
CHAPTER

CONCEPT
LEARNING
AND THE
GENERAL-TO-SPECIFIC
0,RDERING

The problem of inducing general functions from specific training examples is central
to learning. This chapter considers concept learning: acquiring the definition of a
general category given a sample of positive and negative training examples of the
category. Concept learning can be formulated as a problem of searching through a
predefined space of potential hypotheses for the hypothesis that best fits the train-
ing examples. In many cases this search can be efficiently organized by taking
advantage of a naturally occurring structure over the hypothesis space-a general-
to-specific ordering of hypotheses. This chapter presents several learning algorithms
and considers situations under which they converge to the correct hypothesis. We
also examine the nature of inductive learning and the justification by which any
program may successfully generalize beyond the observed training data.

2.1 INTRODUCTION

Much of learning involves acquiring general concepts from specific training exam-
ples. People, for example, continually learn general concepts or categories such
as "bird," "car," "situations in which I should study more in order to pass the
exam," etc. Each such concept can be viewed as describing some subset of ob-
jects or events defined over a larger set (e.g., the subset of animals that constitute

DELL
Highlight

CHAFER 2 CONCEm LEARNING AND THE GENERAL-TO-SPECIFIC ORDERWG 21

birds). Alternatively, each concept can be thought of as a boolean-valued function
defined over this larger set (e.g., a function defined over all animals, whose value
is true for birds and false for other animals).

In this chapter we consider the problem of automatically inferring the general
definition of some concept, given examples labeled as+.members or nonmembers
of the concept. This task is commonly referred to as concept learning, or approx-
imating a boolean-valued function from examples.

Concept learning. Inferring a boolean-valued function from training examples of
its input and output.

2.2 A CONCEPT LEARNING TASK

To ground our discussion of concept learning, consider the example task of learn-
ing the target concept "days on which my friend Aldo enjoys his favorite water
sport." Table 2.1 describes a set of example days, each represented by a set of
attributes. The attribute EnjoySport indicates whether or not Aldo enjoys his
favorite water sport on this day. The task is to learn to predict the value of
EnjoySport for an arbitrary day, based on the values of its other attributes.

What hypothesis representation shall we provide to the learner in this case?
Let us begin by considering a simple representation in which each hypothesis
consists of a conjunction of constraints on the instance attributes. In particular,
let each hypothesis be a vector of six constraints, specifying the values of the six
attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. For each attribute,
the hypothesis will either

0 indicate by a "?' that any value is acceptable for this attribute,
0 specify a single required value (e.g., Warm) for the attribute, or
0 indicate by a "0" that no value is acceptable.

If some instance x satisfies all the constraints of hypothesis h, then h clas-
sifies x as a positive example (h(x) = 1). To illustrate, the hypothesis that Aldo
enjoys his favorite sport only on cold days with high humidity (independent of
the values of the other attributes) is represented by the expression

(?, Cold, High, ?, ?, ?)

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

TABLE 2.1
Positive and negative training examples for the target concept EnjoySport.

22 MACHINE LEARNING

The most general hypothesis-that every day is a positive example-is repre-
sented by

(?, ?, ?, ?, ?, ?)

and the most specific possible hypothesis-that no day is a positive example-is
represented by

(0,0,0,0,0,0)

To summarize, the EnjoySport concept learning task requires learning the
set of days for which EnjoySport = yes, describing this set by a conjunction
of constraints over the instance attributes. In general, any concept learning task
can be described by the set of instances over which the target function is defined,
the target function, the set of candidate hypotheses considered by the learner, and
the set of available training examples. The definition of the EnjoySport concept
learning task in this general form is given in Table 2.2.

2.2.1 Notation

Throughout this book, we employ the following terminology when discussing
concept learning problems. The set of items over which the concept is defined
is called the set of instances, which we denote by X. In the current example, X
is the set of all possible days, each represented by the attributes Sky, AirTemp,
Humidity, Wind, Water, and Forecast. The concept or function to be learned is
called the target concept, which we denote by c. In general, c can be any boolean-
valued function defined over the instances X; that is, c : X + {O, 1). In the current
example, the target concept corresponds to the value of the attribute EnjoySport
(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No).

-

0 Given:
0 Instances X: Possible days, each described by the attributes

0 Sky (with possible values Sunny, Cloudy, and Rainy),
0 AirTemp (with values Warm and Cold),
0 Humidity (with values Normal and High),
0 Wind (with values Strong and Weak),
0 Water (with values Warm and Cool), and
0 Forecast (with values Same and Change).

0 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at-
tributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be "?"
(any value is acceptable), " 0 (no value is acceptable), or a specific value.

0 Target concept c: EnjoySport : X + (0, l)
0 Training examples D: Positive and negative examples of the target function (see Table 2.1).

0 Determine:
0 A hypothesis h in H such that h(x) = c(x) for all x in X.

TABLE 2.2
The EnjoySport concept learning task.

When learning the target concept, the learner is presented a set of training
examples, each consisting of an instance x from X, along with its target concept
value c (x) (e.g., the training examples in Table 2.1). Instances for which c (x) = 1
are called positive examples, or members of the target concept. Instances for which
C (X) = 0 are called negative examples, or nonmembers of the target concept.
We will often write the ordered pair (x , c (x)) to describe the training example
consisting of the instance x and its target concept value c (x) . We use the symbol
D to denote the set of available training examples.

Given a set of training examples of the target concept c , the problem faced
by the learner is to hypothesize, or estimate, c . We use the symbol H to denote
the set of all possible hypotheses that the learner may consider regarding the
identity of the target concept. Usually H is determined by the human designer's
choice of hypothesis representation. In general, each hypothesis h in H represents
a boolean-valued function defined over X; that is, h : X --+ {O, 1). The goal of the
learner is to find a hypothesis h such that h (x) = c (x) for a" x in X.

2.2.2 The Inductive Learning Hypothesis

Notice that although the learning task is to determine a hypothesis h identical
to the target concept c over the entire set of instances X, the only information
available about c is its value over the training examples. Therefore, inductive
learning algorithms can at best guarantee that the output hypothesis fits the target
concept over the training data. Lacking any further information, our assumption
is that the best hypothesis regarding unseen instances is the hypothesis that best
fits the observed training data. This is the fundamental assumption of inductive
learning, and we will have much more to say about it throughout this book. We
state it here informally and will revisit and analyze this assumption more formally
and more quantitatively in Chapters 5, 6, and 7.

The inductive learning hypothesis. Any hypothesis found to approximate the target
function well over a sufficiently large set of training examples will also approximate
the target function well over other unobserved examples.

2.3 CONCEPT LEARNING AS SEARCH

Concept learning can be viewed as the task of searching through a large space of
hypotheses implicitly defined by the hypothesis representation. The goal of this
search is to find the hypothesis that best fits the training examples. It is important
to note that by selecting a hypothesis representation, the designer of the learning
algorithm implicitly defines the space of all hypotheses that the program can
ever represent and therefore can ever learn. Consider, for example, the instances
X and hypotheses H in the EnjoySport learning task. Given that the attribute
Sky has three possible values, and that AirTemp, Humidity, Wind, Water, and
Forecast each have two possible values, the instance space X contains exactly

3 . 2 2 . 2 2 . 2 = 96 distinct instances. A similar calculation shows that there are
5 .4 -4 - 4 - 4 . 4 = 5 120 syntactically distinct hypotheses within H. Notice, however,
that every hypothesis containing one or more "IZI" symbols represents the empty
set of instances; that is, it classifies every instance as negative. Therefore, the
number of semantically distinct hypotheses is only 1 + (4 .3 .3 .3 .3 .3) = 973. Our
EnjoySport example is a very simple learning task, with a relatively small, finite
hypothesis space. Most practical learning tasks involve much larger, sometimes
infinite, hypothesis spaces.

If we view learning as a search problem, then it is natural that our study
of learning algorithms will e x a ~ t h e different strategies for searching the hypoth-
esis space. We will be particula ly interested in algorithms capable of efficiently
searching very large or infinite hypothesis spaces, to find the hypotheses that best
fit the training data.

2.3.1 General-to-Specific Ordering of Hypotheses

Many algorithms for concept learning organize the search through the hypothesis
space by relying on a very useful structure that exists for any concept learning
problem: a general-to-specific ordering of hypotheses. By taking advantage of this
naturally occurring structure over the hypothesis space, we can design learning
algorithms that exhaustively search even infinite hypothesis spaces without explic-
itly enumerating every hypothesis. To illustrate the general-to-specific ordering,
consider the two hypotheses

hi = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

Now consider the sets of instances that are classified positive by hl and by h2.
Because h2 imposes fewer constraints on the instance, it classifies more instances
as positive. In fact, any instance classified positive by hl will also be classified
positive by h2. Therefore, we say that h2 is more general than hl.

