
������������������������
�����������

����������������������
����������������������������
������������������������

��������������



Jason Brownlee

Machine Learning Mastery With Python

Understand Your Data, Create Accurate Models and
Work Projects End-To-End



i

Machine Learning Mastery With Python

© Copyright 2016 Jason Brownlee. All Rights Reserved.

Edition: v1.4



Contents

Preface iii

I Introduction 1

1 Welcome 2
1.1 Learn Python Machine Learning The Wrong Way . . . . . . . . . . . . . . . . . 2
1.2 Machine Learning in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 What This Book is Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II Lessons 8

2 Python Ecosystem for Machine Learning 9
2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 SciPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Python Ecosystem Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Crash Course in Python and SciPy 14
3.1 Python Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 NumPy Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Matplotlib Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Pandas Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 How To Load Machine Learning Data 26
4.1 Considerations When Loading CSV Data . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Pima Indians Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Load CSV Files with the Python Standard Library . . . . . . . . . . . . . . . . 27
4.4 Load CSV Files with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Load CSV Files with Pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



iii

5 Understand Your Data With Descriptive Statistics 31
5.1 Peek at Your Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Dimensions of Your Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Data Type For Each Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Class Distribution (Classification Only) . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Correlations Between Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Skew of Univariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Tips To Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Understand Your Data With Visualization 38
6.1 Univariate Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Multivariate Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Prepare Your Data For Machine Learning 47
7.1 Need For Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Data Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Rescale Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Standardize Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 Normalize Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6 Binarize Data (Make Binary) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Feature Selection For Machine Learning 52
8.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2 Univariate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Recursive Feature Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.5 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Evaluate the Performance of Machine Learning Algorithms with Resampling 57
9.1 Evaluate Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Split into Train and Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.3 K-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4 Leave One Out Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.5 Repeated Random Test-Train Splits . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.6 What Techniques to Use When . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10 Machine Learning Algorithm Performance Metrics 62
10.1 Algorithm Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3 Regression Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



iv

11 Spot-Check Classification Algorithms 70
11.1 Algorithm Spot-Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.2 Algorithms Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.3 Linear Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 71
11.4 Nonlinear Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 72
11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12 Spot-Check Regression Algorithms 76
12.1 Algorithms Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12.2 Linear Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 77
12.3 Nonlinear Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 79
12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

13 Compare Machine Learning Algorithms 83
13.1 Choose The Best Machine Learning Model . . . . . . . . . . . . . . . . . . . . . 83
13.2 Compare Machine Learning Algorithms Consistently . . . . . . . . . . . . . . . 83
13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14 Automate Machine Learning Workflows with Pipelines 87
14.1 Automating Machine Learning Workflows . . . . . . . . . . . . . . . . . . . . . . 87
14.2 Data Preparation and Modeling Pipeline . . . . . . . . . . . . . . . . . . . . . . 87
14.3 Feature Extraction and Modeling Pipeline . . . . . . . . . . . . . . . . . . . . . 89
14.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 Improve Performance with Ensembles 91
15.1 Combine Models Into Ensemble Predictions . . . . . . . . . . . . . . . . . . . . 91
15.2 Bagging Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
15.3 Boosting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
15.4 Voting Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
15.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

16 Improve Performance with Algorithm Tuning 98
16.1 Machine Learning Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . 98
16.2 Grid Search Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
16.3 Random Search Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 99
16.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

17 Save and Load Machine Learning Models 101
17.1 Finalize Your Model with pickle . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
17.2 Finalize Your Model with Joblib . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
17.3 Tips for Finalizing Your Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
17.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

III Projects 105

18 Predictive Modeling Project Template 106
18.1 Practice Machine Learning With Projects . . . . . . . . . . . . . . . . . . . . . . 106



v

18.2 Machine Learning Project Template in Python . . . . . . . . . . . . . . . . . . . 107
18.3 Machine Learning Project Template Steps . . . . . . . . . . . . . . . . . . . . . 108
18.4 Tips For Using The Template Well . . . . . . . . . . . . . . . . . . . . . . . . . 110
18.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

19 Your First Machine Learning Project in Python Step-By-Step 111
19.1 The Hello World of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 111
19.2 Load The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
19.3 Summarize the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
19.4 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
19.5 Evaluate Some Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
19.6 Make Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

20 Regression Machine Learning Case Study Project 123
20.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
20.2 Load the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
20.3 Analyze Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
20.4 Data Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
20.5 Validation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
20.6 Evaluate Algorithms: Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
20.7 Evaluate Algorithms: Standardization . . . . . . . . . . . . . . . . . . . . . . . . 136
20.8 Improve Results With Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
20.9 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
20.10Tune Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
20.11Finalize Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
20.12Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

21 Binary Classification Machine Learning Case Study Project 144
21.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
21.2 Load the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
21.3 Analyze Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
21.4 Validation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
21.5 Evaluate Algorithms: Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
21.6 Evaluate Algorithms: Standardize Data . . . . . . . . . . . . . . . . . . . . . . . 155
21.7 Algorithm Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
21.8 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
21.9 Finalize Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
21.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

22 More Predictive Modeling Projects 163
22.1 Build And Maintain Recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
22.2 Small Projects on Small Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 163
22.3 Competitive Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
22.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



vi

IV Conclusions 166

23 How Far You Have Come 167

24 Getting More Help 168
24.1 General Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
24.2 Help With Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
24.3 Help With SciPy and NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
24.4 Help With Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
24.5 Help With Pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
24.6 Help With scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



Preface

I think Python is an amazing platform for machine learning. There are so many algorithms
and so much power ready to use. I am often asked the question: How do you use Python for
machine learning? This book is my definitive answer to that question. It contains my very best
knowledge and ideas on how to work through predictive modeling machine learning projects
using the Python ecosystem. It is the book that I am also going to use as a refresher at the start
of a new project. I’m really proud of this book and I hope that you find it a useful companion
on your machine learning journey with Python.

Jason Brownlee
Melbourne, Australia

2016
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Chapter 1

Welcome

Welcome to Machine Learning Mastery With Python. This book is your guide to applied machine
learning with Python. You will discover the step-by-step process that you can use to get started
and become good at machine learning for predictive modeling with the Python ecosystem.

1.1 Learn Python Machine Learning The Wrong Way

Here is what you should NOT do when you start studying machine learning in Python.

1. Get really good at Python programming and Python syntax.

2. Deeply study the underlying theory and parameters for machine learning algorithms in
scikit-learn.

3. Avoid or lightly touch on all of the other tasks needed to complete a real project.

I think that this approach can work for some people, but it is a really slow and a roundabout
way of getting to your goal. It teaches you that you need to spend all your time learning how to
use individual machine learning algorithms. It also does not teach you the process of building
predictive machine learning models in Python that you can actually use to make predictions.
Sadly, this is the approach used to teach machine learning that I see in almost all books and
online courses on the topic.

1.2 Machine Learning in Python

This book focuses on a specific sub-field of machine learning called predictive modeling. This is
the field of machine learning that is the most useful in industry and the type of machine learning
that the scikit-learn library in Python excels at facilitating. Unlike statistics, where models are
used to understand data, predictive modeling is laser focused on developing models that make
the most accurate predictions at the expense of explaining why predictions are made. Unlike the
broader field of machine learning that could feasibly be used with data in any format, predictive
modeling is primarily focused on tabular data (e.g. tables of numbers like in a spreadsheet).

This book was written around three themes designed to get you started and using Python
for applied machine learning effectively and quickly. These three parts are as follows:

2



1.2. Machine Learning in Python 3

Lessons : Learn how the sub-tasks of a machine learning project map onto Python and the
best practice way of working through each task.

Projects : Tie together all of the knowledge from the lessons by working through case study
predictive modeling problems.

Recipes : Apply machine learning with a catalog of standalone recipes in Python that you
can copy-and-paste as a starting point for new projects.

1.2.1 Lessons

You need to know how to complete the specific subtasks of a machine learning project using the
Python ecosystem. Once you know how to complete a discrete task using the platform and get
a result reliably, you can do it again and again on project after project. Let’s start with an
overview of the common tasks in a machine learning project. A predictive modeling machine
learning project can be broken down into 6 top-level tasks:

1. Define Problem: Investigate and characterize the problem in order to better understand
the goals of the project.

2. Analyze Data: Use descriptive statistics and visualization to better understand the data
you have available.

3. Prepare Data: Use data transforms in order to better expose the structure of the
prediction problem to modeling algorithms.

