses from H consistent with the 
training examples in D. 

V S H , ~  = {h E HIConsistent(h, D ) ]  

2.5.2 The LIST-THEN-ELIMINATE Algorithm 

One obvious way to represent the version space is simply to list all of its members. 
This leads to a simple learning algorithm, which we might call the LIST-THEN- 
ELIMINATE algorithm, defined in Table 2.4. 

The LIST-THEN-ELIMINATE algorithm first initializes the version space to con- 
tain all hypotheses in H, then eliminates any hypothesis found inconsistent with 
any training example. The version space of candidate hypotheses thus shrinks 
as more examples are observed, until ideally just one hypothesis remains that is 
consistent with all the observed examples. This, presumably, is the desired target 
concept. If insufficient data is available to narrow the version space to a single 
hypothesis, then the algorithm can output the entire set of hypotheses consistent 
with the observed data. 

In principle, the LIST-THEN-ELIMINATE algorithm can be applied whenever 
the hypothesis space H is finite. It has many advantages, including the fact that it 
is guaranteed to output all hypotheses consistent with the training data. Unfortu- 
nately, it requires exhaustively enumerating all hypotheses in H-an unrealistic 
requirement for all but the most trivial hypothesis spaces. 

2.5.3 A More Compact Representation for Version Spaces 

The CANDIDATE-ELIMINATION algorithm works on the same principle as the above 
LIST-THEN-ELIMINATE algorithm. However, it employs a much more compact rep- 
resentation of the version space. In particular, the version space is represented 
by its most general and least general members. These members form general and 
specific boundary sets that delimit the version space within the partially ordered 
hypothesis space. 

The LIST-THEN-ELIMINATE Algorithm 

1. VersionSpace c a list containing every hypothesis in H 

2. For each training example, ( x ,  c (x) )  

remove from VersionSpace any hypothesis h for which h(x) # c ( x )  
3. Output the list of hypotheses in VersionSpace 

TABLE 2.4 
The LIST-THEN-ELIMINATE algorithm. 



{<Sunny, Warm, ?, Strong, 7, ?> 1 

<Sunny, ?, 7, Strong, 7, ?> <Sunny, Warm, ?. ?, ?, ?> <?, Warm, ?, strbng, ?, ?> 

FIGURE 2.3 
A version space with its general and specific boundary sets. The version space includes all six 
hypotheses shown here, but can be represented more simply by S and G .  Arrows indicate instances 
of the more-general-than relation. This is the version space for the Enjoysport  concept learning 
problem and training examples described in Table 2.1. 

To illustrate this representation for version spaces, consider again the En- 
joysport concept learning problem described in Table 2.2. Recall that given the 
four training examples from Table 2.1, FIND-S outputs the hypothesis 

h = (Sunny, Warm, ?, Strong, ?, ?) 

In fact, this is just one of six different hypotheses from H that are consistent 
with these training examples. All six hypotheses are shown in Figure 2.3. They 
constitute the version space relative to this set of data and this hypothesis repre- 
sentation. The arrows among these six hypotheses in Figure 2.3 indicate instances 
of the more-general~han relation. The CANDIDATE-ELIMINATION algorithm rep- 
resents the version space by storing only its most general members (labeled G 
in Figure 2.3) and its most specific (labeled S in the figure). Given only these 
two sets S and G, it is possible to enumerate all members of the version space 
as needed by generating the hypotheses that lie between these two sets in the 
general-to-specific partial ordering over hypotheses. 

It is intuitively plausible that we can represent the version space in terms of 
its most specific and most general members. Below we define the boundary sets 
G and S precisely and prove that these sets do in fact represent the version space. 

Definition: The general boundary G, with respect to hypothesis space H and training 
data D, is the set of maximally general members of H consistent with D. 

G = {g E HIConsistent(g, D) A (-3gf E H)[(gf  >, g) A Consistent(gt, D)]]  

Definition: The specific boundary S, with respect to hypothesis space H and training 
data D, is the set of minimally general (i.e., maximally specific) members of H 
consistent with D. 

S rn {s E H(Consistent(s, D) A (-3s' E H)[(s >, s f )  A Consistent(st, D)])  



As long as the sets G and S are well defined (see Exercise 2.7), they com- 
pletely specify the version space. In particular, we can show that the version space 
is precisely the set of hypotheses contained in G ,  plus those contained in S, plus 
those that lie between G and S in the partially ordered hypothesis space. This is 
stated precisely in Theorem 2.1. 

Theorem 2.1. Version space representation theorem. Let X be an arbitrary set 
of instances and let H be a set of boolean-valued hypotheses defined over X. Let 
c : X + {O, 1) be an arbitrary target concept defined over X, and let D be an 
arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S  and 
G are well defined, 

Proof. To prove the theorem it suffices to show that (1) every h satisfying the right- 
hand side of the above expression is in V S H , ~  and (2) every member of V S H , ~  
satisfies the right-hand side of the expression. To show (1) let g be an arbitrary 
member of G,  s be an arbitrary member of S, and h be an arbitrary member of H, 
such that g 2, h 2, s. Then by the definition of S, s must be satisfied by all positive 
examples in D. Because h 2, s, h must also be satisfied by all positive examples in 
D. Similarly, by the definition of G,  g cannot be satisfied by any negative example 
in D, and because g 2, h, h cannot be satisfied by any negative example in D. 
Because h is satisfied by all positive examples in D and by no negative examples 
in D, h is consistent with D, and therefore h is a member of V S H , ~ .  This proves 
step (1). The argument for (2) is a bit more complex. It can be proven by assuming 
some h in V S H , ~  that does not satisfy the right-hand side of the expression, then 
showing that this leads to an inconsistency. (See Exercise 2.6.) 0 