This intuitive "more general than" relationship between hypotheses can be
defined more precisely as follows. First, for any instance x in X and hypothesis
h in H, we say that x satisjies h if and only if h(x) = 1. We now define the
more-general~han_or.-equal~o relation in terms of the sets of instances that sat-
isfy the two hypotheses: Given hypotheses hj and hk, hj is more-general-thanm--
equaldo hk if and only if any instance that satisfies hk also satisfies hi.

Definition: Let hj and hk be boolean-valued functions defined over X. Then hj is
moregeneral-than-or-equal-to hk (written hj 2, h k) if and only if

We will also find it useful to consider cases where one hypothesis is strictly more
general than the other. Therefore, we will say that hj is (strictly) more-generaldhan

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 25

I m t a n c e s X H y p o t h e s e s H

I I

A
Specific

General

t
i

XI= <Sunny, W a n , High, Strong, Cool, Same> h l = <Sunny, ?, ?, Strong, ?, ?>

x = <Sunny, Warm, High, Light, Warm, Same>
2

h = <Sunny, ?, ?, ?, ?, ?>
2

h 3 = <Sunny, ?, ?, 7, Cool, ?>

FIGURE 2.1
Instances, hypotheses, and the m o r e - g e n e r a l - t h a n relation. The box on the left represents the set X
of all instances, the box on the right the set H of all hypotheses. Each hypothesis corresponds to
some subset of X-the subset of instances that it classifies positive. The arrows connecting hypotheses
represent the m o r e - g e n e r a l - t h a n relation, with the arrow pointing toward the less general hypothesis.
Note the subset of instances characterized by h2 subsumes the subset characterized by h l , hence h2
is m o r e - g e n e r a l - t h a n h l .

hk (written hj >, hk) if and only if (hj p, hk) A (hk 2 , hi) . Finally, we will
sometimes find the inverse useful and will say that hj is morespecijkthan hk
when hk is more_general-than h j .

To illustrate these definitions, consider the three hypotheses h l , h2, and
h3 from our Enjoysport example, shown in Figure 2.1. How are these three
hypotheses related by the p, relation? As noted earlier, hypothesis h2 is more
general than hl because every instance that satisfies hl also satisfies h2. Simi-
larly, h2 is more general than h3. Note that neither hl nor h3 is more general
than the other; although the instances satisfied by these two hypotheses intersect,
neither set subsumes the other. Notice also that the p, and >, relations are de-
fined independent of the target concept. They depend only on which instances
satisfy the two hypotheses and not on the classification of those instances accord-
ing to the target concept. Formally, the p, relation defines a partial order over
the hypothesis space H (the relation is reflexive, antisymmetric, and transitive).
Informally, when we say the structure is a partial (as opposed to total) order, we
mean there may be pairs of hypotheses such as hl and h3, such that hl 2 , h3 and
h3 2, h l .

The pg relation is important because it provides a useful structure over the
hypothesis space H for any concept learning problem. The following sections
present concept learning algorithms that take advantage of this partial order to
efficiently organize the search for hypotheses that fit the training data.

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x
0 For each attribute constraint a, in h

If the constraint a, is satisfied by x
Then do nothing
Else replace a, in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

TABLE 2.3
FIND-S Algorithm.

2.4 FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS

How can we use the more-general-than partial ordering to organize the search for
a hypothesis consistent with the observed training examples? One way is to begin
with the most specific possible hypothesis in H, then generalize this hypothesis
each time it fails to cover an observed positive training example. (We say that
a hypothesis "covers" a positive example if it correctly classifies the example as
positive.) To be more precise about how the partial ordering is used, consider the
FIND-S algorithm defined in Table 2.3.

To illustrate this algorithm, assume the learner is given the sequence of
training examples from Table 2.1 for the EnjoySport task. The first step of FIND-
S is to initialize h to the most specific hypothesis in H

Upon observing the first training example from Table 2.1, which happens to be a
positive example, it becomes clear that our hypothesis is too specific. In particular,
none of the "0" constraints in h are satisfied by this example, so each is replaced
by the next more general constraint {hat fits the example; namely, the attribute
values for this training example.

h -+ (Sunny, Warm, Normal, Strong, Warm, Same)

This h is still very specific; it asserts that all instances are negative except for
the single positive training example we have observed. Next, the second training
example (also positive in this case) forces the algorithm to further generalize h,
this time substituting a "?' in place of any attribute value in h that is not satisfied
by the new example. The refined hypothesis in this case is

h -+ (Sunny, Warm, ?, Strong, Warm, Same)

Upon encountering the third training example-in this case a negative exam-
ple-the algorithm makes no change to h. In fact, the FIND-S algorithm simply
ignores every negative example! While this may at first seem strange, notice that
in the current case our hypothesis h is already consistent with the new negative ex-
ample (i-e., h correctly classifies this example as negative), and hence no revision

is needed. In the general case, as long as we assume that the hypothesis space H
contains a hypothesis that describes the true target concept c and that the training
data contains no errors, then the current hypothesis h can never require a revision
in response to a negative example. To see why, recall that the current hypothesis
h is the most specific hypothesis in H consistent with the observed positive exam-
ples. Because the target concept c is also assumed to be in H and to be consistent
with the positive training examples, c must be more.general_than-or-equaldo h.
But the target concept c will never cover a negative example, thus neither will
h (by the definition of more-general~han). Therefore, no revision to h will be
required in response to any negative example.

To complete our trace of FIND-S, the fourth (positive) example leads to a
further generalization of h

h t (Sunny, Warm, ?, Strong, ?, ?)

The FIND-S algorithm illustrates one way in which the more-generaldhan
partial ordering can be used to organize the search for an acceptable hypothe-
sis. The search moves from hypothesis to hypothesis, searching from the most
specific to progressively more general hypotheses along one chain of the partial
ordering. Figure 2.2 illustrates this search in terms of the instance and hypoth-
esis spaces. At each step, the hypothesis is generalized only as far as neces-
sary to cover the new positive example. Therefore, at each stage the hypothesis
is the most specific hypothesis consistent with the training examples observed
up to this point (hence the name FIND-S). The literature on concept learning is

Instances X Hypotheses H

specific

General

* 1 = <Sunny Warm Normal Strong Warm Same>, + h , = <Sunny Warm Normal Strong Warm Same>
x2 = <Sunny Warm High Strong Warm Same>, + h2 = <Sunny Warm ? Strong Warm Same>

X3 = <Rainy Cold High Strong Warm Change>, - h = <Sunny Warm ? Strong Warm Same>
3

x - <Sunny Warm High Strong Cool Change>, + h - <Sunny Warm ? Strong ? ? > 4- 4 -

FIGURE 2.2
'The hypothesis space search performed by FINDS. The search begins (ho) with the most specific
hypothesis in H, then considers increasingly general hypotheses (hl through h4) as mandated by the
training examples. In the instance space diagram, positive training examples are denoted by "+,"
negative by "-," and instances that have not been presented as training examples are denoted by a
solid circle.

populated by many different algorithms that utilize this same more-general-than
partial ordering to organize the search in one fashion or another. A number of
such algorithms are discussed in this chapter, and several others are presented in
Chapter 10.

The key property of the FIND-S algorithm is that for hypothesis spaces de-
scribed by conjunctions of attribute constraints (such as H for the EnjoySport
task), FIND-S is guaranteed to output the most specific hypothesis within H
that is consistent with the positive training examples. Its final hypothesis will
also be consistent with the negative examples provided the correct target con-
cept is contained in H, and provided the training examples are correct. How-
ever, there are several questions still left unanswered by this learning algorithm,
such as:

Has the learner converged to the correct target concept? Although FIND-S
will find a hypothesis consistent with the training data, it has no way to
determine whether it has found the only hypothesis in H consistent with
the data (i.e., the correct target concept), or whether there are many other
consistent hypotheses as well. We would prefer a learning algorithm that
could determine whether it had converged and, if not, at least characterize
its uncertainty regarding the true identity of the target concept.

0 Why prefer the most specific hypothesis? In case there are multiple hypothe-
ses consistent with the training examples, FIND-S will find the most specific.
It is unclear whether we should prefer this hypothesis over, say, the most
general, or some other hypothesis of intermediate generality.

0 Are the training examples consistent? In most practical learning problems
there is some chance that the training examples will contain at least some
errors or noise. Such inconsistent sets of training examples can severely
mislead FIND-S, given the fact that it ignores negative examples. We would
prefer an algorithm that could at least detect when the training data is in-
consistent and, preferably, accommodate such errors.