4. Evaluate Algorithms: Design a test harness to evaluate a number of standard algorithms
on the data and select the top few to investigate further.

5. Improve Results: Use algorithm tuning and ensemble methods to get the most out of
well-performing algorithms on your data.

6. Present Results: Finalize the model, make predictions and present results.

A blessing and a curse with Python is that there are so many techniques and so many ways
to do the same thing with the platform. In part II of this book you will discover one easy or
best practice way to complete each subtask of a general machine learning project. Below is a
summary of the Lessons from Part II and the sub-tasks that you will learn about.

� Lesson 1: Python Ecosystem for Machine Learning.

� Lesson 2: Python and SciPy Crash Course.

� Lesson 3: Load Datasets from CSV.

� Lesson 4: Understand Data With Descriptive Statistics. (Analyze Data)

� Lesson 5: Understand Data With Visualization. (Analyze Data)

� Lesson 6: Pre-Process Data. (Prepare Data)
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� Lesson 7: Feature Selection. (Prepare Data)

� Lesson 8: Resampling Methods. (Evaluate Algorithms)

� Lesson 9: Algorithm Evaluation Metrics. (Evaluate Algorithms)

� Lesson 10: Spot-Check Classification Algorithms. (Evaluate Algorithms)

� Lesson 11: Spot-Check Regression Algorithms. (Evaluate Algorithms)

� Lesson 12: Model Selection. (Evaluate Algorithms)

� Lesson 13: Pipelines. (Evaluate Algorithms)

� Lesson 14: Ensemble Methods. (Improve Results)

� Lesson 15: Algorithm Parameter Tuning. (Improve Results)

� Lesson 16: Model Finalization. (Present Results)

These lessons are intended to be read from beginning to end in order, showing you exactly
how to complete each task in a predictive modeling machine learning project. Of course, you can
dip into specific lessons again later to refresh yourself. Lessons are structured to demonstrate key
API classes and functions, showing you how to use specific techniques for a common machine
learning task. Each lesson was designed to be completed in under 30 minutes (depending on
your level of skill and enthusiasm). It is possible to work through the entire book in one weekend.
It also works if you want to dip into specific sections and use the book as a reference.

1.2.2 Projects

Recipes for common predictive modeling tasks are critically important, but they are also just
the starting point. This is where most books and courses stop.

You need to piece the recipes together into end-to-end projects. This will show you how to
actually deliver a model or make predictions on new data using Python. This book uses small
well-understood machine learning datasets from the UCI Machine learning repository1 in both
the lessons and in the example projects. These datasets are available for free as CSV downloads.
These datasets are excellent for practicing applied machine learning because:

� They are small, meaning they fit into memory and algorithms can model them in
reasonable time.

� They are well behaved, meaning you often don’t need to do a lot of feature engineering
to get a good result.

� They are benchmarks, meaning that many people have used them before and you can
get ideas of good algorithms to try and accuracy levels you should expect.

In Part III you will work through three projects:

1http://archive.ics.uci.edu/ml
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Hello World Project (Iris flowers dataset) : This is a quick pass through the project steps
without much tuning or optimizing on a dataset that is widely used as the hello world of
machine learning.

Regression (Boston House Price dataset) : Work through each step of the project process
with a regression problem.

Binary Classification (Sonar dataset) : Work through each step of the project process
using all of the methods on a binary classification problem.

These projects unify all of the lessons from Part II. They also give you insight into the
process for working through predictive modeling machine learning problems which is invaluable
when you are trying to get a feeling for how to do this in practice. Also included in this section
is a template for working through predictive modeling machine learning problems which you
can use as a starting point for current and future projects. I find this useful myself to set the
direction and setup important tasks (which are easy to forget) on new projects.

1.2.3 Recipes

Recipes are small standalone examples in Python that show you how to do one specific thing and
get a result. For example, you could have a recipe that demonstrates how to use the Random
Forest algorithm for classification. You could have another for normalizing the attributes of a
dataset.

Recipes make the difference between a beginner who is having trouble and a fast learner
capable of making accurate predictions quickly on any new project. A catalog of recipes provides
a repertoire of skills that you can draw from when starting a new project. More formally, recipes
are defined as follows:

� Recipes are code snippets not tutorials.

� Recipes provide just enough code to work.

� Recipes are demonstrative not exhaustive.

� Recipes run as-is and produce a result.

� Recipes assume that required libraries are installed.

� Recipes use built-in datasets or datasets provided in specific libraries.

You are starting your journey into machine learning with Python with a catalog of machine
learning recipes used throughout this book. All of the code from the lessons in Part II and
projects in Part III are available in your Python recipe catalog. Recipes are organized by chapter
so that you can quickly locate a specific example used in the book. This is an valuable resource
that you can use to jump-start your current and future machine learning projects. You can also
build upon this recipe catalog as you discover new techniques.
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1.2.4 Your Outcomes From Reading This Book

This book will lead you from being a developer who is interested in machine learning with
Python to a developer who has the resources and capability to work through a new dataset
end-to-end using Python and develop accurate predictive models. Specifically, you will know:

� How to work through a small to medium sized dataset end-to-end.

� How to deliver a model that can make accurate predictions on new unseen data.

� How to complete all subtasks of a predictive modeling problem with Python.

� How to learn new and different techniques in Python and SciPy.

� How to get help with Python machine learning.

From here you can start to dive into the specifics of the functions, techniques and algorithms
used with the goal of learning how to use them better in order to deliver more accurate predictive
models, more reliably in less time.

1.3 What This Book is Not

This book was written for professional developers who want to know how to build reliable and
accurate machine learning models in Python.

� This is not a machine learning textbook. We will not be getting into the basic
theory of machine learning (e.g. induction, bias-variance trade-off, etc.). You are expected
to have some familiarity with machine learning basics, or be able to pick them up yourself.

� This is not an algorithm book. We will not be working through the details of how
specific machine learning algorithms work (e.g. Random Forests). You are expected
to have some basic knowledge of machine learning algorithms or how to pick up this
knowledge yourself.

� This is not a Python programming book. We will not be spending a lot of time on
Python syntax and programming (e.g. basic programming tasks in Python). You are
expected to be a developer who can pick up a new C-like language relatively quickly.

You can still get a lot out of this book if you are weak in one or two of these areas, but you
may struggle picking up the language or require some more explanation of the techniques. If
this is the case, see the Getting More Help chapter at the end of the book and seek out a good
companion reference text.

1.4 Summary

I hope you are as excited as me to get started. In this introduction chapter you learned that
this book is unconventional. Unlike other books and courses that focus heavily on machine
learning algorithms in Python and focus on little else, this book will walk you through each
step of a predictive modeling machine learning project.
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� Part II of this book provides standalone lessons including a mixture of recipes and tutorials
to build up your basic working skills and confidence in Python.

� Part III of this book will introduce a machine learning project template that you can use
as a starting point on your own projects and walks you through three end-to-end projects.

� The recipes companion to this book provides a catalog of machine learning code in Python.
You can browse this invaluable resource, find useful recipes and copy-and-paste them into
your current and future machine learning projects.

� Part IV will finish out the book. It will look back at how far you have come in developing
your new found skills in applied machine learning with Python. You will also discover
resources that you can use to get help if and when you have any questions about Python
or the ecosystem.

1.4.1 Next Step

Next you will start Part II and your first lesson. You will take a closer look at the Python
ecosystem for machine learning. You will discover what Python and SciPy are, why it is so
powerful as a platform for machine learning and the different ways you should and should not
use the platform.



Part II

Lessons
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Chapter 2

Python Ecosystem for Machine
Learning

The Python ecosystem is growing and may become the dominant platform for machine learning.
The primary rationale for adopting Python for machine learning is because it is a general
purpose programming language that you can use both for R&D and in production. In this
chapter you will discover the Python ecosystem for machine learning. After completing this
lesson you will know:

1. Python and it’s rising use for machine learning.

2. SciPy and the functionality it provides with NumPy, Matplotlib and Pandas.

3. scikit-learn that provides all of the machine learning algorithms.

4. How to setup your Python ecosystem for machine learning and what versions to use

Let’s get started.

2.1 Python

Python is a general purpose interpreted programming language. It is easy to learn and use
primarily because the language focuses on readability. The philosophy of Python is captured in
the Zen of Python which includes phrases like:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Listing 2.1: Sample of the Zen of Python.