2.5.4 CANDIDATE-ELIMINATION Learning Algorithm 

The CANDIDATE-ELIMINATION algorithm computes the version space containing 
all hypotheses from H that are consistent with an observed sequence of training 
examples. It begins by initializing the version space to the set of all hypotheses 
in H; that is, by initializing the G boundary set to contain the most general 
hypothesis in H 

Go + {(?, ?, ?, ?, ?, ?)} 

and initializing the S boundary set to contain the most specific (least general) 
hypothesis 

so c- ((@,PI, @,PI, 0,0)1 

These two boundary sets delimit the entire hypothesis space, because every other 
hypothesis in H is both more general than So and more specific than Go.  As 
each training example is considered, the S and G boundary sets are generalized 
and specialized, respectively, to eliminate from the version space any hypothe- 
ses found inconsistent with the new training example. After all examples have 
been processed, the computed version space contains all the hypotheses consis- 
tent with these examples and only these hypotheses. This algorithm is summarized 
in Table 2.5. 
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Initialize G to the set of maximally general hypotheses in H 
Initialize S to the set of maximally specific hypotheses in H 
For each training example d, do 
0 If d is a positive example 

Remove from G any hypothesis inconsistent with d , 
0 For each hypothesis s in S that is not consistent with d ,- 

0 Remove s from S 
0 Add to S all minimal generalizations h of s such that 

0 h is consistent with d, and some member of G is more general than h 
0 Remove from S any hypothesis that is more general than another hypothesis in S 

0 If d is a negative example 
0 Remove from S any hypothesis inconsistent with d 

For each hypothesis g in G that is not consistent with d 
Remove g from G 

0 Add to G all minimal specializations h of g such that 
0 h is consistent with d, and some member of S is more specific than h 

0 Remove from G any hypothesis that is less general than another hypothesis in G 

TABLE 2.5 
CANDIDATE-ELIMINATION algorithm using version spaces. Notice the duality in how positive and 
negative examples influence S and G. 

Notice that the algorithm is specified in terms of operations such as comput- 
ing minimal generalizations and specializations of given hypotheses, and identify- 
ing nonrninimal and nonmaximal hypotheses. The detailed implementation of these 
operations will depend, of course, on the specific representations for instances and 
hypotheses. However, the algorithm itself can be applied to any concept learn- 
ing task and hypothesis space for which these operations are well-defined. In the 
following example trace of this algorithm, we see how such operations can be 
implemented for the representations used in the EnjoySport example problem. 

2.5.5 An Illustrative Example 

Figure 2.4 traces the CANDIDATE-ELIMINATION algorithm applied to the first two 
training examples from Table 2.1. As described above, the boundary sets are first 
initialized to Go and So, the most general and most specific hypotheses in H, 
respectively. 

When the first training example is presented (a positive example in this 
case), the CANDIDATE-ELIMINATION algorithm checks the S boundary and finds 
that it is overly specific-it fails to cover the positive example. The boundary is 
therefore revised by moving it to the least more general hypothesis that covers 
this new example. This revised boundary is shown as S1 in Figure 2.4. No up- 
date of the G boundary is needed in response to this training example because 
Go correctly covers this example. When the second training example (also pos- 
itive) is observed, it has a similar effect of generalizing S further to S2, leaving 
G again unchanged (i.e., G2 = GI = GO). Notice the processing of these first 
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S 1 : {<Sunny, Warm, Normal, Strong, Warm, Same> } 1 

Training examples: 

t 

1 .  <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes 

2 .  <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes 

S2 : 

FIGURE 2.4 
CANDIDATE-ELIMINATION Trace 1. So and Go are the initial boundary sets corresponding to the most 
specific and most general hypotheses. Training examples 1 and 2 force the S boundary to become 
more general, as in the FIND-S algorithm. They have no effect on the G boundary. 

{<Sunny, Warm, ?, Strong, Warm, Same>} 

two positive examples is very similar to the processing performed by the FIND-S 
algorithm. 

As illustrated by these first two steps, positive training examples may force 
the S boundary of the version space to become increasingly general. Negative 
training examples play the complimentary role of forcing the G boundary to 
become increasingly specific. Consider the third training example, shown in Fig- 
ure 2.5. This negative example reveals that the G boundary of the version space 
is overly general; that is, the hypothesis in G incorrectly predicts that this new 
example is a positive example. The hypothesis in the G boundary must therefore 
be specialized until it correctly classifies this new negative example. As shown in 
Figure 2.5, there are several alternative minimally more specific hypotheses. All 
of these become members of the new G3 boundary set. - 

Given that there are six attributes that could be specified to specialize G2, 
why are there only three new hypotheses in G3? For example, the hypothesis 
h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 that correctly la- 
bels the new example as a negative example, but it is not included in Gg. The 
reason this hypothesis is excluded is that it is inconsistent with the previously 
encountered positive examples. The algorithm determines this simply by noting 
that h is not more general than the current specific boundary, Sz. In fact, the S 
boundary of the version space forms a summary of the previously encountered 
positive examples that can be used to determine whether any given hypothesis 
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s2 9 s 3 : 

Training Example: 

( <Sunny, Wann, ?. Strong, W a r n  Same> )] 

G 3: 

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySporkNo 

(<Sunny, ?, ?, ?, ?, ?> <?, Wann, ?, ?, ?, ?> <?, ?, ?, ?, ?, Same>} 

FIGURE 2.5 
CANDIDATE-ELMNATION Trace 2. Training example 3 is a negative example that forces the G2 
boundary to be specialized to G3. Note several alternative maximally general hypotheses are included 
in Gj. 

is consistent with these examples. Any hypothesis more general than S will, by 
definition, cover any example that S covers and thus will cover any past positive 
example. In a dual fashion, the G boundary summarizes the information from 
previously encountered negative examples. Any hypothesis more specific than G 
is assured to be consistent with past negative examples. This is true because any 
such hypothesis, by definition, cannot cover examples that G does not cover. 