0 What if there are several maximally specific consistent hypotheses? In the
hypothesis language H for the EnjoySport task, there is always a unique,
most specific hypothesis consistent with any set of positive examples. How-
ever, for other hypothesis spaces (discussed later) there can be several maxi-
mally specific hypotheses consistent with the data. In this case, FIND-S must
be extended to allow it to backtrack on its choices of how to generalize the
hypothesis, to accommodate the possibility that the target concept lies along
a different branch of the partial ordering than the branch it has selected. Fur-
thermore, we can define hypothesis spaces for which there is no maximally
specific consistent hypothesis, although this is more of a theoretical issue
than a practical one (see Exercise 2.7).

2.5 VERSION SPACES AND THE CANDIDATE-ELIMINATION
ALGORITHM

This section describes a second approach to concept learning, the CANDIDATE-
ELIMINATION algorithm, that addresses several of the limitations of FIND-S. Notice
that although FIND-S outputs a hypothesis from H,that is consistent with the
training examples, this is just one of many hypotheses from H that might fit the
training data equally well. The key idea in the CANDIDATE-ELIMINATION algorithm
is to output a description of the set of all hypotheses consistent with the train-
ing examples. Surprisingly, the CANDIDATE-ELIMINATION algorithm computes the
description of this set without explicitly enumerating all of its members. This is
accomplished by again using the more-general-than partial ordering, this time
to maintain a compact representation of the set of consistent hypotheses and to
incrementally refine this representation as each new training example is encoun-
tered.

The CANDIDATE-ELIMINATION algorithm has been applied to problems such
as learning regularities in chemical mass spectroscopy (Mitchell 1979) and learn-
ing control rules for heuristic search (Mitchell et al. 1983). Nevertheless, prac-
tical applications of the CANDIDATE-ELIMINATION and FIND-S algorithms are lim-
ited by the fact that they both perform poorly when given noisy training data.
More importantly for our purposes here, the CANDIDATE-ELIMINATION algorithm
provides a useful conceptual framework for introducing several fundamental is-
sues in machine learning. In the remainder of this chapter we present the algo-
rithm and discuss these issues. Beginning with the next chapter, we will ex-
amine learning algorithms that are used more frequently with noisy training
data.

2.5.1 Representation

The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are
consistent with the observed training examples. In order to define this algorithm
precisely, we begin with a few basic definitions. First, let us say that a hypothesis
is consistent with the training examples if it correctly classifies these examples.

Definition: A hypothesis h is consistent with a set of training examples D if and
only if h(x) = c(x) for each example (x, c(x)) in D.

Notice the key difference between this definition of consistent and our earlier
definition of satisfies. An example x is said to satisfy hypothesis h when h(x) = 1,
regardless of whether x is a positive or negative example of the target concept.
However, whether such an example is consistent with h depends on the target
concept, and in particular, whether h(x) = c (x) .

The CANDIDATE-ELIMINATION algorithm represents the set of all hypotheses
consistent with the observed training examples. This subset of all hypotheses is

called the version space with respect to the hypothesis space H and the training
examples D, because it contains all plausible versions of the target concept.

Dejnition: The version space, denoted V S H V D , with respect to hypothesis space H
and training examples D, is the subset of hypotheses from H consistent with the
training examples in D.

V S H , ~ = {h E HIConsistent(h, D)]

2.5.2 The LIST-THEN-ELIMINATE Algorithm

One obvious way to represent the version space is simply to list all of its members.
This leads to a simple learning algorithm, which we might call the LIST-THEN-
ELIMINATE algorithm, defined in Table 2.4.

The LIST-THEN-ELIMINATE algorithm first initializes the version space to con-
tain all hypotheses in H, then eliminates any hypothesis found inconsistent with
any training example. The version space of candidate hypotheses thus shrinks
as more examples are observed, until ideally just one hypothesis remains that is
consistent with all the observed examples. This, presumably, is the desired target
concept. If insufficient data is available to narrow the version space to a single
hypothesis, then the algorithm can output the entire set of hypotheses consistent
with the observed data.

In principle, the LIST-THEN-ELIMINATE algorithm can be applied whenever
the hypothesis space H is finite. It has many advantages, including the fact that it
is guaranteed to output all hypotheses consistent with the training data. Unfortu-
nately, it requires exhaustively enumerating all hypotheses in H-an unrealistic
requirement for all but the most trivial hypothesis spaces.

2.5.3 A More Compact Representation for Version Spaces

The CANDIDATE-ELIMINATION algorithm works on the same principle as the above
LIST-THEN-ELIMINATE algorithm. However, it employs a much more compact rep-
resentation of the version space. In particular, the version space is represented
by its most general and least general members. These members form general and
specific boundary sets that delimit the version space within the partially ordered
hypothesis space.

The LIST-THEN-ELIMINATE Algorithm

1. VersionSpace c a list containing every hypothesis in H

2. For each training example, (x , c (x))

remove from VersionSpace any hypothesis h for which h(x) # c (x)
3. Output the list of hypotheses in VersionSpace

TABLE 2.4
The LIST-THEN-ELIMINATE algorithm.

{<Sunny, Warm, ?, Strong, 7, ?> 1

<Sunny, ?, 7, Strong, 7, ?> <Sunny, Warm, ?. ?, ?, ?> <?, Warm, ?, strbng, ?, ?>

FIGURE 2.3
A version space with its general and specific boundary sets. The version space includes all six
hypotheses shown here, but can be represented more simply by S and G . Arrows indicate instances
of the more-general-than relation. This is the version space for the Enjoysport concept learning
problem and training examples described in Table 2.1.

To illustrate this representation for version spaces, consider again the En-
joysport concept learning problem described in Table 2.2. Recall that given the
four training examples from Table 2.1, FIND-S outputs the hypothesis

h = (Sunny, Warm, ?, Strong, ?, ?)

In fact, this is just one of six different hypotheses from H that are consistent
with these training examples. All six hypotheses are shown in Figure 2.3. They
constitute the version space relative to this set of data and this hypothesis repre-
sentation. The arrows among these six hypotheses in Figure 2.3 indicate instances
of the more-general~han relation. The CANDIDATE-ELIMINATION algorithm rep-
resents the version space by storing only its most general members (labeled G
in Figure 2.3) and its most specific (labeled S in the figure). Given only these
two sets S and G, it is possible to enumerate all members of the version space
as needed by generating the hypotheses that lie between these two sets in the
general-to-specific partial ordering over hypotheses.

It is intuitively plausible that we can represent the version space in terms of
its most specific and most general members. Below we define the boundary sets
G and S precisely and prove that these sets do in fact represent the version space.

Definition: The general boundary G, with respect to hypothesis space H and training
data D, is the set of maximally general members of H consistent with D.

G = {g E HIConsistent(g, D) A (-3gf E H)[(gf >, g) A Consistent(gt, D)]]

Definition: The specific boundary S, with respect to hypothesis space H and training
data D, is the set of minimally general (i.e., maximally specific) members of H
consistent with D.

S rn {s E H(Consistent(s, D) A (-3s' E H)[(s >, s f) A Consistent(st, D)])

As long as the sets G and S are well defined (see Exercise 2.7), they com-
pletely specify the version space. In particular, we can show that the version space
is precisely the set of hypotheses contained in G , plus those contained in S, plus
those that lie between G and S in the partially ordered hypothesis space. This is
stated precisely in Theorem 2.1.

Theorem 2.1. Version space representation theorem. Let X be an arbitrary set
of instances and let H be a set of boolean-valued hypotheses defined over X. Let
c : X + {O, 1) be an arbitrary target concept defined over X, and let D be an
arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S and
G are well defined,

Proof. To prove the theorem it suffices to show that (1) every h satisfying the right-
hand side of the above expression is in V S H , ~ and (2) every member of V S H , ~
satisfies the right-hand side of the expression. To show (1) let g be an arbitrary
member of G, s be an arbitrary member of S, and h be an arbitrary member of H,
such that g 2, h 2, s. Then by the definition of S, s must be satisfied by all positive
examples in D. Because h 2, s, h must also be satisfied by all positive examples in
D. Similarly, by the definition of G, g cannot be satisfied by any negative example
in D, and because g 2, h, h cannot be satisfied by any negative example in D.
Because h is satisfied by all positive examples in D and by no negative examples
in D, h is consistent with D, and therefore h is a member of V S H , ~ . This proves
step (1). The argument for (2) is a bit more complex. It can be proven by assuming
some h in V S H , ~ that does not satisfy the right-hand side of the expression, then
showing that this leads to an inconsistency. (See Exercise 2.6.) 0

2.5.4 CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINATION algorithm computes the version space containing
all hypotheses from H that are consistent with an observed sequence of training
examples. It begins by initializing the version space to the set of all hypotheses
in H; that is, by initializing the G boundary set to contain the most general
hypothesis in H

Go + {(?, ?, ?, ?, ?, ?)}

and initializing the S boundary set to contain the most specific (least general)
hypothesis

so c- ((@,PI, @,PI, 0,0)1

These two boundary sets delimit the entire hypothesis space, because every other
hypothesis in H is both more general than So and more specific than Go. As
each training example is considered, the S and G boundary sets are generalized
and specialized, respectively, to eliminate from the version space any hypothe-
ses found inconsistent with the new training example. After all examples have
been processed, the computed version space contains all the hypotheses consis-
tent with these examples and only these hypotheses. This algorithm is summarized
in Table 2.5.