It is a popular language in general, consistently appearing in the top 10 programming
languages in surveys on StackOverflow1. It’s a dynamic language and very suited to interactive

1http://stackoverflow.com/research/developer-survey-2015

9
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development and quick prototyping with the power to support the development of large applica-
tions. It is also widely used for machine learning and data science because of the excellent library
support and because it is a general purpose programming language (unlike R or Matlab). For
example, see the results of the Kaggle platform survey results in 20112 and the KDD Nuggets
2015 tool survey results3.

This is a simple and very important consideration. It means that you can perform your
research and development (figuring out what models to use) in the same programming language
that you use for your production systems. Greatly simplifying the transition from development
to production.

2.2 SciPy

SciPy is an ecosystem of Python libraries for mathematics, science and engineering. It is an
add-on to Python that you will need for machine learning. The SciPy ecosystem is comprised of
the following core modules relevant to machine learning:

� NumPy: A foundation for SciPy that allows you to efficiently work with data in arrays.

� Matplotlib: Allows you to create 2D charts and plots from data.

� Pandas: Tools and data structures to organize and analyze your data.

To be effective at machine learning in Python you must install and become familiar with
SciPy. Specifically:

� You will prepare your data as NumPy arrays for modeling in machine learning algorithms.

� You will use Matplotlib (and wrappers of Matplotlib in other frameworks) to create plots
and charts of your data.

� You will use Pandas to load explore and better understand your data.

2.3 scikit-learn

The scikit-learn library is how you can develop and practice machine learning in Python. It is
built upon and requires the SciPy ecosystem. The name scikit suggests that it is a SciPy plug-in
or toolkit. The focus of the library is machine learning algorithms for classification, regression,
clustering and more. It also provides tools for related tasks such as evaluating models, tuning
parameters and pre-processing data.

Like Python and SciPy, scikit-learn is open source and is usable commercially under the BSD
license. This means that you can learn about machine learning, develop models and put them
into operations all with the same ecosystem and code. A powerful reason to use scikit-learn.

2http://blog.kaggle.com/2011/11/27/kagglers-favorite-tools/
3http://www.kdnuggets.com/polls/2015/analytics-data-mining-data-science-software-used.

html
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2.4 Python Ecosystem Installation

There are multiple ways to install the Python ecosystem for machine learning. In this section
we cover how to install the Python ecosystem for machine learning.

2.4.1 How To Install Python

The first step is to install Python. I prefer to use and recommend Python 2.7. The instructions
for installing Python will be specific to your platform. For instructions see Downloading Python4

in the Python Beginners Guide. Once installed you can confirm the installation was successful.
Open a command line and type:

python --version

Listing 2.2: Print the version of Python installed.

You should see a response like the following:

Python 2.7.11

Listing 2.3: Example Python version.

The examples in this book assume that you are using this version of Python 2 or newer. The
examples in this book have not been tested with Python 3.

2.4.2 How To Install SciPy

There are many ways to install SciPy. For example two popular ways are to use package
management on your platform (e.g. yum on RedHat or macports on OS X) or use a Python
package management tool like pip. The SciPy documentation is excellent and covers how-
to instructions for many different platforms on the page Installing the SciPy Stack 5. When
installing SciPy, ensure that you install the following packages as a minimum:

� scipy

� numpy

� matplotlib

� pandas

Once installed, you can confirm that the installation was successful. Open the Python
interactive environment by typing python at the command line, then type in and run the
following Python code to print the versions of the installed libraries.

# scipy

import scipy

print('scipy: {}'.format(scipy.__version__))

# numpy

import numpy

print('numpy: {}'.format(numpy.__version__))

4https://wiki.python.org/moin/BeginnersGuide/Download
5http://scipy.org/install.html
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# matplotlib

import matplotlib

print('matplotlib: {}'.format(matplotlib.__version__))

# pandas

import pandas

print('pandas: {}'.format(pandas.__version__))

Listing 2.4: Print the versions of the SciPy stack.

On my workstation at the time of writing I see the following output.

scipy: 0.18.1

numpy: 1.11.2

matplotlib: 1.5.1

pandas: 0.18.0

Listing 2.5: Example versions of the SciPy stack.

The examples in this book assume you have these version of the SciPy libraries or newer. If
you have an error, you may need to consult the documentation for your platform.

2.4.3 How To Install scikit-learn

I would suggest that you use the same method to install scikit-learn as you used to install SciPy.
There are instructions for installing scikit-learn6, but they are limited to using the Python
pip and conda package managers. Like SciPy, you can confirm that scikit-learn was installed
successfully. Start your Python interactive environment and type and run the following code.

# scikit-learn

import sklearn

print('sklearn: {}'.format(sklearn.__version__))

Listing 2.6: Print the version of scikit-learn.

It will print the version of the scikit-learn library installed. On my workstation at the time
of writing I see the following output:

sklearn: 0.18

Listing 2.7: Example versions of scikit-learn.

The examples in this book assume you have this version of scikit-learn or newer.

2.4.4 How To Install The Ecosystem: An Easier Way

If you are not confident at installing software on your machine, there is an easier option for you.
There is a distribution called Anaconda that you can download and install for free7. It supports
the three main platforms of Microsoft Windows, Mac OS X and Linux. It includes Python,
SciPy and scikit-learn. Everything you need to learn, practice and use machine learning with
the Python Environment.

6http://scikit-learn.org/stable/install.html
7https://www.continuum.io/downloads
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2.5 Summary

In this chapter you discovered the Python ecosystem for machine learning. You learned about:

� Python and it’s rising use for machine learning.

� SciPy and the functionality it provides with NumPy, Matplotlib and Pandas.

� scikit-learn that provides all of the machine learning algorithms.

You also learned how to install the Python ecosystem for machine learning on your worksta-
tion.

2.5.1 Next

In the next lesson you will get a crash course in the Python and SciPy ecosystem, designed
specifically to get a developer like you up to speed with ecosystem very fast.



Chapter 3

Crash Course in Python and SciPy

You do not need to be a Python developer to get started using the Python ecosystem for machine
learning. As a developer who already knows how to program in one or more programming
languages, you are able to pick up a new language like Python very quickly. You just need to
know a few properties of the language to transfer what you already know to the new language.
After completing this lesson you will know:

1. How to navigate Python language syntax.

2. Enough NumPy, Matplotlib and Pandas to read and write machine learning Python
scripts.

3. A foundation from which to build a deeper understanding of machine learning tasks in
Python.

If you already know a little Python, this chapter will be a friendly reminder for you. Let’s
get started.

3.1 Python Crash Course

When getting started in Python you need to know a few key details about the language syntax
to be able to read and understand Python code. This includes:

� Assignment.

� Flow Control.

� Data Structures.

� Functions.

We will cover each of these topics in turn with small standalone examples that you can type
and run. Remember, whitespace has meaning in Python.

3.1.1 Assignment

As a programmer, assignment and types should not be surprising to you.

14
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Strings

# Strings

data = 'hello world'

print(data[0])

print(len(data))

print(data)

Listing 3.1: Example of working with strings.

Notice how you can access characters in the string using array syntax. Running the example
prints:

h

11

hello world

Listing 3.2: Output of example working with strings.

Numbers

# Numbers

value = 123.1

print(value)

value = 10

print(value)

Listing 3.3: Example of working with numbers.

Running the example prints:

123.1

10

Listing 3.4: Output of example working with numbers.

Boolean

# Boolean

a = True

b = False

print(a, b)

Listing 3.5: Example of working with booleans.

Running the example prints:

(True, False)

Listing 3.6: Output of example working with booleans.
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Multiple Assignment

# Multiple Assignment

a, b, c = 1, 2, 3

print(a, b, c)

Listing 3.7: Example of working with multiple assignment.

This can also be very handy for unpacking data in simple data structures. Running the
example prints:

(1, 2, 3)

Listing 3.8: Output of example working with multiple assignment.

No Value

# No value

a = None

print(a)

Listing 3.9: Example of working with no value.

Running the example prints:

None

Listing 3.10: Output of example working with no value.

3.1.2 Flow Control

There are three main types of flow control that you need to learn: If-Then-Else conditions,
For-Loops and While-Loops.

If-Then-Else Conditional

value = 99

if value == 99:

print 'That is fast'

elif value > 200:

print 'That is too fast'

else:

print 'That is safe'

Listing 3.11: Example of working with an If-Then-Else conditional.