The fourth training example, as shown in Figure 2.6, further generalizes the 
S boundary of the version space. It also results in removing one member of the G 
boundary, because this member fails to cover the new positive example. This last 
action results from the first step under the condition "If d is a positive example" 
in the algorithm shown in Table 2.5. To understand the rationale for this step, it is 
useful to consider why the offending hypothesis must be removed from G. Notice 
it cannot be specialized, because specializing it would not make it cover the new 
example. It also cannot be generalized, because by the definition of G, any more 
general hypothesis will cover at least one negative training example. Therefore, 
the hypothesis must be dropped from the G boundary, thereby removing an entire 
branch of the partial ordering from the version space of hypotheses remaining 
under consideration. 

After processing these four examples, the boundary sets S4 and G4 delimit 
the version space of all hypotheses consistent with the set of incrementally ob- 
served training examples. The entire version space, including those hypotheses 

A 

'32: I<?, ?, ?, ?, ? , ? > I  



S 3: {<Sunny, Warm, ?, Strong, Warm, Same>) 

I 
S 4: I ( <Sunny, Warm ?, Strong, ?, ?> ) I 

Training Example: 

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes 

FIGURE 2.6 
CANDIDATE-ELIMINATION Trace 3. The positive training example generalizes the S boundary, from 
S3 to S4. One member of Gg must also be deleted, because it is no longer more general than the S4 
boundary. 

bounded by S4 and G4, is shown in Figure 2.7. This learned version space is 
independent of the sequence in which the training examples are presented (be- 
cause in the end it contains all hypotheses consistent with the set of examples). 
As further training data is encountered, the S and G boundaries will move mono- 
tonically closer to each other, delimiting a smaller and smaller version space of 
candidate hypotheses. 

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?> 

s4: 

{<Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?>) 

{<Sunny, Warm, ?, Strong, ?, ?>) 

FIGURE 2.7 
The final version space for the EnjoySport concept learning problem and training examples described 
earlier. 
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2.6 REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION 

2.6.1 Will the CANDIDATE-ELIMINATION Algorithm Converge to the 
Correct Hypothesis? 

The version space learned by the CANDIDATE-ELIMINATION algorithm will con- 
verge toward the hypothesis that correctly describes the target concept, provided 
(1) there are no errors in the training examples, and (2) there is some hypothesis 
in H that correctly describes the target concept. In fact, as new training examples 
are observed, the version space can be monitored to determine the remaining am- 
biguity regarding the true target concept and to determine when sufficient training 
examples have been observed to unambiguously identify the target concept. The 
target concept is exactly learned when the S and G boundary sets converge to a 
single, identical, hypothesis. 

What will happen if the training data contains errors? Suppose, for example, 
that the second training example above is incorrectly presented as a negative 
example instead of a positive example. Unfortunately, in this case the algorithm 
is certain to remove the correct target concept from the version space! Because, 
it will remove every hypothesis that is inconsistent with each training example, it 
will eliminate the true target concept from the version space as soon as this false 
negative example is encountered. Of course, given sufficient additional training 
data the learner will eventually detect an inconsistency by noticing that the S and 
G boundary sets eventually converge to an empty version space. Such an empty 
version space indicates that there is no hypothesis in H consistent with all observed 
training examples. A similar symptom will appear when the training examples are 
correct, but the target concept cannot be described in the hypothesis representation 
(e.g., if the target concept is a disjunction of feature attributes and the hypothesis 
space supports only conjunctive descriptions). We will consider such eventualities 
in greater detail later. For now, we consider only the case in which the training 
examples are correct and the true target concept is present in the hypothesis space. 

2.6.2 What Training Example Should the Learner Request Next? 

Up to this point we have assumed that training examples are provided to the 
learner by some external teacher. Suppose instead that the learner is allowed to 
conduct experiments in which it chooses the next instance, then obtains the correct 
classification for this instance from an external oracle (e.g., nature or a teacher). 
This scenario covers situations in which the learner may conduct experiments in 
nature (e.g., build new bridges and allow nature to classify them as stable or 
unstable), or in which a teacher is available to provide the correct classification 
(e.g., propose a new bridge and allow the teacher to suggest whether or not it will 
be stable). We use the term query to refer to such instances constructed by the 
learner, which are then classified by an external oracle. 

Consider again the version space learned from the four training examples 
of the Enjoysport  concept and illustrated in Figure 2.3. What would be a good 
query for the learner to pose at this point? What is a good query strategy in 
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general? Clearly, the learner should attempt to discriminate among the alternative 
competing hypotheses in its current version space. Therefore, it should choose 
an instance that would be classified positive by some of these hypotheses, but 
negative by others. One such instance is 

(Sunny, Warm, Normal, Light, Warm, Same) 

Note that this instance satisfies three of the six hypotheses in the current 
version space (Figure 2.3). If the trainer classifies this instance as a positive ex- 
ample, the S boundary of the version space can then be generalized. Alternatively, 
if the trainer indicates that this is a negative example, the G boundary can then be 
specialized. Either way, the learner will succeed in learning more about the true 
identity of the target concept, shrinking the version space from six hypotheses to 
half this number. 

In general, the optimal query strategy for a concept learner is to generate 
instances that satisfy exactly half the hypotheses in the current version space. 
When this is possible, the size of the version space is reduced by half with each 
new example, and the correct target concept can therefore be found with only 
rlog2JVS11 experiments. The situation is analogous to playing the game twenty 
questions, in which the goal is to ask yes-no questions to determine the correct 
hypothesis. The optimal strategy for playing twenty questions is to ask questions 
that evenly split the candidate hypotheses into sets that predict yes and no. While 
we have seen that it is possible to generate an instance that satisfies precisely 
half the hypotheses in the version space of Figure 2.3, in general it may not be 
possible to construct an instance that matches precisely half the hypotheses. In 
such cases, a larger number of queries may be required than rlog21VS(1. 