CHAPTER 2 CONCEET LEARNJNG AND THE GENERAL-TO-SPECIFIC ORDERING 33

Initialize G to the set of maximally general hypotheses in H
Initialize S to the set of maximally specific hypotheses in H
For each training example d, do
0 If d is a positive example

Remove from G any hypothesis inconsistent with d ,
0 For each hypothesis s in S that is not consistent with d ,-

0 Remove s from S
0 Add to S all minimal generalizations h of s such that

0 h is consistent with d, and some member of G is more general than h
0 Remove from S any hypothesis that is more general than another hypothesis in S

0 If d is a negative example
0 Remove from S any hypothesis inconsistent with d

For each hypothesis g in G that is not consistent with d
Remove g from G

0 Add to G all minimal specializations h of g such that
0 h is consistent with d, and some member of S is more specific than h

0 Remove from G any hypothesis that is less general than another hypothesis in G

TABLE 2.5
CANDIDATE-ELIMINATION algorithm using version spaces. Notice the duality in how positive and
negative examples influence S and G.

Notice that the algorithm is specified in terms of operations such as comput-
ing minimal generalizations and specializations of given hypotheses, and identify-
ing nonrninimal and nonmaximal hypotheses. The detailed implementation of these
operations will depend, of course, on the specific representations for instances and
hypotheses. However, the algorithm itself can be applied to any concept learn-
ing task and hypothesis space for which these operations are well-defined. In the
following example trace of this algorithm, we see how such operations can be
implemented for the representations used in the EnjoySport example problem.

2.5.5 An Illustrative Example

Figure 2.4 traces the CANDIDATE-ELIMINATION algorithm applied to the first two
training examples from Table 2.1. As described above, the boundary sets are first
initialized to Go and So, the most general and most specific hypotheses in H,
respectively.

When the first training example is presented (a positive example in this
case), the CANDIDATE-ELIMINATION algorithm checks the S boundary and finds
that it is overly specific-it fails to cover the positive example. The boundary is
therefore revised by moving it to the least more general hypothesis that covers
this new example. This revised boundary is shown as S1 in Figure 2.4. No up-
date of the G boundary is needed in response to this training example because
Go correctly covers this example. When the second training example (also pos-
itive) is observed, it has a similar effect of generalizing S further to S2, leaving
G again unchanged (i.e., G2 = GI = GO). Notice the processing of these first

34 MACHINE LEARNING

S 1 : {<Sunny, Warm, Normal, Strong, Warm, Same> } 1

Training examples:

t

1 . <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes

2 . <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

S2 :

FIGURE 2.4
CANDIDATE-ELIMINATION Trace 1. So and Go are the initial boundary sets corresponding to the most
specific and most general hypotheses. Training examples 1 and 2 force the S boundary to become
more general, as in the FIND-S algorithm. They have no effect on the G boundary.

{<Sunny, Warm, ?, Strong, Warm, Same>}

two positive examples is very similar to the processing performed by the FIND-S
algorithm.

As illustrated by these first two steps, positive training examples may force
the S boundary of the version space to become increasingly general. Negative
training examples play the complimentary role of forcing the G boundary to
become increasingly specific. Consider the third training example, shown in Fig-
ure 2.5. This negative example reveals that the G boundary of the version space
is overly general; that is, the hypothesis in G incorrectly predicts that this new
example is a positive example. The hypothesis in the G boundary must therefore
be specialized until it correctly classifies this new negative example. As shown in
Figure 2.5, there are several alternative minimally more specific hypotheses. All
of these become members of the new G3 boundary set. -

Given that there are six attributes that could be specified to specialize G2,
why are there only three new hypotheses in G3? For example, the hypothesis
h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 that correctly la-
bels the new example as a negative example, but it is not included in Gg. The
reason this hypothesis is excluded is that it is inconsistent with the previously
encountered positive examples. The algorithm determines this simply by noting
that h is not more general than the current specific boundary, Sz. In fact, the S
boundary of the version space forms a summary of the previously encountered
positive examples that can be used to determine whether any given hypothesis

C H m R 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 35

s2 9 s 3 :

Training Example:

(<Sunny, Wann, ?. Strong, W a r n Same>)]

G 3:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySporkNo

(<Sunny, ?, ?, ?, ?, ?> <?, Wann, ?, ?, ?, ?> <?, ?, ?, ?, ?, Same>}

FIGURE 2.5
CANDIDATE-ELMNATION Trace 2. Training example 3 is a negative example that forces the G2
boundary to be specialized to G3. Note several alternative maximally general hypotheses are included
in Gj.

is consistent with these examples. Any hypothesis more general than S will, by
definition, cover any example that S covers and thus will cover any past positive
example. In a dual fashion, the G boundary summarizes the information from
previously encountered negative examples. Any hypothesis more specific than G
is assured to be consistent with past negative examples. This is true because any
such hypothesis, by definition, cannot cover examples that G does not cover.

The fourth training example, as shown in Figure 2.6, further generalizes the
S boundary of the version space. It also results in removing one member of the G
boundary, because this member fails to cover the new positive example. This last
action results from the first step under the condition "If d is a positive example"
in the algorithm shown in Table 2.5. To understand the rationale for this step, it is
useful to consider why the offending hypothesis must be removed from G. Notice
it cannot be specialized, because specializing it would not make it cover the new
example. It also cannot be generalized, because by the definition of G, any more
general hypothesis will cover at least one negative training example. Therefore,
the hypothesis must be dropped from the G boundary, thereby removing an entire
branch of the partial ordering from the version space of hypotheses remaining
under consideration.

After processing these four examples, the boundary sets S4 and G4 delimit
the version space of all hypotheses consistent with the set of incrementally ob-
served training examples. The entire version space, including those hypotheses

A

'32: I<?, ?, ?, ?, ? , ? > I

S 3: {<Sunny, Warm, ?, Strong, Warm, Same>)

I
S 4: I (<Sunny, Warm ?, Strong, ?, ?>) I

Training Example:

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

FIGURE 2.6
CANDIDATE-ELIMINATION Trace 3. The positive training example generalizes the S boundary, from
S3 to S4. One member of Gg must also be deleted, because it is no longer more general than the S4
boundary.

bounded by S4 and G4, is shown in Figure 2.7. This learned version space is
independent of the sequence in which the training examples are presented (be-
cause in the end it contains all hypotheses consistent with the set of examples).
As further training data is encountered, the S and G boundaries will move mono-
tonically closer to each other, delimiting a smaller and smaller version space of
candidate hypotheses.

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?>

s4:

{<Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?>)

{<Sunny, Warm, ?, Strong, ?, ?>)

FIGURE 2.7
The final version space for the EnjoySport concept learning problem and training examples described
earlier.

CH.4PTF.R 2 CONCEFT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 37

2.6 REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION

2.6.1 Will the CANDIDATE-ELIMINATION Algorithm Converge to the
Correct Hypothesis?

The version space learned by the CANDIDATE-ELIMINATION algorithm will con-
verge toward the hypothesis that correctly describes the target concept, provided
(1) there are no errors in the training examples, and (2) there is some hypothesis
in H that correctly describes the target concept. In fact, as new training examples
are observed, the version space can be monitored to determine the remaining am-
biguity regarding the true target concept and to determine when sufficient training
examples have been observed to unambiguously identify the target concept. The
target concept is exactly learned when the S and G boundary sets converge to a
single, identical, hypothesis.