Notice the colon (:) at the end of the condition and the meaningful tab intend for the code
block under the condition. Running the example prints:

If-Then-Else conditional

Listing 3.12: Output of example working with an If-Then-Else conditional.
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For-Loop

# For-Loop

for i in range(10):

print i

Listing 3.13: Example of working with a For-Loop.

Running the example prints:

0

1

2

3

4

5

6

7

8

9

Listing 3.14: Output of example working with a For-Loop.

While-Loop

# While-Loop

i = 0

while i < 10:

print i

i += 1

Listing 3.15: Example of working with a While-Loop.

Running the example prints:

0

1

2

3

4

5

6

7

8

9

Listing 3.16: Output of example working with a While-Loop.

3.1.3 Data Structures

There are three data structures in Python that you will find the most used and useful. They
are tuples, lists and dictionaries.
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Tuple

Tuples are read-only collections of items.

a = (1, 2, 3)

print a

Listing 3.17: Example of working with a Tuple.

Running the example prints:

(1, 2, 3)

Listing 3.18: Output of example working with a Tuple.

List

Lists use the square bracket notation and can be index using array notation.

mylist = [1, 2, 3]

print("Zeroth Value: %d") % mylist[0]

mylist.append(4)

print("List Length: %d") % len(mylist)

for value in mylist:

print value

Listing 3.19: Example of working with a List.

Notice that we are using some simple printf-like functionality to combine strings and
variables when printing. Running the example prints:

Zeroth Value: 1

List Length: 4

1

2

3

4

Listing 3.20: Output of example working with a List.

Dictionary

Dictionaries are mappings of names to values, like key-value pairs. Note the use of the curly
bracket and colon notations when defining the dictionary.

mydict = {'a': 1, 'b': 2, 'c': 3}

print("A value: %d") % mydict['a']

mydict['a'] = 11

print("A value: %d") % mydict['a']

print("Keys: %s") % mydict.keys()

print("Values: %s") % mydict.values()

for key in mydict.keys():

print mydict[key]

Listing 3.21: Example of working with a Dictionary.

Running the example prints:
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A value: 1

A value: 11

Keys: ['a', 'c', 'b']

Values: [11, 3, 2]

11

3

2

Listing 3.22: Output of example working with a Dictionary.

Functions

The biggest gotcha with Python is the whitespace. Ensure that you have an empty new line
after indented code. The example below defines a new function to calculate the sum of two
values and calls the function with two arguments.

# Sum function

def mysum(x, y):

return x + y

# Test sum function

result = mysum(1, 3)

print(result)

Listing 3.23: Example of working with a custom function.

Running the example prints:

4

Listing 3.24: Output of example working with a custom function.

3.2 NumPy Crash Course

NumPy provides the foundation data structures and operations for SciPy. These are arrays
(ndarrays) that are efficient to define and manipulate.

3.2.1 Create Array

# define an array

import numpy

mylist = [1, 2, 3]

myarray = numpy.array(mylist)

print(myarray)

print(myarray.shape)

Listing 3.25: Example of creating a NumPy array.

Notice how we easily converted a Python list to a NumPy array. Running the example
prints:
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[1 2 3]

(3,)

Listing 3.26: Output of example creating a NumPy array.

3.2.2 Access Data

Array notation and ranges can be used to efficiently access data in a NumPy array.

# access values

import numpy

mylist = [[1, 2, 3], [3, 4, 5]]

myarray = numpy.array(mylist)

print(myarray)

print(myarray.shape)

print("First row: %s") % myarray[0]

print("Last row: %s") % myarray[-1]

print("Specific row and col: %s") % myarray[0, 2]

print("Whole col: %s") % myarray[:, 2]

Listing 3.27: Example of working with a NumPy array.

Running the example prints:

[[1 2 3]

[3 4 5]]

(2, 3)

First row: [1 2 3]

Last row: [3 4 5]

Specific row and col: 3

Whole col: [3 5]

Listing 3.28: Output of example working with a NumPy array.

3.2.3 Arithmetic

NumPy arrays can be used directly in arithmetic.

# arithmetic

import numpy

myarray1 = numpy.array([2, 2, 2])

myarray2 = numpy.array([3, 3, 3])

print("Addition: %s") % (myarray1 + myarray2)

print("Multiplication: %s") % (myarray1 * myarray2)

Listing 3.29: Example of doing arithmetic with NumPy arrays.

Running the example prints:

Addition: [5 5 5]

Multiplication: [6 6 6]

Listing 3.30: Output of example of doing arithmetic with NumPy arrays.

There is a lot more to NumPy arrays but these examples give you a flavor of the efficiencies
they provide when working with lots of numerical data. See Chapter 24 for resources to learn
more about the NumPy API.
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3.3 Matplotlib Crash Course

Matplotlib can be used for creating plots and charts. The library is generally used as follows:

� Call a plotting function with some data (e.g. .plot()).

� Call many functions to setup the properties of the plot (e.g. labels and colors).

� Make the plot visible (e.g. .show()).

3.3.1 Line Plot

The example below creates a simple line plot from one dimensional data.

# basic line plot

import matplotlib.pyplot as plt

import numpy

myarray = numpy.array([1, 2, 3])

plt.plot(myarray)

plt.xlabel('some x axis')

plt.ylabel('some y axis')

plt.show()

Listing 3.31: Example of creating a line plot with Matplotlib.

Running the example produces:
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Figure 3.1: Line Plot with Matplotlib

3.3.2 Scatter Plot

Below is a simple example of creating a scatter plot from two dimensional data.

# basic scatter plot

import matplotlib.pyplot as plt

import numpy

x = numpy.array([1, 2, 3])

y = numpy.array([2, 4, 6])

plt.scatter(x,y)

plt.xlabel('some x axis')

plt.ylabel('some y axis')

plt.show()

Listing 3.32: Example of creating a line plot with Matplotlib.

Running the example produces:
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Figure 3.2: Scatter Plot with Matplotlib

There are many more plot types and many more properties that can be set on a plot to
configure it. See Chapter 24 for resources to learn more about the Matplotlib API.

3.4 Pandas Crash Course

Pandas provides data structures and functionality to quickly manipulate and analyze data. The
key to understanding Pandas for machine learning is understanding the Series and DataFrame
data structures.

3.4.1 Series

A series is a one dimensional array where the rows and columns can be labeled.

# series

import numpy

import pandas

myarray = numpy.array([1, 2, 3])

rownames = ['a', 'b', 'c']

myseries = pandas.Series(myarray, index=rownames)
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print(myseries)

Listing 3.33: Example of creating a Pandas Series.

Running the example prints:

a 1

b 2

c 3

Listing 3.34: Output of example of creating a Pandas Series.

You can access the data in a series like a NumPy array and like a dictionary, for example:

print(myseries[0])

print(myseries['a'])

Listing 3.35: Example of accessing data in a Pandas Series.

Running the example prints:

1

1

Listing 3.36: Output of example of accessing data in a Pandas Series.

3.4.2 DataFrame

A data frame is a multi-dimensional array where the rows and the columns can be labeled.

# dataframe

import numpy

import pandas

myarray = numpy.array([[1, 2, 3], [4, 5, 6]])

rownames = ['a', 'b']

colnames = ['one', 'two', 'three']

mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames)

print(mydataframe)

Listing 3.37: Example of creating a Pandas DataFrame.

Running the example prints:

one two three

a 1 2 3

b 4 5 6

Listing 3.38: Output of example of creating a Pandas DataFrame.

Data can be index using column names.

print("method 1:")

print("one column: %s") % mydataframe['one']

print("method 2:")

print("one column: %s") % mydataframe.one

Listing 3.39: Example of accessing data in a Pandas DataFrame.

Running the example prints:



3.5. Summary 25

method 1:

a 1

b 4

method 2:

a 1

b 4

Listing 3.40: Output of example of accessing data in a Pandas DataFrame.

Pandas is a very powerful tool for slicing and dicing you data. See Chapter 24 for resources
to learn more about the Pandas API.

3.5 Summary

You have covered a lot of ground in this lesson. You discovered basic syntax and usage of
Python and three key Python libraries used for machine learning:

� NumPy.

� Matplotlib.

� Pandas.