2.6.3 How Can Partially Learned Concepts Be Used? 

Suppose that no additional training examples are available beyond the four in 
our example above, but that the learner is now required to classify new instances 
that it has not yet observed. Even though the version space of Figure 2.3 still 
contains multiple hypotheses, indicating that the target concept has not yet been 
fully learned, it is possible to classify certain examples with the same degree of 
confidence as if the target concept had been uniquely identified. To illustrate, 
suppose the learner is asked to classify the four new instances shown in Ta- 
ble 2.6. 9 

Note that although instance A was not among the training examples, it is 
classified as a positive instance by every hypothesis in the current version space 
(shown in Figure 2.3). Because the hypotheses in the version space unanimously 
agree that this is a positive instance, the learner can classify instance A as positive 
with the same confidence it would have if it had already converged to the single, 
correct target concept. Regardless of which hypothesis in the version space is 
eventually found to be the correct target concept, it is already clear that it will 
classify instance A as a positive example. Notice furthermore that we need not 
enumerate every hypothesis in the version space in order to test whether each 
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Instance Sky AirTemp Humidity Wind Water Forecast EnjoySport 
- 

A Sunny Warm Normal Strong Cool Change ? 
B Rainy Cold Normal Light Warm Same ? 
C Sunny Warm Normal Light Warm Same ? 
D Sunny Cold Normal Strong Warm Same ? 

TABLE 2.6 
New instances to be classified. 

classifies the instance as positive. This condition will be met if and only if the 
instance satisfies every member of S (why?). The reason is that every other hy- 
pothesis in the version space is at least as general as some member of S. By our 
definition of more-general~han, if the new instance satisfies all members of S it 
must also satisfy each of these more general hypotheses. 

Similarly, instance B is classified as a negative instance by every hypothesis 
in the version space. This instance can therefore be safely classified as negative, 
given the partially learned concept. An efficient test for this condition is that the 
instance satisfies none of the members of G (why?). 

Instance C presents a different situation. Half of the version space hypotheses 
classify it as positive and half classify it as negative. Thus, the learner cannot 
classify this example with confidence until further training examples are available. 
Notice that instance C is the same instance presented in the previous section as 
an optimal experimental query for the learner. This is to be expected, because 
those instances whose classification is most ambiguous are precisely the instances 
whose true classification would provide the most new information for refining the 
version space. 

Finally, instance D is classified as positive by two of the version space 
hypotheses and negative by the other four hypotheses. In this case we have less 
confidence in the classification than in the unambiguous cases of instances A 
and B. Still, the vote is in favor of a negative classification, and one approach 
we could take would be to output the majority vote, perhaps with a confidence 
rating indicating how close the vote was. As we will discuss in Chapter 6, if we 
assume that all hypotheses in H are equally probable a priori, then such a vote 
provides the most probable classification of this new instance. Furthermore, the 
proportion of hypotheses voting positive can be interpreted as the probability that 
this instance is positive given the training data. 

2.7 INDUCTIVE BIAS 

As discussed above, the CANDIDATE-ELIMINATION algorithm will converge toward 
the true target concept provided it is given accurate training examples and pro- 
vided its initial hypothesis space contains the target concept. What if the target 
concept is not contained in the hypothesis space? Can we avoid this difficulty by 
using a hypothesis space that includes every possible hypothesis? How does the 



size of this hypothesis space influence the ability of the algorithm to generalize 
to unobserved instances? How does the size of the hypothesis space influence the 
number of training examples that must be observed? These are fundamental ques- 
tions for inductive inference in general. Here we examine them in the context of 
the CANDIDATE-ELIMINATION algorithm. As we shall see, though, the conclusions 
we draw from this analysis will apply to any concept learning system that outputs 
any hypothesis consistent with the training data. 

2.7.1 A Biased Hypothesis Space 

Suppose we wish to assure that the hypothesis space contains the unknown tar- 
get concept. The obvious solution is to enrich the hypothesis space to include 
every possible hypothesis. To illustrate, consider again the EnjoySpor t example in 
which we restricted the hypothesis space to include only conjunctions of attribute 
values. Because of this restriction, the hypothesis space is unable to represent 
even simple disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy." 
In fact, given the following three training examples of this disjunctive hypothesis, 
our algorithm would find that there are zero hypotheses in the version space. 

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Cool Change Yes 
2 Cloudy Warm Normal Strong Cool Change Yes 
3 Rainy Warm Normal Strong Cool Change No 

To see why there are no hypotheses consistent with these three examples, 
note that the most specific hypothesis consistent with the first two examples and 
representable in the given hypothesis space H is 

S2 : (?, Warm, Normal, Strong, Cool, Change) 

This hypothesis, although it is the maximally specific hypothesis from H that is 
consistent with the first two examples, is already overly general: it incorrectly 
covers the third (negative) training example. The problem is that we have biased 
the learner to consider only conjunctive hypotheses. In this case we require a more 
expressive hypothesis space. 

2.7.2 An Unbiased Learner 

The obvious solution to the problem of assuring that the target concept is in the 
hypothesis space H is to provide a hypothesis space capable of representing every 
teachable concept; that is, it is capable of representing every possible subset of the 
instances X. In general, the set of all subsets of a set X is called thepowerset of X. 

In the EnjoySport learning task, for example, the size of the instance space 
X of days described by the six available attributes is 96. How many possible 
concepts can be defined over this set of instances? In other words, how large is 



the power set of X? In general, the number of distinct subsets that can be defined 
over a set X containing 1x1 elements (i.e., the size of the power set of X) is 21'1. 
Thus, there are 296, or approximately distinct target concepts that could be 
defined over this instance space and that our learner might be called upon to learn. 
Recall from Section 2.3 that our conjunctive hypothesis space is able to represent 
only 973 of these-a very biased hypothesis space indeed! 