What will happen if the training data contains errors? Suppose, for example,
that the second training example above is incorrectly presented as a negative
example instead of a positive example. Unfortunately, in this case the algorithm
is certain to remove the correct target concept from the version space! Because,
it will remove every hypothesis that is inconsistent with each training example, it
will eliminate the true target concept from the version space as soon as this false
negative example is encountered. Of course, given sufficient additional training
data the learner will eventually detect an inconsistency by noticing that the S and
G boundary sets eventually converge to an empty version space. Such an empty
version space indicates that there is no hypothesis in H consistent with all observed
training examples. A similar symptom will appear when the training examples are
correct, but the target concept cannot be described in the hypothesis representation
(e.g., if the target concept is a disjunction of feature attributes and the hypothesis
space supports only conjunctive descriptions). We will consider such eventualities
in greater detail later. For now, we consider only the case in which the training
examples are correct and the true target concept is present in the hypothesis space.

2.6.2 What Training Example Should the Learner Request Next?

Up to this point we have assumed that training examples are provided to the
learner by some external teacher. Suppose instead that the learner is allowed to
conduct experiments in which it chooses the next instance, then obtains the correct
classification for this instance from an external oracle (e.g., nature or a teacher).
This scenario covers situations in which the learner may conduct experiments in
nature (e.g., build new bridges and allow nature to classify them as stable or
unstable), or in which a teacher is available to provide the correct classification
(e.g., propose a new bridge and allow the teacher to suggest whether or not it will
be stable). We use the term query to refer to such instances constructed by the
learner, which are then classified by an external oracle.

Consider again the version space learned from the four training examples
of the Enjoysport concept and illustrated in Figure 2.3. What would be a good
query for the learner to pose at this point? What is a good query strategy in

DELL
Highlight

DELL
Sticky Note
Not included in Syllabus

general? Clearly, the learner should attempt to discriminate among the alternative
competing hypotheses in its current version space. Therefore, it should choose
an instance that would be classified positive by some of these hypotheses, but
negative by others. One such instance is

(Sunny, Warm, Normal, Light, Warm, Same)

Note that this instance satisfies three of the six hypotheses in the current
version space (Figure 2.3). If the trainer classifies this instance as a positive ex-
ample, the S boundary of the version space can then be generalized. Alternatively,
if the trainer indicates that this is a negative example, the G boundary can then be
specialized. Either way, the learner will succeed in learning more about the true
identity of the target concept, shrinking the version space from six hypotheses to
half this number.

In general, the optimal query strategy for a concept learner is to generate
instances that satisfy exactly half the hypotheses in the current version space.
When this is possible, the size of the version space is reduced by half with each
new example, and the correct target concept can therefore be found with only
rlog2JVS11 experiments. The situation is analogous to playing the game twenty
questions, in which the goal is to ask yes-no questions to determine the correct
hypothesis. The optimal strategy for playing twenty questions is to ask questions
that evenly split the candidate hypotheses into sets that predict yes and no. While
we have seen that it is possible to generate an instance that satisfies precisely
half the hypotheses in the version space of Figure 2.3, in general it may not be
possible to construct an instance that matches precisely half the hypotheses. In
such cases, a larger number of queries may be required than rlog21VS(1.

2.6.3 How Can Partially Learned Concepts Be Used?

Suppose that no additional training examples are available beyond the four in
our example above, but that the learner is now required to classify new instances
that it has not yet observed. Even though the version space of Figure 2.3 still
contains multiple hypotheses, indicating that the target concept has not yet been
fully learned, it is possible to classify certain examples with the same degree of
confidence as if the target concept had been uniquely identified. To illustrate,
suppose the learner is asked to classify the four new instances shown in Ta-
ble 2.6. 9

Note that although instance A was not among the training examples, it is
classified as a positive instance by every hypothesis in the current version space
(shown in Figure 2.3). Because the hypotheses in the version space unanimously
agree that this is a positive instance, the learner can classify instance A as positive
with the same confidence it would have if it had already converged to the single,
correct target concept. Regardless of which hypothesis in the version space is
eventually found to be the correct target concept, it is already clear that it will
classify instance A as a positive example. Notice furthermore that we need not
enumerate every hypothesis in the version space in order to test whether each

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 39

Instance Sky AirTemp Humidity Wind Water Forecast EnjoySport
-

A Sunny Warm Normal Strong Cool Change ?
B Rainy Cold Normal Light Warm Same ?
C Sunny Warm Normal Light Warm Same ?
D Sunny Cold Normal Strong Warm Same ?

TABLE 2.6
New instances to be classified.

classifies the instance as positive. This condition will be met if and only if the
instance satisfies every member of S (why?). The reason is that every other hy-
pothesis in the version space is at least as general as some member of S. By our
definition of more-general~han, if the new instance satisfies all members of S it
must also satisfy each of these more general hypotheses.

Similarly, instance B is classified as a negative instance by every hypothesis
in the version space. This instance can therefore be safely classified as negative,
given the partially learned concept. An efficient test for this condition is that the
instance satisfies none of the members of G (why?).

Instance C presents a different situation. Half of the version space hypotheses
classify it as positive and half classify it as negative. Thus, the learner cannot
classify this example with confidence until further training examples are available.
Notice that instance C is the same instance presented in the previous section as
an optimal experimental query for the learner. This is to be expected, because
those instances whose classification is most ambiguous are precisely the instances
whose true classification would provide the most new information for refining the
version space.

Finally, instance D is classified as positive by two of the version space
hypotheses and negative by the other four hypotheses. In this case we have less
confidence in the classification than in the unambiguous cases of instances A
and B. Still, the vote is in favor of a negative classification, and one approach
we could take would be to output the majority vote, perhaps with a confidence
rating indicating how close the vote was. As we will discuss in Chapter 6, if we
assume that all hypotheses in H are equally probable a priori, then such a vote
provides the most probable classification of this new instance. Furthermore, the
proportion of hypotheses voting positive can be interpreted as the probability that
this instance is positive given the training data.

2.7 INDUCTIVE BIAS

As discussed above, the CANDIDATE-ELIMINATION algorithm will converge toward
the true target concept provided it is given accurate training examples and pro-
vided its initial hypothesis space contains the target concept. What if the target
concept is not contained in the hypothesis space? Can we avoid this difficulty by
using a hypothesis space that includes every possible hypothesis? How does the

size of this hypothesis space influence the ability of the algorithm to generalize
to unobserved instances? How does the size of the hypothesis space influence the
number of training examples that must be observed? These are fundamental ques-
tions for inductive inference in general. Here we examine them in the context of
the CANDIDATE-ELIMINATION algorithm. As we shall see, though, the conclusions
we draw from this analysis will apply to any concept learning system that outputs
any hypothesis consistent with the training data.

2.7.1 A Biased Hypothesis Space

Suppose we wish to assure that the hypothesis space contains the unknown tar-
get concept. The obvious solution is to enrich the hypothesis space to include
every possible hypothesis. To illustrate, consider again the EnjoySpor t example in
which we restricted the hypothesis space to include only conjunctions of attribute
values. Because of this restriction, the hypothesis space is unable to represent
even simple disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy."
In fact, given the following three training examples of this disjunctive hypothesis,
our algorithm would find that there are zero hypotheses in the version space.

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Cool Change Yes
2 Cloudy Warm Normal Strong Cool Change Yes
3 Rainy Warm Normal Strong Cool Change No

To see why there are no hypotheses consistent with these three examples,
note that the most specific hypothesis consistent with the first two examples and
representable in the given hypothesis space H is

S2 : (?, Warm, Normal, Strong, Cool, Change)

This hypothesis, although it is the maximally specific hypothesis from H that is
consistent with the first two examples, is already overly general: it incorrectly
covers the third (negative) training example. The problem is that we have biased
the learner to consider only conjunctive hypotheses. In this case we require a more
expressive hypothesis space.

2.7.2 An Unbiased Learner

The obvious solution to the problem of assuring that the target concept is in the
hypothesis space H is to provide a hypothesis space capable of representing every
teachable concept; that is, it is capable of representing every possible subset of the
instances X. In general, the set of all subsets of a set X is called thepowerset of X.

In the EnjoySport learning task, for example, the size of the instance space
X of days described by the six available attributes is 96. How many possible
concepts can be defined over this set of instances? In other words, how large is

the power set of X? In general, the number of distinct subsets that can be defined
over a set X containing 1x1 elements (i.e., the size of the power set of X) is 21'1.
Thus, there are 296, or approximately distinct target concepts that could be
defined over this instance space and that our learner might be called upon to learn.
Recall from Section 2.3 that our conjunctive hypothesis space is able to represent
only 973 of these-a very biased hypothesis space indeed!

Let us reformulate the Enjoysport learning task in an unbiased way by
defining a new hypothesis space H' that can represent every subset of instances;
that is, let H' correspond to the power set of X. One way to define such an H' is to
allow arbitrary disjunctions, conjunctions, and negations of our earlier hypotheses.
For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be
described as

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?)