3.5.1 Next

You now know enough syntax and usage information to read and understand Python code for
machine learning and to start creating your own scripts. In the next lesson you will discover
how you can very quickly and easily load standard machine learning datasets in Python.
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How To Load Machine Learning Data

You must be able to load your data before you can start your machine learning project. The
most common format for machine learning data is CSV files. There are a number of ways to
load a CSV file in Python. In this lesson you will learn three ways that you can use to load
your CSV data in Python:

1. Load CSV Files with the Python Standard Library.

2. Load CSV Files with NumPy.

3. Load CSV Files with Pandas.

Let’s get started.

4.1 Considerations When Loading CSV Data

There are a number of considerations when loading your machine learning data from CSV files.
For reference, you can learn a lot about the expectations for CSV files by reviewing the CSV
request for comment titled Common Format and MIME Type for Comma-Separated Values
(CSV) Files1.

4.1.1 File Header

Does your data have a file header? If so this can help in automatically assigning names to each
column of data. If not, you may need to name your attributes manually. Either way, you should
explicitly specify whether or not your CSV file had a file header when loading your data.

4.1.2 Comments

Does your data have comments? Comments in a CSV file are indicated by a hash (#) at the
start of a line. If you have comments in your file, depending on the method used to load your
data, you may need to indicate whether or not to expect comments and the character to expect
to signify a comment line.

1https://tools.ietf.org/html/rfc4180
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4.1.3 Delimiter

The standard delimiter that separates values in fields is the comma (,) character. Your file could
use a different delimiter like tab or white space in which case you must specify it explicitly.

4.1.4 Quotes

Sometimes field values can have spaces. In these CSV files the values are often quoted. The
default quote character is the double quotation marks character. Other characters can be used,
and you must specify the quote character used in your file.

4.2 Pima Indians Dataset

The Pima Indians dataset is used to demonstrate data loading in this lesson. It will also be used
in many of the lessons to come. This dataset describes the medical records for Pima Indians
and whether or not each patient will have an onset of diabetes within five years. As such it
is a classification problem. It is a good dataset for demonstration because all of the input
attributes are numeric and the output variable to be predicted is binary (0 or 1). The data is
freely available from the UCI Machine Learning Repository2.

4.3 Load CSV Files with the Python Standard Library

The Python API provides the module CSV and the function reader() that can be used to load
CSV files. Once loaded, you can convert the CSV data to a NumPy array and use it for machine
learning. For example, you can download3 the Pima Indians dataset into your local directory
with the filename pima-indians-diabetes.data.csv. All fields in this dataset are numeric
and there is no header line.

# Load CSV Using Python Standard Library

import csv

import numpy

filename = 'pima-indians-diabetes.data.csv'

raw_data = open(filename, 'rb')

reader = csv.reader(raw_data, delimiter=',', quoting=csv.QUOTE_NONE)

x = list(reader)

data = numpy.array(x).astype('float')

print(data.shape)

Listing 4.1: Example of loading a CSV file using the Python standard library.

The example loads an object that can iterate over each row of the data and can easily be
converted into a NumPy array. Running the example prints the shape of the array.

(768, 9)

Listing 4.2: Output of example loading a CSV file using the Python standard library.

2https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
3https://goo.gl/vhm1eU
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For more information on the csv.reader() function, see CSV File Reading and Writing in
the Python API documentation4.

4.4 Load CSV Files with NumPy

You can load your CSV data using NumPy and the numpy.loadtxt() function. This function
assumes no header row and all data has the same format. The example below assumes that the
file pima-indians-diabetes.data.csv is in your current working directory.

# Load CSV using NumPy

from numpy import loadtxt

filename = 'pima-indians-diabetes.data.csv'

raw_data = open(filename, 'rb')

data = loadtxt(raw_data, delimiter=",")

print(data.shape)

Listing 4.3: Example of loading a CSV file using NumPy.

Running the example will load the file as a numpy.ndarray5 and print the shape of the data:

(768, 9)

Listing 4.4: Output of example loading a CSV file using NumPy.

This example can be modified to load the same dataset directly from a URL as follows:

# Load CSV from URL using NumPy

from numpy import loadtxt

from urllib import urlopen

url = 'https://goo.gl/vhm1eU'

raw_data = urlopen(url)

dataset = loadtxt(raw_data, delimiter=",")

print(dataset.shape)

Listing 4.5: Example of loading a CSV URL using NumPy.

Again, running the example produces the same resulting shape of the data.

(768, 9)

Listing 4.6: Output of example loading a CSV URL using NumPy.

For more information on the numpy.loadtxt()6 function see the API documentation.

4.5 Load CSV Files with Pandas

You can load your CSV data using Pandas and the pandas.read csv() function. This function
is very flexible and is perhaps my recommended approach for loading your machine learning
data. The function returns a pandas.DataFrame7 that you can immediately start summarizing
and plotting. The example below assumes that the pima-indians-diabetes.data.csv file is
in the current working directory.

4https://docs.python.org/2/library/csv.html
5http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.html
6http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html
7http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
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# Load CSV using Pandas

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

print(data.shape)

Listing 4.7: Example of loading a CSV file using Pandas.

Note that in this example we explicitly specify the names of each attribute to the DataFrame.
Running the example displays the shape of the data:

(768, 9)

Listing 4.8: Output of example loading a CSV file using Pandas.

We can also modify this example to load CSV data directly from a URL.

# Load CSV using Pandas from URL

from pandas import read_csv

url = 'https://goo.gl/vhm1eU'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(url, names=names)

print(data.shape)

Listing 4.9: Example of loading a CSV URL using Pandas.

Again, running the example downloads the CSV file, parses it and displays the shape of the
loaded DataFrame.

(768, 9)

Listing 4.10: Output of example loading a CSV URL using Pandas.

To learn more about the pandas.read csv()8 function you can refer to the API documen-
tation.

4.6 Summary

In this chapter you discovered how to load your machine learning data in Python. You learned
three specific techniques that you can use:

� Load CSV Files with the Python Standard Library.

� Load CSV Files with NumPy.

� Load CSV Files with Pandas.

Generally I recommend that you load your data with Pandas in practice and all subsequent
examples in this book will use this method.

8http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html



4.6. Summary 30

4.6.1 Next

Now that you know how to load your CSV data using Python it is time to start looking at it.
In the next lesson you will discover how to use simple descriptive statistics to better understand
your data.



Chapter 5

Understand Your Data With
Descriptive Statistics

You must understand your data in order to get the best results. In this chapter you will discover
7 recipes that you can use in Python to better understand your machine learning data. After
reading this lesson you will know how to:

1. Take a peek at your raw data.

2. Review the dimensions of your dataset.

3. Review the data types of attributes in your data.

4. Summarize the distribution of instances across classes in your dataset.

5. Summarize your data using descriptive statistics.

6. Understand the relationships in your data using correlations.

7. Review the skew of the distributions of each attribute.

Each recipe is demonstrated by loading the Pima Indians Diabetes classification dataset
from the UCI Machine Learning repository. Open your Python interactive environment and try
each recipe out in turn. Let’s get started.

5.1 Peek at Your Data

There is no substitute for looking at the raw data. Looking at the raw data can reveal insights
that you cannot get any other way. It can also plant seeds that may later grow into ideas on
how to better pre-process and handle the data for machine learning tasks. You can review the
first 20 rows of your data using the head() function on the Pandas DataFrame.

# View first 20 rows

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

peek = data.head(20)

31



5.2. Dimensions of Your Data 32

print(peek)

Listing 5.1: Example of reviewing the first few rows of data.

You can see that the first column lists the row number, which is handy for referencing a
specific observation.

preg plas pres skin test mass pedi age class

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

5 5 116 74 0 0 25.6 0.201 30 0

6 3 78 50 32 88 31.0 0.248 26 1

7 10 115 0 0 0 35.3 0.134 29 0

8 2 197 70 45 543 30.5 0.158 53 1

9 8 125 96 0 0 0.0 0.232 54 1

10 4 110 92 0 0 37.6 0.191 30 0

11 10 168 74 0 0 38.0 0.537 34 1

12 10 139 80 0 0 27.1 1.441 57 0

13 1 189 60 23 846 30.1 0.398 59 1

14 5 166 72 19 175 25.8 0.587 51 1

15 7 100 0 0 0 30.0 0.484 32 1

16 0 118 84 47 230 45.8 0.551 31 1

17 7 107 74 0 0 29.6 0.254 31 1

18 1 103 30 38 83 43.3 0.183 33 0

19 1 115 70 30 96 34.6 0.529 32 1

Listing 5.2: Output of reviewing the first few rows of data.