Let us reformulate the Enjoysport learning task in an unbiased way by 
defining a new hypothesis space H' that can represent every subset of instances; 
that is, let H' correspond to the power set of X. One way to define such an H' is to 
allow arbitrary disjunctions, conjunctions, and negations of our earlier hypotheses. 
For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be 
described as 

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?) 

Given this hypothesis space, we can safely use the CANDIDATE-ELIMINATION 
algorithm without worrying that the target concept might not be expressible. How- 
ever, while this hypothesis space eliminates any problems of expressibility, it un- 
fortunately raises a new, equally difficult problem: our concept learning algorithm 
is now completely unable to generalize beyond the observed examples! To see 
why, suppose we present three positive examples (xl, x2, x3) and two negative ex- 
amples (x4, x5) to the learner. At this point, the S boundary of the version space 
will contain the hypothesis which is just the disjunction of the positive examples 

because this is the most specific possible hypothesis that covers these three exam- 
ples. Similarly, the G boundary will consist of the hypothesis that rules out only 
the observed negative examples 

The problem here is that with this very expressive hypothesis representation, 
the S boundary will always be simply the disjunction of the observed positive 
examples, while the G boundary will always be the negated disjunction of the 
observed negative examples. Therefore, the only examples that will be unambigu- 
ously classified by S and G are the observed training examples themselves. In 
order to converge to a single, final target concept, we will have to present every 
single instance in X as a training example! 

It might at first seem that we could avoid this difficulty by simply using the 
partially learned version space and by taking a vote among the members of the 
version space as discussed in Section 2.6.3. Unfortunately, the only instances that 
will produce a unanimous vote are the previously observed training examples. For, 
all the other instances, taking a vote will be futile: each unobserved instance will 
be classified positive by precisely half the hypotheses in the version space and 
will be classified negative by the other half (why?). To see the reason, note that 
when H is the power set of X and x is some previously unobserved instance, 
then for any hypothesis h in the version space that covers x, there will be anoQer 



hypothesis h' in the power set that is identical to h except for its classification of 
x. And of course if h is in the version space, then h' will be as well, because it 
agrees with h on all the observed training examples. 

2.7.3 The Futility of Bias-Free Learning 

The above discussion illustrates a fundamental property of inductive inference: 
a learner that makes no a priori assumptions regarding the identity of the tar- 
get concept has no rational basis for classifying any unseen instances. In fact, 
the only reason that the CANDIDATE-ELIMINATION algorithm was able to gener- 
alize beyond the observed training examples in our original formulation of the 
EnjoySport task is that it was biased by the implicit assumption that the target 
concept could be represented by a conjunction of attribute values. In cases where 
this assumption is correct (and the training examples are error-free), its classifica- 
tion of new instances will also be correct. If this assumption is incorrect, however, 
it is certain that the CANDIDATE-ELIMINATION algorithm will rnisclassify at least 
some instances from X. 

Because inductive learning requires some form of prior assumptions, or 
inductive bias, we will find it useful to characterize different learning approaches 
by the inductive biast they employ. Let us define this notion of inductive bias 
more precisely. The key idea we wish to capture here is the policy by which the 
learner generalizes beyond the observed training data, to infer the classification 
of new instances. Therefore, consider the general setting in which an arbitrary 
learning algorithm L is provided an arbitrary set of training data D, = {(x, c(x))} 
of some arbitrary target concept c. After training, L is asked to classify a new 
instance xi. Let L(xi, D,) denote the classification (e.g., positive or negative) that 
L assigns to xi after learning from the training data D,. We can describe this 
inductive inference step performed by L as follows 

where the notation y + z indicates that z is inductively inferred from y. For 
example, if we take L to be the CANDIDATE-ELIMINATION algorithm, D, to be 
the training data from Table 2.1, and xi to be the fist instance from Table 2.6, 
then the inductive inference performed in this case concludes that L(xi, D,) = 
(EnjoySport = yes). 

Because L is an inductive learning algorithm, the result L(xi, D,) that it in- 
fers will not in general be provably correct; that is, the classification L(xi, D,) need 
not follow deductively from the training data D, and the description of the new 
instance xi. However, it is interesting to ask what additional assumptions could be 
added to D, r\xi so that L(xi, D,) would follow deductively. We define the induc- 
tive bias of L as this set of additional assumptions. More precisely, we define the 

t ~ h e  term inductive bias here is not to be confused with the term estimation bias commonly used in 
statistics. Estimation bias will be discussed in Chapter 5. 
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inductive bias of L to be the set of assumptions B such that for all new instances xi 

( B  A D, A x i )  F L(xi ,  D,)  

where the notation y  t z indicates that z follows deductively from y (i.e., that z 
is provable from y) .  Thus, we define the inductive bias of a learner as the set of 
additional assumptions B sufficient to justify its inductive inferences as deductive 
inferences. To summarize, 

Definition: Consider a concept learning algorithm L  for the set of instances X. Let 
c be an arbitrary concept defined over X, and let D, = ( ( x ,  c ( x ) ) }  be an arbitrary 
set of training examples of c. Let L(xi,  D,) denote the classification assigned to 
the instance xi by L  after training on the data D,. The inductive bias of L  is any 
minimal set of assertions B  such that for any target concept c and corresponding 
training examples Dc 

(Vxi E X ) [ ( B  A Dc A xi) k L(xi, D,)] (2.1) 

What, then, is the inductive bias of the CANDIDATE-ELIMINATION algorithm? 
To answer this, let us specify L(xi ,  D,) exactly for this algorithm: given a set 
of data D,, the CANDIDATE-ELIMINATION algorithm will first compute the version 
space VSH,D,, then classify the new instance xi by a vote among hypotheses in this 
version space. Here let us assume that it will output a classification for xi only if 
this vote among version space hypotheses is unanimously positive or negative and 
that it will not output a classification otherwise. Given this definition of L(xi ,  D,) 
for the CANDIDATE-ELIMINATION algorithm, what is its inductive bias? It is simply 
the assumption c  E H. Given this assumption, each inductive inference performed 
by the CANDIDATE-ELIMINATION algorithm can be justified deductively. 