Given this hypothesis space, we can safely use the CANDIDATE-ELIMINATION
algorithm without worrying that the target concept might not be expressible. How-
ever, while this hypothesis space eliminates any problems of expressibility, it un-
fortunately raises a new, equally difficult problem: our concept learning algorithm
is now completely unable to generalize beyond the observed examples! To see
why, suppose we present three positive examples (xl, x2, x3) and two negative ex-
amples (x4, x5) to the learner. At this point, the S boundary of the version space
will contain the hypothesis which is just the disjunction of the positive examples

because this is the most specific possible hypothesis that covers these three exam-
ples. Similarly, the G boundary will consist of the hypothesis that rules out only
the observed negative examples

The problem here is that with this very expressive hypothesis representation,
the S boundary will always be simply the disjunction of the observed positive
examples, while the G boundary will always be the negated disjunction of the
observed negative examples. Therefore, the only examples that will be unambigu-
ously classified by S and G are the observed training examples themselves. In
order to converge to a single, final target concept, we will have to present every
single instance in X as a training example!

It might at first seem that we could avoid this difficulty by simply using the
partially learned version space and by taking a vote among the members of the
version space as discussed in Section 2.6.3. Unfortunately, the only instances that
will produce a unanimous vote are the previously observed training examples. For,
all the other instances, taking a vote will be futile: each unobserved instance will
be classified positive by precisely half the hypotheses in the version space and
will be classified negative by the other half (why?). To see the reason, note that
when H is the power set of X and x is some previously unobserved instance,
then for any hypothesis h in the version space that covers x, there will be anoQer

hypothesis h' in the power set that is identical to h except for its classification of
x. And of course if h is in the version space, then h' will be as well, because it
agrees with h on all the observed training examples.

2.7.3 The Futility of Bias-Free Learning

The above discussion illustrates a fundamental property of inductive inference:
a learner that makes no a priori assumptions regarding the identity of the tar-
get concept has no rational basis for classifying any unseen instances. In fact,
the only reason that the CANDIDATE-ELIMINATION algorithm was able to gener-
alize beyond the observed training examples in our original formulation of the
EnjoySport task is that it was biased by the implicit assumption that the target
concept could be represented by a conjunction of attribute values. In cases where
this assumption is correct (and the training examples are error-free), its classifica-
tion of new instances will also be correct. If this assumption is incorrect, however,
it is certain that the CANDIDATE-ELIMINATION algorithm will rnisclassify at least
some instances from X.

Because inductive learning requires some form of prior assumptions, or
inductive bias, we will find it useful to characterize different learning approaches
by the inductive biast they employ. Let us define this notion of inductive bias
more precisely. The key idea we wish to capture here is the policy by which the
learner generalizes beyond the observed training data, to infer the classification
of new instances. Therefore, consider the general setting in which an arbitrary
learning algorithm L is provided an arbitrary set of training data D, = {(x, c(x))}
of some arbitrary target concept c. After training, L is asked to classify a new
instance xi. Let L(xi, D,) denote the classification (e.g., positive or negative) that
L assigns to xi after learning from the training data D,. We can describe this
inductive inference step performed by L as follows

where the notation y + z indicates that z is inductively inferred from y. For
example, if we take L to be the CANDIDATE-ELIMINATION algorithm, D, to be
the training data from Table 2.1, and xi to be the fist instance from Table 2.6,
then the inductive inference performed in this case concludes that L(xi, D,) =
(EnjoySport = yes).

Because L is an inductive learning algorithm, the result L(xi, D,) that it in-
fers will not in general be provably correct; that is, the classification L(xi, D,) need
not follow deductively from the training data D, and the description of the new
instance xi. However, it is interesting to ask what additional assumptions could be
added to D, r\xi so that L(xi, D,) would follow deductively. We define the induc-
tive bias of L as this set of additional assumptions. More precisely, we define the

t ~ h e term inductive bias here is not to be confused with the term estimation bias commonly used in
statistics. Estimation bias will be discussed in Chapter 5.

CHAFI%R 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 43

inductive bias of L to be the set of assumptions B such that for all new instances xi

(B A D, A x i) F L(xi , D,)

where the notation y t z indicates that z follows deductively from y (i.e., that z
is provable from y) . Thus, we define the inductive bias of a learner as the set of
additional assumptions B sufficient to justify its inductive inferences as deductive
inferences. To summarize,

Definition: Consider a concept learning algorithm L for the set of instances X. Let
c be an arbitrary concept defined over X, and let D, = ((x , c (x)) } be an arbitrary
set of training examples of c. Let L(xi, D,) denote the classification assigned to
the instance xi by L after training on the data D,. The inductive bias of L is any
minimal set of assertions B such that for any target concept c and corresponding
training examples Dc

(Vxi E X) [(B A Dc A xi) k L(xi, D,)] (2.1)

What, then, is the inductive bias of the CANDIDATE-ELIMINATION algorithm?
To answer this, let us specify L(xi , D,) exactly for this algorithm: given a set
of data D,, the CANDIDATE-ELIMINATION algorithm will first compute the version
space VSH,D,, then classify the new instance xi by a vote among hypotheses in this
version space. Here let us assume that it will output a classification for xi only if
this vote among version space hypotheses is unanimously positive or negative and
that it will not output a classification otherwise. Given this definition of L(xi , D,)
for the CANDIDATE-ELIMINATION algorithm, what is its inductive bias? It is simply
the assumption c E H. Given this assumption, each inductive inference performed
by the CANDIDATE-ELIMINATION algorithm can be justified deductively.

To see why the classification L(xi , D,) follows deductively from B = {c E

H), together with the data D, and description of the instance xi, consider the fol-
lowing argument. First, notice that if we assume c E H then it follows deductively
that c E VSH,Dc. This follows from c E H, from the definition of the version space
VSH,D, as the set of all hypotheses in H that are consistent with D,, and from our
definition of D, = {(x, c (x)) } as training data consistent with the target concept
c. Second, recall that we defined the classification L(xi , D,) to be the unanimous
vote of all hypotheses in the version space. Thus, if L outputs the classification
L (x , , D,) , it must be the case the every hypothesis in V S H , ~ , also produces this
classification, including the hypothesis c E VSHYDc. Therefore c (x i) = L(xi, D,).
To summarize, the CANDIDATE-ELIMINATION algorithm defined in this fashion can
be characterized by the following bias

Inductive bias of CANDIDATE-ELIMINATION algorithm. The target concept c is
contained in the given hypothesis space H.

Figure 2.8 summarizes the situation schematically. The inductive CANDIDATE-
ELIMINATION algorithm at the top of the figure takes two inputs: the training exam-
ples and a new instance to be classified. At the bottom of the figure, a deductive

44 MACHINE LEARNING

Inductive system
Classification of

Candidate new instance, or Training examples Elimination "don't know"

New instance Using Hypothesis
Space H

Equivalent deductive system
I I Classification of

Training examples I new instance, or
"don't know"

Theorem Prover

Assertion " Hcontains
the target concept"

-D

P
Inductive bias
made explicit

FIGURE 2.8
Modeling inductive systems by equivalent deductive systems. The input-output behavior of the
CANDIDATE-ELIMINATION algorithm using a hypothesis space H is identical to that of a deduc-
tive theorem prover utilizing the assertion " H contains the target concept." This assertion is therefore
called the inductive bias of the CANDIDATE-ELIMINATION algorithm. Characterizing inductive systems
by their inductive bias allows modeling them by their equivalent deductive systems. This provides a
way to compare inductive systems according to their policies for generalizing beyond the observed
training data.

theorem prover is given these same two inputs plus the assertion "H contains the
target concept." These two systems will in principle produce identical outputs for
every possible input set of training examples and every possible new instance in
X. Of course the inductive bias that is explicitly input to the theorem prover is
only implicit in the code of the CANDIDATE-ELIMINATION algorithm. In a sense, it
exists only in the eye of us beholders. Nevertheless, it is a perfectly well-defined
set of assertions.

One advantage of viewing inductive inference systems in terms of their
inductive bias is that it provides a nonprocedural means of characterizing their
policy for generalizing beyond the observed data. A second advantage is that it
allows comparison of different learners according to the strength of the inductive
bias they employ. Consider, for example, the following three learning algorithms,
which are listed from weakest to strongest bias.

1. ROTE-LEARNER: Learning corresponds simply to storing each observed train-
ing example in memory. Subsequent instances are classified by looking them

CHAPTER 2 CONCEPT. LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 45

up in memory. If the instance is found in memory, the stored classification
is returned. Otherwise, the system refuses to classify the new instance.