5.2 Dimensions of Your Data

You must have a very good handle on how much data you have, both in terms of rows and
columns.

� Too many rows and algorithms may take too long to train. Too few and perhaps you do
not have enough data to train the algorithms.

� Too many features and some algorithms can be distracted or suffer poor performance due
to the curse of dimensionality.

You can review the shape and size of your dataset by printing the shape property on the
Pandas DataFrame.

# Dimensions of your data

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

shape = data.shape

print(shape)

Listing 5.3: Example of reviewing the shape of the data.
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The results are listed in rows then columns. You can see that the dataset has 768 rows and
9 columns.

(768, 9)

Listing 5.4: Output of reviewing the shape of the data.

5.3 Data Type For Each Attribute

The type of each attribute is important. Strings may need to be converted to floating point
values or integers to represent categorical or ordinal values. You can get an idea of the types of
attributes by peeking at the raw data, as above. You can also list the data types used by the
DataFrame to characterize each attribute using the dtypes property.

# Data Types for Each Attribute

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

types = data.dtypes

print(types)

Listing 5.5: Example of reviewing the data types of the data.

You can see that most of the attributes are integers and that mass and pedi are floating
point types.

preg int64

plas int64

pres int64

skin int64

test int64

mass float64

pedi float64

age int64

class int64

dtype: object

Listing 5.6: Output of reviewing the data types of the data.

5.4 Descriptive Statistics

Descriptive statistics can give you great insight into the shape of each attribute. Often you can
create more summaries than you have time to review. The describe() function on the Pandas
DataFrame lists 8 statistical properties of each attribute. They are:

� Count.

� Mean.

� Standard Deviation.
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� Minimum Value.

� 25th Percentile.

� 50th Percentile (Median).

� 75th Percentile.

� Maximum Value.

# Statistical Summary

from pandas import read_csv

from pandas import set_option

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

set_option('display.width', 100)

set_option('precision', 3)

description = data.describe()

print(description)

Listing 5.7: Example of reviewing a statistical summary of the data.

You can see that you do get a lot of data. You will note some calls to pandas.set option()

in the recipe to change the precision of the numbers and the preferred width of the output. This
is to make it more readable for this example. When describing your data this way, it is worth
taking some time and reviewing observations from the results. This might include the presence
of NA values for missing data or surprising distributions for attributes.

preg plas pres skin test mass pedi age class

count 768.000 768.000 768.000 768.000 768.000 768.000 768.000 768.000 768.000

mean 3.845 120.895 69.105 20.536 79.799 31.993 0.472 33.241 0.349

std 3.370 31.973 19.356 15.952 115.244 7.884 0.331 11.760 0.477

min 0.000 0.000 0.000 0.000 0.000 0.000 0.078 21.000 0.000

25% 1.000 99.000 62.000 0.000 0.000 27.300 0.244 24.000 0.000

50% 3.000 117.000 72.000 23.000 30.500 32.000 0.372 29.000 0.000

75% 6.000 140.250 80.000 32.000 127.250 36.600 0.626 41.000 1.000

max 17.000 199.000 122.000 99.000 846.000 67.100 2.420 81.000 1.000

Listing 5.8: Output of reviewing a statistical summary of the data.

5.5 Class Distribution (Classification Only)

On classification problems you need to know how balanced the class values are. Highly imbalanced
problems (a lot more observations for one class than another) are common and may need special
handling in the data preparation stage of your project. You can quickly get an idea of the
distribution of the class attribute in Pandas.

# Class Distribution

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)
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class_counts = data.groupby('class').size()

print(class_counts)

Listing 5.9: Example of reviewing a class breakdown of the data.

You can see that there are nearly double the number of observations with class 0 (no onset
of diabetes) than there are with class 1 (onset of diabetes).

class

0 500

1 268

Listing 5.10: Output of reviewing a class breakdown of the data.

5.6 Correlations Between Attributes

Correlation refers to the relationship between two variables and how they may or may not
change together. The most common method for calculating correlation is Pearson’s Correlation
Coefficient, that assumes a normal distribution of the attributes involved. A correlation of -1
or 1 shows a full negative or positive correlation respectively. Whereas a value of 0 shows no
correlation at all. Some machine learning algorithms like linear and logistic regression can suffer
poor performance if there are highly correlated attributes in your dataset. As such, it is a good
idea to review all of the pairwise correlations of the attributes in your dataset. You can use the
corr() function on the Pandas DataFrame to calculate a correlation matrix.

# Pairwise Pearson correlations

from pandas import read_csv

from pandas import set_option

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

set_option('display.width', 100)

set_option('precision', 3)

correlations = data.corr(method='pearson')

print(correlations)

Listing 5.11: Example of reviewing correlations of attributes in the data.

The matrix lists all attributes across the top and down the side, to give correlation between
all pairs of attributes (twice, because the matrix is symmetrical). You can see the diagonal
line through the matrix from the top left to bottom right corners of the matrix shows perfect
correlation of each attribute with itself.

preg plas pres skin test mass pedi age class

preg 1.000 0.129 0.141 -0.082 -0.074 0.018 -0.034 0.544 0.222

plas 0.129 1.000 0.153 0.057 0.331 0.221 0.137 0.264 0.467

pres 0.141 0.153 1.000 0.207 0.089 0.282 0.041 0.240 0.065

skin -0.082 0.057 0.207 1.000 0.437 0.393 0.184 -0.114 0.075

test -0.074 0.331 0.089 0.437 1.000 0.198 0.185 -0.042 0.131

mass 0.018 0.221 0.282 0.393 0.198 1.000 0.141 0.036 0.293

pedi -0.034 0.137 0.041 0.184 0.185 0.141 1.000 0.034 0.174

age 0.544 0.264 0.240 -0.114 -0.042 0.036 0.034 1.000 0.238

class 0.222 0.467 0.065 0.075 0.131 0.293 0.174 0.238 1.000
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Listing 5.12: Output of reviewing correlations of attributes in the data.

5.7 Skew of Univariate Distributions

Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or
squashed in one direction or another. Many machine learning algorithms assume a Gaussian
distribution. Knowing that an attribute has a skew may allow you to perform data preparation
to correct the skew and later improve the accuracy of your models. You can calculate the skew
of each attribute using the skew() function on the Pandas DataFrame.

# Skew for each attribute

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

skew = data.skew()

print(skew)

Listing 5.13: Example of reviewing skew of attribute distributions in the data.

The skew result show a positive (right) or negative (left) skew. Values closer to zero show
less skew.

preg 0.901674

plas 0.173754

pres -1.843608

skin 0.109372

test 2.272251

mass -0.428982

pedi 1.919911

age 1.129597

class 0.635017

Listing 5.14: Output of reviewing skew of attribute distributions in the data.

5.8 Tips To Remember

This section gives you some tips to remember when reviewing your data using summary statistics.

� Review the numbers. Generating the summary statistics is not enough. Take a moment
to pause, read and really think about the numbers you are seeing.

� Ask why. Review your numbers and ask a lot of questions. How and why are you seeing
specific numbers. Think about how the numbers relate to the problem domain in general
and specific entities that observations relate to.

� Write down ideas. Write down your observations and ideas. Keep a small text file or
note pad and jot down all of the ideas for how variables may relate, for what numbers
mean, and ideas for techniques to try later. The things you write down now while the
data is fresh will be very valuable later when you are trying to think up new things to try.
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5.9 Summary

In this chapter you discovered the importance of describing your dataset before you start work
on your machine learning project. You discovered 7 different ways to summarize your dataset
using Python and Pandas:

� Peek At Your Data.

� Dimensions of Your Data.

� Data Types.

� Class Distribution.

� Data Summary.

� Correlations.

� Skewness.

5.9.1 Next

Another excellent way that you can use to better understand your data is by generating plots
and charts. In the next lesson you will discover how you can visualize your data for machine
learning in Python.



Chapter 6

Understand Your Data With
Visualization

You must understand your data in order to get the best results from machine learning algorithms.
The fastest way to learn more about your data is to use data visualization. In this chapter you
will discover exactly how you can visualize your machine learning data in Python using Pandas.
Recipes in this chapter use the Pima Indians onset of diabetes dataset introduced in Chapter 4.
Let’s get started.

6.1 Univariate Plots

In this section we will look at three techniques that you can use to understand each attribute of
your dataset independently.