To see why the classification L(xi ,  D,) follows deductively from B = {c E 

H), together with the data D, and description of the instance xi, consider the fol- 
lowing argument. First, notice that if we assume c E H then it follows deductively 
that c E VSH,Dc.  This follows from c E H, from the definition of the version space 
VSH,D,  as the set of all hypotheses in H that are consistent with D,, and from our 
definition of D, = {(x, c ( x ) ) }  as training data consistent with the target concept 
c. Second, recall that we defined the classification L(xi ,  D,) to be the unanimous 
vote of all hypotheses in the version space. Thus, if L outputs the classification 
L ( x , ,  D,) ,  it must be the case the every hypothesis in V S H , ~ ,  also produces this 
classification, including the hypothesis c  E VSHYDc.  Therefore c (x i )  = L(xi, D,). 
To summarize, the CANDIDATE-ELIMINATION algorithm defined in this fashion can 
be characterized by the following bias 

Inductive bias of CANDIDATE-ELIMINATION algorithm. The target concept c is 
contained in the given hypothesis space H. 

Figure 2.8 summarizes the situation schematically. The inductive CANDIDATE- 
ELIMINATION algorithm at the top of the figure takes two inputs: the training exam- 
ples and a new instance to be classified. At the bottom of the figure, a deductive 
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Inductive system 
Classification of 

Candidate new instance, or Training examples Elimination "don't know" 

New instance Using Hypothesis 
Space H 

Equivalent deductive system 
I I Classification of 

Training examples I new instance, or 
"don't know" 

Theorem Prover 

Assertion " Hcontains 
the target concept" 

-D 

P 
Inductive bias 
made explicit 

FIGURE 2.8 
Modeling inductive systems by equivalent deductive systems. The input-output behavior of the 
CANDIDATE-ELIMINATION algorithm using a hypothesis space H is identical to that of a deduc- 
tive theorem prover utilizing the assertion " H  contains the target concept." This assertion is therefore 
called the inductive bias of the CANDIDATE-ELIMINATION algorithm. Characterizing inductive systems 
by their inductive bias allows modeling them by their equivalent deductive systems. This provides a 
way to compare inductive systems according to their policies for generalizing beyond the observed 
training data. 

theorem prover is given these same two inputs plus the assertion "H contains the 
target concept." These two systems will in principle produce identical outputs for 
every possible input set of training examples and every possible new instance in 
X. Of course the inductive bias that is explicitly input to the theorem prover is 
only implicit in the code of the CANDIDATE-ELIMINATION algorithm. In a sense, it 
exists only in the eye of us beholders. Nevertheless, it is a perfectly well-defined 
set of assertions. 

One advantage of viewing inductive inference systems in terms of their 
inductive bias is that it provides a nonprocedural means of characterizing their 
policy for generalizing beyond the observed data. A second advantage is that it 
allows comparison of different learners according to the strength of the inductive 
bias they employ. Consider, for example, the following three learning algorithms, 
which are listed from weakest to strongest bias. 

1. ROTE-LEARNER: Learning corresponds simply to storing each observed train- 
ing example in memory. Subsequent instances are classified by looking them 
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up in memory. If the instance is found in memory, the stored classification 
is returned. Otherwise, the system refuses to classify the new instance. 

2. CANDIDATE-ELIMINATION algorithm: New instances are classified only in the 
case where all members of the current version space agree on the classifi- 
cation. Otherwise, the system refuses to classify the new instance. 

3. FIND-S: This algorithm, described earlier, finds the most specific hypothesis 
consistent with the training examples. It then uses this hypothesis to classify 
all subsequent instances. 

The ROTE-LEARNER has no inductive bias. The classifications it provides 
for new instances follow deductively from the observed training examples, with 
no additional assumptions required. The CANDIDATE-ELIMINATION algorithm has a 
stronger inductive bias: that the target concept can be represented in its hypothesis 
space. Because it has a stronger bias, it will classify some instances that the ROTE- 
LEARNER will not. Of course the correctness of such classifications will depend 
completely on the correctness of this inductive bias. The FIND-S algorithm has 
an even stronger inductive bias. In addition to the assumption that the target 
concept can be described in its hypothesis space, it has an additional inductive 
bias assumption: that all instances are negative instances unless the opposite is 
entailed by its other know1edge.t 

As we examine other inductive inference methods, it is useful to keep in 
mind this means of characterizing them and the strength of their inductive bias. 
More strongly biased methods make more inductive leaps, classifying a greater 
proportion of unseen instances. Some inductive biases correspond to categorical 
assumptions that completely rule out certain concepts, such as the bias "the hy- 
pothesis space H includes the target concept." Other inductive biases merely rank 
order the hypotheses by stating preferences such as "more specific hypotheses are 
preferred over more general hypotheses." Some biases are implicit in the learner 
and are unchangeable by the learner, such as the ones we have considered here. 
In Chapters 11 and 12 we will see other systems whose bias is made explicit as 
a set of assertions represented and manipulated by the learner. 

2.8 SUMMARY AND FURTHER READING 

The main points of this chapter include: 

Concept learning can be cast as a problem of searching through a large 
predefined space of potential hypotheses. 
The general-to-specific partial ordering of hypotheses, which can be defined 
for any concept learning problem, provides a useful structure for organizing 
the search through the hypothesis space. 

+Notice this last inductive bias assumption involves a kind of default, or nonmonotonic reasoning. 