2. CANDIDATE-ELIMINATION algorithm: New instances are classified only in the
case where all members of the current version space agree on the classifi-
cation. Otherwise, the system refuses to classify the new instance.

3. FIND-S: This algorithm, described earlier, finds the most specific hypothesis
consistent with the training examples. It then uses this hypothesis to classify
all subsequent instances.

The ROTE-LEARNER has no inductive bias. The classifications it provides
for new instances follow deductively from the observed training examples, with
no additional assumptions required. The CANDIDATE-ELIMINATION algorithm has a
stronger inductive bias: that the target concept can be represented in its hypothesis
space. Because it has a stronger bias, it will classify some instances that the ROTE-
LEARNER will not. Of course the correctness of such classifications will depend
completely on the correctness of this inductive bias. The FIND-S algorithm has
an even stronger inductive bias. In addition to the assumption that the target
concept can be described in its hypothesis space, it has an additional inductive
bias assumption: that all instances are negative instances unless the opposite is
entailed by its other know1edge.t

As we examine other inductive inference methods, it is useful to keep in
mind this means of characterizing them and the strength of their inductive bias.
More strongly biased methods make more inductive leaps, classifying a greater
proportion of unseen instances. Some inductive biases correspond to categorical
assumptions that completely rule out certain concepts, such as the bias "the hy-
pothesis space H includes the target concept." Other inductive biases merely rank
order the hypotheses by stating preferences such as "more specific hypotheses are
preferred over more general hypotheses." Some biases are implicit in the learner
and are unchangeable by the learner, such as the ones we have considered here.
In Chapters 11 and 12 we will see other systems whose bias is made explicit as
a set of assertions represented and manipulated by the learner.

2.8 SUMMARY AND FURTHER READING

The main points of this chapter include:

Concept learning can be cast as a problem of searching through a large
predefined space of potential hypotheses.
The general-to-specific partial ordering of hypotheses, which can be defined
for any concept learning problem, provides a useful structure for organizing
the search through the hypothesis space.

+Notice this last inductive bias assumption involves a kind of default, or nonmonotonic reasoning.

The FINDS algorithm utilizes this general-to-specific ordering, performing
a specific-to-general search through the hypothesis space along one branch
of the partial ordering, to find the most specific hypothesis consistent with
the training examples.
The CANDIDATE-ELIMINATION algorithm utilizes this general-to-specific or-
dering to compute the version space (the set of all hypotheses consistent
with the training data) by incrementally computing the sets of maximally
specific (S) and maximally general (G) hypotheses.
Because the S and G sets delimit the entire set of hypotheses consistent with
the data, they provide the learner with a description of its uncertainty regard-
ing the exact identity of the target concept. This version space of alternative
hypotheses can be examined to determine whether the learner has converged
to the target concept, to determine when the training data are inconsistent,
to generate informative queries to further refine the version space, and to
determine which unseen instances can be unambiguously classified based on
the partially learned concept.
Version spaces and the CANDIDATE-ELIMINATION algorithm provide a useful
conceptual framework for studying concept learning. However, this learning
algorithm is not robust to noisy data or to situations in which the unknown
target concept is not expressible in the provided hypothesis space. Chap-
ter 10 describes several concept learning algorithms based on the general-
to-specific ordering, which are robust to noisy data.

0 Inductive learning algorithms are able to classify unseen examples only be-
cause of their implicit inductive bias for selecting one consistent hypothesis
over another. The bias associated with the CANDIDATE-ELIMINATION algo-
rithm is that the target concept can be found in the provided hypothesis
space (c E H). The output hypotheses and classifications of subsequent in-
stances follow deductively from this assumption together with the observed
training data.
If the hypothesis space is enriched to the point where there is a hypoth-
esis corresponding to every possible subset of instances (the power set of
the instances), this will remove any inductive bias from the CANDIDATE-
ELIMINATION algorithm. Unfortunately, this also removes the ability to clas-
sify any instance beyond the observed training examples. An unbiased learner
cannot make inductive leaps to classify unseen examples.

The idea of concept learning and using the general-to-specific ordering have
been studied for quite some time. Bruner et al. (1957) provided an early study
of concept learning in humans, and Hunt and Hovland (1963) an early effort
to automate it. Winston's (1970) widely known Ph.D. dissertation cast concept
learning as a search involving generalization and specialization operators. Plotkin
(1970, 1971) provided an early formalization of the more-general-than relation,
as well as the related notion of 8-subsumption (discussed in Chapter 10). Simon
and Lea (1973) give an early account of learning as search through a hypothesis

CHAFTER 2 CONCEPT LEARNING AND THE GENERALTO-SPECIFIC ORDEIUNG 47

space. Other early concept learning systems include (Popplestone 1969; Michal-
ski 1973; Buchanan 1974; Vere 1975; Hayes-Roth 1974). A very large number
of algorithms have since been developed for concept learning based on symbolic
representations. Chapter 10 describes several more recent algorithms for con-
cept learning, including algorithms that learn concepts represented in first-order
logic, algorithms that are robust to noisy training data, and algorithms whose
performance degrades gracefully if the target concept is not representable in the
hypothesis space considered by the learner.

Version spaces and the CANDIDATE-ELIMINATION algorithm were introduced
by Mitchell (1977, 1982). The application of this algorithm to inferring rules of
mass spectroscopy is described in (Mitchell 1979), and its application to learning
search control rules is presented in (Mitchell et al. 1983). Haussler (1988) shows
that the size of the general boundary can grow exponentially in the number of
training examples, even when the hypothesis space consists of simple conjunctions
of features. Smith and Rosenbloom (1990) show a simple change to the repre-
sentation of the G set that can improve complexity in certain cases, and Hirsh
(1992) shows that learning can be polynomial in the number of examples in some
cases when the G set is not stored at all. Subramanian and Feigenbaum (1986)
discuss a method that can generate efficient queries in certain cases by factoring
the version space. One of the greatest practical limitations of the CANDIDATE-
ELIMINATION algorithm is that it requires noise-free training data. Mitchell (1979)
describes an extension that can handle a bounded, predetermined number of mis-
classified examples, and Hirsh (1990, 1994) describes an elegant extension for
handling bounded noise in real-valued attributes that describe the training ex-
amples. Hirsh (1990) describes an INCREMENTAL VERSION SPACE MERGING algo-
rithm that generalizes the CANDIDATE-ELIMINATION algorithm to handle situations
in which training information can be different types of constraints represented
using version spaces. The information from each constraint is represented by a
version space and the constraints are then combined by intersecting the version
spaces. Sebag (1994, 1996) presents what she calls a disjunctive version space ap-
proach to learning disjunctive concepts from noisy data. A separate version space
is learned for each positive training example, then new instances are classified
by combining the votes of these different version spaces. She reports experiments
in several problem domains demonstrating that her approach is competitive with
other widely used induction methods such as decision tree learning and k-NEAREST
NEIGHBOR.

EXERCISES
2.1. Explain why the size of the hypothesis space in the EnjoySport learning task is

973. How would the number of possible instances and possible hypotheses increase
with the addition of the attribute Watercurrent, which can take on the values
Light, Moderate, or Strong? More generally, how does the number of possible
instances and hypotheses grow with the addition of a new attribute A that takes on
k possible values? ,

I

2.2. Give the sequence of S and G boundary sets computed by the CANDIDATE-ELIMINA-
TION algorithm if it is given the sequence of training examples from Table 2.1 in
reverse order. Although the final version space will be the same regardless of the
sequence of examples (why?), the sets S and G computed at intermediate stages
will, of course, depend on this sequence. Can you come up with ideas for ordering
the training examples to minimize the sum of the sizes of these intermediate S and
G sets for the H used in the EnjoySport example?

2.3. Consider again the EnjoySport learning task and the hypothesis space H described
in Section 2.2. Let us define a new hypothesis space H' that consists of all painvise
disjunctions of the hypotheses in H . For example, a typical hypothesis in H' is

(?, Cold, H i g h , ?, ?, ?) v (Sunny, ?, H i g h , ?, ?, Same)

Trace the CANDIDATE-ELIMINATION algorithm for the hypothesis space H' given the
sequence of training examples from Table 2.1 (i.e., show the sequence of S and G
boundary sets.)

2.4. Consider the instance space consisting of integer points in the x , y plane and the
set of hypotheses H consisting of rectangles. More precisely, hypotheses are of the
form a 5 x 5 b, c 5 y 5 d , where a , b, c, and d can be any integers.
(a) Consider the version space with respect to the set of positive (+) and negative

(-) training examples shown below. What is the S boundary of the version space
in this case? Write out the hypotheses and draw them in on the diagram.

(b) What is the G boundary of this version space? Write out the hypotheses and
draw them in.