� Histograms.

� Density Plots.

� Box and Whisker Plots.

6.1.1 Histograms

A fast way to get an idea of the distribution of each attribute is to look at histograms. Histograms
group data into bins and provide you a count of the number of observations in each bin. From
the shape of the bins you can quickly get a feeling for whether an attribute is Gaussian, skewed
or even has an exponential distribution. It can also help you see possible outliers.

# Univariate Histograms

from matplotlib import pyplot

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

data.hist()

pyplot.show()

Listing 6.1: Example of creating histogram plots.
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We can see that perhaps the attributes age, pedi and test may have an exponential
distribution. We can also see that perhaps the mass and pres and plas attributes may have a
Gaussian or nearly Gaussian distribution. This is interesting because many machine learning
techniques assume a Gaussian univariate distribution on the input variables.

Figure 6.1: Histograms of each attribute

6.1.2 Density Plots

Density plots are another way of getting a quick idea of the distribution of each attribute. The
plots look like an abstracted histogram with a smooth curve drawn through the top of each bin,
much like your eye tried to do with the histograms.

# Univariate Density Plots

from matplotlib import pyplot

from pandas import read_csv

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

data.plot(kind='density', subplots=True, layout=(3,3), sharex=False)

pyplot.show()

Listing 6.2: Example of creating density plots.
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We can see the distribution for each attribute is clearer than the histograms.

Figure 6.2: Density plots of each attribute

6.1.3 Box and Whisker Plots

Another useful way to review the distribution of each attribute is to use Box and Whisker Plots
or boxplots for short. Boxplots summarize the distribution of each attribute, drawing a line for
the median (middle value) and a box around the 25th and 75th percentiles (the middle 50% of
the data). The whiskers give an idea of the spread of the data and dots outside of the whiskers
show candidate outlier values (values that are 1.5 times greater than the size of spread of the
middle 50% of the data).

# Box and Whisker Plots

from matplotlib import pyplot

from pandas import read_csv

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

data.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)

pyplot.show()

Listing 6.3: Example of creating box and whisker plots.
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We can see that the spread of attributes is quite different. Some like age, test and skin

appear quite skewed towards smaller values.

Figure 6.3: Box and whisker plots of each attribute

6.2 Multivariate Plots

This section provides examples of two plots that show the interactions between multiple variables
in your dataset.

� Correlation Matrix Plot.

� Scatter Plot Matrix.

6.2.1 Correlation Matrix Plot

Correlation gives an indication of how related the changes are between two variables. If two
variables change in the same direction they are positively correlated. If they change in opposite
directions together (one goes up, one goes down), then they are negatively correlated. You can
calculate the correlation between each pair of attributes. This is called a correlation matrix. You
can then plot the correlation matrix and get an idea of which variables have a high correlation
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with each other. This is useful to know, because some machine learning algorithms like linear
and logistic regression can have poor performance if there are highly correlated input variables
in your data.

# Correction Matrix Plot

from matplotlib import pyplot

from pandas import read_csv

import numpy

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

correlations = data.corr()

# plot correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)

fig.colorbar(cax)

ticks = numpy.arange(0,9,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(names)

ax.set_yticklabels(names)

pyplot.show()

Listing 6.4: Example of creating a correlation matrix plot.

We can see that the matrix is symmetrical, i.e. the bottom left of the matrix is the same as
the top right. This is useful as we can see two different views on the same data in one plot. We
can also see that each variable is perfectly positively correlated with each other (as you would
have expected) in the diagonal line from top left to bottom right.
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Figure 6.4: Correlation matrix plot.

The example is not generic in that it specifies the names for the attributes along the axes as
well as the number of ticks. This recipe cam be made more generic by removing these aspects
as follows:

# Correction Matrix Plot (generic)

from matplotlib import pyplot

from pandas import read_csv

import numpy

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

correlations = data.corr()

# plot correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(correlations, vmin=-1, vmax=1)

fig.colorbar(cax)

pyplot.show()

Listing 6.5: Example of creating a generic correlation matrix plot.

Generating the plot, you can see that it gives the same information although making it a
little harder to see what attributes are correlated by name. Use this generic plot as a first cut
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to understand the correlations in your dataset and customize it like the first example in order
to read off more specific data if needed.

Figure 6.5: Generic Correlation matrix plot.

6.2.2 Scatter Plot Matrix

A scatter plot shows the relationship between two variables as dots in two dimensions, one
axis for each attribute. You can create a scatter plot for each pair of attributes in your data.
Drawing all these scatter plots together is called a scatter plot matrix. Scatter plots are useful
for spotting structured relationships between variables, like whether you could summarize the
relationship between two variables with a line. Attributes with structured relationships may
also be correlated and good candidates for removal from your dataset.

# Scatterplot Matrix

from matplotlib import pyplot

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

filename = "pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = read_csv(filename, names=names)

scatter_matrix(data)

pyplot.show()
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Listing 6.6: Example of creating a scatter plot matrix.

Like the Correlation Matrix Plot above, the scatter plot matrix is symmetrical. This is
useful to look at the pairwise relationships from different perspectives. Because there is little
point of drawing a scatter plot of each variable with itself, the diagonal shows histograms of
each attribute.

Figure 6.6: Scatter plot matrix of the data.

6.3 Summary

In this chapter you discovered a number of ways that you can better understand your machine
learning data in Python using Pandas. Specifically, you learned how to plot your data using:

� Histograms.

� Density Plots.

� Box and Whisker Plots.

� Correlation Matrix Plot.

� Scatter Plot Matrix.
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6.3.1 Next

Now that you know two ways to learn more about your data, you are ready to start manipulating
it. In the next lesson you will discover how you can prepare your data to best expose the
structure of your problem to modeling algorithms.



Chapter 7

Prepare Your Data For Machine
Learning

Many machine learning algorithms make assumptions about your data. It is often a very good
idea to prepare your data in such way to best expose the structure of the problem to the machine
learning algorithms that you intend to use. In this chapter you will discover how to prepare
your data for machine learning in Python using scikit-learn. After completing this lesson you
will know how to:

1. Rescale data.

2. Standardize data.

3. Normalize data.

4. Binarize data.

Let’s get started.

7.1 Need For Data Pre-processing

You almost always need to pre-process your data. It is a required step. A difficulty is that
different algorithms make different assumptions about your data and may require different
transforms. Further, when you follow all of the rules and prepare your data, sometimes algorithms
can deliver better results without pre-processing.

Generally, I would recommend creating many different views and transforms of your data,
then exercise a handful of algorithms on each view of your dataset. This will help you to flush
out which data transforms might be better at exposing the structure of your problem in general.

7.2 Data Transforms

In this lesson you will work through 4 different data pre-processing recipes for machine learning.
The Pima Indian diabetes dataset is used in each recipe. Each recipe follows the same structure:

� Load the dataset from a URL.
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� Split the dataset into the input and output variables for machine learning.

� Apply a pre-processing transform to the input variables.

� Summarize the data to show the change.

The scikit-learn library provides two standard idioms for transforming data. Each are useful
in different circumstances. The transforms are calculated in such a way that they can be applied
to your training data and any samples of data you may have in the future. The scikit-learn
documentation has some information on how to use various different pre-processing methods:

� Fit and Multiple Transform.

� Combined Fit-And-Transform.

The Fit and Multiple Transform method is the preferred approach. You call the fit()

function to prepare the parameters of the transform once on your data. Then later you can use
the transform() function on the same data to prepare it for modeling and again on the test or
validation dataset or new data that you may see in the future. The Combined Fit-And-Transform
is a convenience that you can use for one off tasks. This might be useful if you are interested
in plotting or summarizing the transformed data. You can review the preprocess API in
scikit-learn here1.

7.3 Rescale Data

When your data is comprised of attributes with varying scales, many machine learning algorithms
can benefit from rescaling the attributes to all have the same scale. Often this is referred to
as normalization and attributes are often rescaled into the range between 0 and 1. This is
useful for optimization algorithms used in the core of machine learning algorithms like gradient
descent. It is also useful for algorithms that weight inputs like regression and neural networks
and algorithms that use distance measures like k-Nearest Neighbors. You can rescale your data
using scikit-learn using the MinMaxScaler class2.