The FINDS algorithm utilizes this general-to-specific ordering, performing 
a specific-to-general search through the hypothesis space along one branch 
of the partial ordering, to find the most specific hypothesis consistent with 
the training examples. 
The CANDIDATE-ELIMINATION algorithm utilizes this general-to-specific or- 
dering to compute the version space (the set of all hypotheses consistent 
with the training data) by incrementally computing the sets of maximally 
specific (S) and maximally general (G) hypotheses. 
Because the S and G sets delimit the entire set of hypotheses consistent with 
the data, they provide the learner with a description of its uncertainty regard- 
ing the exact identity of the target concept. This version space of alternative 
hypotheses can be examined to determine whether the learner has converged 
to the target concept, to determine when the training data are inconsistent, 
to generate informative queries to further refine the version space, and to 
determine which unseen instances can be unambiguously classified based on 
the partially learned concept. 
Version spaces and the CANDIDATE-ELIMINATION algorithm provide a useful 
conceptual framework for studying concept learning. However, this learning 
algorithm is not robust to noisy data or to situations in which the unknown 
target concept is not expressible in the provided hypothesis space. Chap- 
ter 10 describes several concept learning algorithms based on the general- 
to-specific ordering, which are robust to noisy data. 

0 Inductive learning algorithms are able to classify unseen examples only be- 
cause of their implicit inductive bias for selecting one consistent hypothesis 
over another. The bias associated with the CANDIDATE-ELIMINATION algo- 
rithm is that the target concept can be found in the provided hypothesis 
space (c E H). The output hypotheses and classifications of subsequent in- 
stances follow deductively from this assumption together with the observed 
training data. 
If the hypothesis space is enriched to the point where there is a hypoth- 
esis corresponding to every possible subset of instances (the power set of 
the instances), this will remove any inductive bias from the CANDIDATE- 
ELIMINATION algorithm. Unfortunately, this also removes the ability to clas- 
sify any instance beyond the observed training examples. An unbiased learner 
cannot make inductive leaps to classify unseen examples. 

The idea of concept learning and using the general-to-specific ordering have 
been studied for quite some time. Bruner et al. (1957) provided an early study 
of concept learning in humans, and Hunt and Hovland (1963) an early effort 
to automate it. Winston's (1970) widely known Ph.D. dissertation cast concept 
learning as a search involving generalization and specialization operators. Plotkin 
(1970, 1971) provided an early formalization of the more-general-than relation, 
as well as the related notion of 8-subsumption (discussed in Chapter 10). Simon 
and Lea (1973) give an early account of learning as search through a hypothesis 



CHAFTER 2 CONCEPT LEARNING AND THE GENERALTO-SPECIFIC ORDEIUNG 47 

space. Other early concept learning systems include (Popplestone 1969; Michal- 
ski 1973; Buchanan 1974; Vere 1975; Hayes-Roth 1974). A very large number 
of algorithms have since been developed for concept learning based on symbolic 
representations. Chapter 10 describes several more recent algorithms for con- 
cept learning, including algorithms that learn concepts represented in first-order 
logic, algorithms that are robust to noisy training data, and algorithms whose 
performance degrades gracefully if the target concept is not representable in the 
hypothesis space considered by the learner. 

Version spaces and the CANDIDATE-ELIMINATION algorithm were introduced 
by Mitchell (1977, 1982). The application of this algorithm to inferring rules of 
mass spectroscopy is described in (Mitchell 1979), and its application to learning 
search control rules is presented in (Mitchell et al. 1983). Haussler (1988) shows 
that the size of the general boundary can grow exponentially in the number of 
training examples, even when the hypothesis space consists of simple conjunctions 
of features. Smith and Rosenbloom (1990) show a simple change to the repre- 
sentation of the G set that can improve complexity in certain cases, and Hirsh 
(1992) shows that learning can be polynomial in the number of examples in some 
cases when the G set is not stored at all. Subramanian and Feigenbaum (1986) 
discuss a method that can generate efficient queries in certain cases by factoring 
the version space. One of the greatest practical limitations of the CANDIDATE- 
ELIMINATION algorithm is that it requires noise-free training data. Mitchell (1979) 
describes an extension that can handle a bounded, predetermined number of mis- 
classified examples, and Hirsh (1990, 1994) describes an elegant extension for 
handling bounded noise in real-valued attributes that describe the training ex- 
amples. Hirsh (1990) describes an INCREMENTAL VERSION SPACE MERGING algo- 
rithm that generalizes the CANDIDATE-ELIMINATION algorithm to handle situations 
in which training information can be different types of constraints represented 
using version spaces. The information from each constraint is represented by a 
version space and the constraints are then combined by intersecting the version 
spaces. Sebag (1994, 1996) presents what she calls a disjunctive version space ap- 
proach to learning disjunctive concepts from noisy data. A separate version space 
is learned for each positive training example, then new instances are classified 
by combining the votes of these different version spaces. She reports experiments 
in several problem domains demonstrating that her approach is competitive with 
other widely used induction methods such as decision tree learning and k-NEAREST 
NEIGHBOR. 

EXERCISES 
2.1. Explain why the size of the hypothesis space in the EnjoySport learning task is 

973. How would the number of possible instances and possible hypotheses increase 
with the addition of the attribute Watercurrent, which can take on the values 
Light, Moderate, or Strong? More generally, how does the number of possible 
instances and hypotheses grow with the addition of a new attribute A that takes on 
k possible values? , 

I 



2.2. Give the sequence of S and G boundary sets computed by the CANDIDATE-ELIMINA- 
TION algorithm if it is given the sequence of training examples from Table 2.1 in 
reverse order. Although the final version space will be the same regardless of the 
sequence of examples (why?), the sets S and G computed at intermediate stages 
will, of course, depend on this sequence. Can you come up with ideas for ordering 
the training examples to minimize the sum of the sizes of these intermediate S and 
G sets for the H used in the EnjoySport example? 