(c) Suppose the learner may now suggest a new x , y instance and ask the trainer for
its classification. Suggest a query guaranteed to reduce the size of the version
space, regardless of how the trainer classifies it. Suggest one that will not.

(d) Now assume you are a teacher, attempting to teach a particular target concept
(e.g., 3 5 x 5 5 , 2 (y 5 9). What is the smallest number of training examples
you can provide so that the CANDIDATE-ELIMINATION algorithm will perfectly
learn the target concept?

2.5. Consider the following sequence of positive and negative training examples describ-
ing the concept "pairs of people who live in the same house." Each training example
describes an ordered pair of people, with each person described by their sex, hair

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 49

color (black, brown, or blonde), height (tall, medium, or short), and nationality (US,
French, German, Irish, Indian, Japanese, or Portuguese).

+ ((male brown tall US) (f emale black short US))

+ ((male brown short French)(female black short US))

- ((female brown tall German)(f emale black short Indian))

+ ((male brown tall Irish) (f emale brown short Irish))

Consider a hypothesis space defined over these instances, in which each hy-
pothesis is represented by a pair of Ctuples, and where each attribute constraint may
be a specific value, "?," or "0," just as in the EnjoySport hypothesis representation.
For example, the hypothesis

((male ? tall ?)(female ? ? Japanese))

represents the set of all pairs of people where the first is a tall male (of any nationality
and hair color), and the second is a Japanese female (of any hair color and height).
(a) Provide a hand trace of the CANDIDATE-ELIMINATION algorithm learning from

the above training examples and hypothesis language. In particular, show the
specific and general boundaries of the version space after it has processed the
first training example, then the second training example, etc.

(b) How many distinct hypotheses from the given hypothesis space are consistent
with the following single positive training example?

+ ((male black short Portuguese)(f emale blonde tall Indian))

(c) Assume the learner has encountered only the positive example from part (b),
and that it is now allowed to query the trainer by generating any instance and
asking the trainer to classify it. Give a specific sequence of queries that assures
the learner will converge to the single correct hypothesis, whatever it may be
(assuming that the target concept is describable within the given hypothesis
language). Give the shortest sequence of queries you can find. How does the
length of this sequence relate to your answer to question (b)?

(d) Note that this hypothesis language cannot express all concepts that can be defined
over the instances (i.e., we can define sets of positive and negative examples for
which there is no corresponding describable hypothesis). If we were to enrich
the language so that it could express all concepts that can be defined over the
instance language, then how would your answer to (c) change?

2.6. Complete the proof of the version space representation theorem (Theorem 2.1).

Consider a concept learning problem in which each instance is a real number, and in
which each hypothesis is an interval over the reals. More precisely, each hypothesis
in the hypothesis space H is of the form a < x < b, where a and b are any real
constants, and x refers to the instance. For example, the hypothesis 4.5 < x < 6.1
classifies instances between 4.5 and 6.1 as positive, and others as negative. Explain
informally why there cannot be a maximally specific consistent hypothesis for any
set of positive training examples. Suggest a slight modification to the hypothesis
representation so that there will be. 'C

50 MACHINE LEARNING

2.8. In this chapter, we commented that given an unbiased hypothesis space (the power
set of the instances), the learner would find that each unobserved instance would
match exactly half the current members of the version space, regardless of which
training examples had been observed. Prove this. In particular, prove that for any
instance space X, any set of training examples D, and any instance x E X not present
in D, that if H is the power set of X, then exactly half the hypotheses in V S H , D will
classify x as positive and half will classify it as negative.

2.9. Consider a learning problem where each instance is described by a conjunction of
n boolean attributes a1 . . .a,. Thus, a typical instance would be

(al = T) A (az = F) A . . . A (a, = T)

Now consider a hypothesis space H in which each hypothesis is a disjunction of
constraints over these attributes. For example, a typical hypothesis would be

Propose an algorithm that accepts a sequence of training examples and outputs
a consistent hypothesis if one exists. Your algorithm should run in time that is
polynomial in n and in the number of training examples.

2.10. Implement the FIND-S algorithm. First verify that it successfully produces the trace in
Section 2.4 for the Enjoysport example. Now use this program to study the number
of random training examples required to exactly learn the target concept. Implement
a training example generator that generates random instances, then classifies them
according to the target concept:

(Sunny, Warm, ?, ?, ?, ?)

Consider training your FIND-S program on randomly generated examples and mea-
suring the number of examples required before the program's hypothesis is identical
to the target concept. Can you predict the average number of examples required?
Run the experiment at least 20 times and report the mean number of examples re-
quired. How do you expect this number to vary with the number of "?" in the
target concept? How would it vary with the number of attributes used to describe
instances and hypotheses?

REFERENCES

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1957). A study of thinking. New York: John Wiey
& Sons.

Buchanan, B. G. (1974). Scientific theory formation by computer. In J. C. Simon (Ed.), Computer
Oriented Learning Processes. Leyden: Noordhoff.

Gunter, C. A., Ngair, T., Panangaden, P., & Subramanian, D. (1991). The common order-theoretic
structure of version spaces and ATMS's. Proceedings of the National Conference on Artijicial
Intelligence (pp. 500-505). Anaheim.

Haussler, D. (1988). Quantifying inductive bias: A1 learning algorithms and Valiant's learning frame-
work. Artijicial Intelligence, 36, 177-221.

Hayes-Roth, F. (1974). Schematic classification problems and their solution. Pattern Recognition, 6,
105-113.

Hirsh, H. (1990). Incremental version space merging: A general framework for concept learning.
Boston: Kluwer.

Hirsh, H. (1991). Theoretical underpinnings of version spaces. Proceedings of the 12th IJCAI
(pp. 665-670). Sydney.

Hirsh, H. (1994). Generalizing version spaces. Machine Learning, 17(1), 5 4 6 .
Hunt, E. G., & Hovland, D. I. (1963). Programming a model of human concept formation. In

E. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 310-325). New York: Mc-
Graw Hill.

Michalski, R. S. (1973). AQVALI1: Computer implementation of a variable valued logic system VL1
and examples of its application to pattern recognition. Proceedings of the 1st International Joint
Conference on Pattern Recognition (pp. 3-17).

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning. Fijlh
International Joint Conference on AI @p. 305-310). Cambridge, MA: MIT Press.

Mitchell, T. M. (1979). Version spaces: An approach to concept learning, (F'h.D. dissertation). Elec-
trical Engineering Dept., Stanford University, Stanford, CA.

Mitchell, T. M. (1982). Generalization as search. ArtQcial Intelligence, 18(2), 203-226.
Mitchell, T. M., Utgoff, P. E., & Baneji, R. (1983). Learning by experimentation: Acquiring and

modifying problem-solving heuristics. In Michalski, Carbonell, & Mitchell (Eds.), Machine
Learning (Vol. 1, pp. 163-190). Tioga Press.

Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer & Michie (Eds.), Machine
Intelligence 5 (pp. 153-163). Edinburgh University Press.

Plotkin, G. D. (1971). A further note on inductive generalization. In Meltzer & Michie (Eds.), Machine
Intelligence 6 (pp. 104-124). Edinburgh University Press.

Popplestone, R. J. (1969). An experiment in automatic induction. In Meltzer & Michie (Eds.), Machine
Intelligence 5 (pp. 204-215). Edinburgh University Press.

Sebag, M. (1994). Using constraints to build version spaces. Proceedings of the 1994 European
Conference on Machine Learning. Springer-Verlag.

Sebag, M. (1996). Delaying the choice of bias: A disjunctive version space approach. Proceedings of
the 13th International Conference on Machine Learning (pp. 444-452). San Francisco: Morgan
Kaufmann.

Simon, H. A,, & Lea, G. (1973). Problem solving and rule induction: A unified view. In Gregg (Ed.),
Knowledge and Cognition (pp. 105-127). New Jersey: Lawrence Erlbaum Associates.

Smith, B. D., & Rosenbloom, P. (1990). Incremental non-backtracking focusing: A polynomially
bounded generalization algorithm for version spaces. Proceedings of the 1990 National Con-
ference on ArtQcial Intelligence (pp. 848-853). Boston.

Subramanian, D., & Feigenbaum, J. (1986). Factorization in experiment generation. Proceedings of
the I986 National Conference on ArtQcial Intelligence (pp. 518-522). Morgan Kaufmann.

Vere, S. A. (1975). Induction of concepts in the predicate calculus. Fourth International Joint Con-
ference on AI (pp. 281-287). Tbilisi, USSR.

Winston, P. H. (1970). Learning structural descriptions from examples, (Ph.D. dissertation). [MIT
Technical Report AI-TR-2311.