2.3. Consider again the EnjoySport learning task and the hypothesis space H described 
in Section 2.2. Let us define a new hypothesis space H' that consists of all painvise 
disjunctions of the hypotheses in H .  For example, a typical hypothesis in H' is 

(?, Cold, H i g h ,  ?, ?, ?) v (Sunny, ?, H i g h ,  ?, ?, Same) 

Trace the CANDIDATE-ELIMINATION algorithm for the hypothesis space H' given the 
sequence of training examples from Table 2.1 (i.e., show the sequence of S and G 
boundary sets.) 

2.4. Consider the instance space consisting of integer points in the x ,  y plane and the 
set of hypotheses H consisting of rectangles. More precisely, hypotheses are of the 
form a 5 x 5 b, c 5 y 5 d ,  where a ,  b, c, and d can be any integers. 
(a) Consider the version space with respect to the set of positive (+) and negative 

(-) training examples shown below. What is the S boundary of the version space 
in this case? Write out the hypotheses and draw them in on the diagram. 

(b) What is the G boundary of this version space? Write out the hypotheses and 
draw them in. 

(c) Suppose the learner may now suggest a new x ,  y instance and ask the trainer for 
its classification. Suggest a query guaranteed to reduce the size of the version 
space, regardless of how the trainer classifies it. Suggest one that will not. 

( d )  Now assume you are a teacher, attempting to teach a particular target concept 
(e.g., 3 5 x 5 5 , 2  ( y 5 9). What is the smallest number of training examples 
you can provide so that the CANDIDATE-ELIMINATION algorithm will perfectly 
learn the target concept? 

2.5. Consider the following sequence of positive and negative training examples describ- 
ing the concept "pairs of people who live in the same house." Each training example 
describes an ordered pair of people, with each person described by their sex, hair 
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color (black, brown, or blonde), height (tall, medium, or short), and nationality (US, 
French, German, Irish, Indian, Japanese, or Portuguese). 

+ ((male brown tall US) (f emale black short US)) 

+ ((male brown short French)( female black short US)) 

- ((female brown tall German)( f emale black short Indian)) 

+ ((male brown tall Irish) (f emale brown short Irish)) 

Consider a hypothesis space defined over these instances, in which each hy- 
pothesis is represented by a pair of Ctuples, and where each attribute constraint may 
be a specific value, "?," or "0," just as in the EnjoySport hypothesis representation. 
For example, the hypothesis 

((male ? tall ?)(female ? ? Japanese)) 

represents the set of all pairs of people where the first is a tall male (of any nationality 
and hair color), and the second is a Japanese female (of any hair color and height). 
(a) Provide a hand trace of the CANDIDATE-ELIMINATION algorithm learning from 

the above training examples and hypothesis language. In particular, show the 
specific and general boundaries of the version space after it has processed the 
first training example, then the second training example, etc. 

(b) How many distinct hypotheses from the given hypothesis space are consistent 
with the following single positive training example? 

+ ((male black short Portuguese)(f emale blonde tall Indian)) 

(c) Assume the learner has encountered only the positive example from part (b), 
and that it is now allowed to query the trainer by generating any instance and 
asking the trainer to classify it. Give a specific sequence of queries that assures 
the learner will converge to the single correct hypothesis, whatever it may be 
(assuming that the target concept is describable within the given hypothesis 
language). Give the shortest sequence of queries you can find. How does the 
length of this sequence relate to your answer to question (b)? 

(d) Note that this hypothesis language cannot express all concepts that can be defined 
over the instances (i.e., we can define sets of positive and negative examples for 
which there is no corresponding describable hypothesis). If we were to enrich 
the language so that it could express all concepts that can be defined over the 
instance language, then how would your answer to (c) change? 

2.6. Complete the proof of the version space representation theorem (Theorem 2.1). 

Consider a concept learning problem in which each instance is a real number, and in 
which each hypothesis is an interval over the reals. More precisely, each hypothesis 
in the hypothesis space H is of the form a < x < b, where a and b are any real 
constants, and x refers to the instance. For example, the hypothesis 4.5 < x < 6.1 
classifies instances between 4.5 and 6.1 as positive, and others as negative. Explain 
informally why there cannot be a maximally specific consistent hypothesis for any 
set of positive training examples. Suggest a slight modification to the hypothesis 
representation so that there will be. 'C 
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2.8. In this chapter, we commented that given an unbiased hypothesis space (the power 
set of the instances), the learner would find that each unobserved instance would 
match exactly half the current members of the version space, regardless of which 
training examples had been observed. Prove this. In particular, prove that for any 
instance space X, any set of training examples D, and any instance x E X not present 
in D, that if H is the power set of X, then exactly half the hypotheses in V S H , D  will 
classify x as positive and half will classify it as negative. 

2.9. Consider a learning problem where each instance is described by a conjunction of 
n boolean attributes a1 . . .a,. Thus, a typical instance would be 

(al = T) A (az = F )  A . . . A (a,  = T) 

Now consider a hypothesis space H in which each hypothesis is a disjunction of 
constraints over these attributes. For example, a typical hypothesis would be 

Propose an algorithm that accepts a sequence of training examples and outputs 
a consistent hypothesis if one exists. Your algorithm should run in time that is 
polynomial in n and in the number of training examples. 

2.10. Implement the FIND-S algorithm. First verify that it successfully produces the trace in 
Section 2.4 for the Enjoysport example. Now use this program to study the number 
of random training examples required to exactly learn the target concept. Implement 
a training example generator that generates random instances, then classifies them 
according to the target concept: 

(Sunny, Warm,  ?, ?, ?, ?) 

Consider training your FIND-S program on randomly generated examples and mea- 
suring the number of examples required before the program's hypothesis is identical 
to the target concept. Can you predict the average number of examples required? 
Run the experiment at least 20 times and report the mean number of examples re- 
quired. How do you expect this number to vary with the number of "?" in the 
target concept? How would it vary with the number of attributes used to describe 
instances and hypotheses? 
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