# Rescale data (between 0 and 1)

from pandas import read_csv

from numpy import set_printoptions

from sklearn.preprocessing import MinMaxScaler

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

# separate array into input and output components

X = array[:,0:8]

Y = array[:,8]

scaler = MinMaxScaler(feature_range=(0, 1))

rescaledX = scaler.fit_transform(X)

# summarize transformed data

set_printoptions(precision=3)

1http://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
2http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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print(rescaledX[0:5,:])

Listing 7.1: Example of rescaling data.

After rescaling you can see that all of the values are in the range between 0 and 1.

[[ 0.353 0.744 0.59 0.354 0. 0.501 0.234 0.483]

[ 0.059 0.427 0.541 0.293 0. 0.396 0.117 0.167]

[ 0.471 0.92 0.525 0. 0. 0.347 0.254 0.183]

[ 0.059 0.447 0.541 0.232 0.111 0.419 0.038 0. ]

[ 0. 0.688 0.328 0.354 0.199 0.642 0.944 0.2 ]]

Listing 7.2: Output of rescaling data.

7.4 Standardize Data

Standardization is a useful technique to transform attributes with a Gaussian distribution and
differing means and standard deviations to a standard Gaussian distribution with a mean of
0 and a standard deviation of 1. It is most suitable for techniques that assume a Gaussian
distribution in the input variables and work better with rescaled data, such as linear regression,
logistic regression and linear discriminate analysis. You can standardize data using scikit-learn
with the StandardScaler class3.

# Standardize data (0 mean, 1 stdev)

from sklearn.preprocessing import StandardScaler

from pandas import read_csv

from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

# separate array into input and output components

X = array[:,0:8]

Y = array[:,8]

scaler = StandardScaler().fit(X)

rescaledX = scaler.transform(X)

# summarize transformed data

set_printoptions(precision=3)

print(rescaledX[0:5,:])

Listing 7.3: Example of standardizing data.

The values for each attribute now have a mean value of 0 and a standard deviation of 1.

[[ 0.64 0.848 0.15 0.907 -0.693 0.204 0.468 1.426]

[-0.845 -1.123 -0.161 0.531 -0.693 -0.684 -0.365 -0.191]

[ 1.234 1.944 -0.264 -1.288 -0.693 -1.103 0.604 -0.106]

[-0.845 -0.998 -0.161 0.155 0.123 -0.494 -0.921 -1.042]

[-1.142 0.504 -1.505 0.907 0.766 1.41 5.485 -0.02 ]]

Listing 7.4: Output of rescaling data.

3http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html
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7.5 Normalize Data

Normalizing in scikit-learn refers to rescaling each observation (row) to have a length of 1 (called
a unit norm or a vector with the length of 1 in linear algebra). This pre-processing method
can be useful for sparse datasets (lots of zeros) with attributes of varying scales when using
algorithms that weight input values such as neural networks and algorithms that use distance
measures such as k-Nearest Neighbors. You can normalize data in Python with scikit-learn
using the Normalizer class4.

# Normalize data (length of 1)

from sklearn.preprocessing import Normalizer

from pandas import read_csv

from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

# separate array into input and output components

X = array[:,0:8]

Y = array[:,8]

scaler = Normalizer().fit(X)

normalizedX = scaler.transform(X)

# summarize transformed data

set_printoptions(precision=3)

print(normalizedX[0:5,:])

Listing 7.5: Example of normalizing data.

The rows are normalized to length 1.

[[ 0.034 0.828 0.403 0.196 0. 0.188 0.004 0.28 ]

[ 0.008 0.716 0.556 0.244 0. 0.224 0.003 0.261]

[ 0.04 0.924 0.323 0. 0. 0.118 0.003 0.162]

[ 0.007 0.588 0.436 0.152 0.622 0.186 0.001 0.139]

[ 0. 0.596 0.174 0.152 0.731 0.188 0.01 0.144]]

Listing 7.6: Output of normalizing data.

7.6 Binarize Data (Make Binary)

You can transform your data using a binary threshold. All values above the threshold are
marked 1 and all equal to or below are marked as 0. This is called binarizing your data or
thresholding your data. It can be useful when you have probabilities that you want to make crisp
values. It is also useful when feature engineering and you want to add new features that indicate
something meaningful. You can create new binary attributes in Python using scikit-learn with
the Binarizer class5.

# binarization

from sklearn.preprocessing import Binarizer

from pandas import read_csv

4http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
5http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
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from numpy import set_printoptions

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

# separate array into input and output components

X = array[:,0:8]

Y = array[:,8]

binarizer = Binarizer(threshold=0.0).fit(X)

binaryX = binarizer.transform(X)

# summarize transformed data

set_printoptions(precision=3)

print(binaryX[0:5,:])

Listing 7.7: Example of binarizing data.

You can see that all values equal or less than 0 are marked 0 and all of those above 0 are
marked 1.

[[ 1. 1. 1. 1. 0. 1. 1. 1.]

[ 1. 1. 1. 1. 0. 1. 1. 1.]

[ 1. 1. 1. 0. 0. 1. 1. 1.]

[ 1. 1. 1. 1. 1. 1. 1. 1.]

[ 0. 1. 1. 1. 1. 1. 1. 1.]]

Listing 7.8: Output of normalizing data.

7.7 Summary

In this chapter you discovered how you can prepare your data for machine learning in Python
using scikit-learn. You now have recipes to:

� Rescale data.

� Standardize data.

� Normalize data.

� Binarize data.

7.7.1 Next

You now know how to transform your data to best expose the structure of your problem to the
modeling algorithms. In the next lesson you will discover how to select the features of your data
that are most relevant to making predictions.



Chapter 8

Feature Selection For Machine
Learning

The data features that you use to train your machine learning models have a huge influence on
the performance you can achieve. Irrelevant or partially relevant features can negatively impact
model performance. In this chapter you will discover automatic feature selection techniques
that you can use to prepare your machine learning data in Python with scikit-learn. After
completing this lesson you will know how to use:

1. Univariate Selection.

2. Recursive Feature Elimination.

3. Principle Component Analysis.

4. Feature Importance.

Let’s get started.

8.1 Feature Selection

Feature selection is a process where you automatically select those features in your data that
contribute most to the prediction variable or output in which you are interested. Having
irrelevant features in your data can decrease the accuracy of many models, especially linear
algorithms like linear and logistic regression. Three benefits of performing feature selection
before modeling your data are:

� Reduces Overfitting: Less redundant data means less opportunity to make decisions
based on noise.

� Improves Accuracy: Less misleading data means modeling accuracy improves.

� Reduces Training Time: Less data means that algorithms train faster.

You can learn more about feature selection with scikit-learn in the article Feature selection1.
Each feature selection recipes will use the Pima Indians onset of diabetes dataset.

1http://scikit-learn.org/stable/modules/feature_selection.html
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8.2 Univariate Selection

Statistical tests can be used to select those features that have the strongest relationship with
the output variable. The scikit-learn library provides the SelectKBest class2 that can be used
with a suite of different statistical tests to select a specific number of features. The example
below uses the chi-squared (chi2) statistical test for non-negative features to select 4 of the best
features from the Pima Indians onset of diabetes dataset.

# Feature Extraction with Univariate Statistical Tests (Chi-squared for classification)

from pandas import read_csv

from numpy import set_printoptions

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# feature extraction

test = SelectKBest(score_func=chi2, k=4)

fit = test.fit(X, Y)

# summarize scores

set_printoptions(precision=3)

print(fit.scores_)

features = fit.transform(X)

# summarize selected features

print(features[0:5,:])

Listing 8.1: Example of univariate feature selection.

You can see the scores for each attribute and the 4 attributes chosen (those with the highest
scores): plas, test, mass and age. I got the names for the chosen attributes by manually
mapping the index of the 4 highest scores to the index of the attribute names.

[ 111.52 1411.887 17.605 53.108 2175.565 127.669 5.393

181.304]

[[ 148. 0. 33.6 50. ]

[ 85. 0. 26.6 31. ]

[ 183. 0. 23.3 32. ]

[ 89. 94. 28.1 21. ]

[ 137. 168. 43.1 33. ]]

Listing 8.2: Output of univariate feature selection.

8.3 Recursive Feature Elimination

The Recursive Feature Elimination (or RFE) works by recursively removing attributes and
building a model on those attributes that remain. It uses the model accuracy to identify which

2http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.

html#sklearn.feature_selection.SelectKBest
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attributes (and combination of attributes) contribute the most to predicting the target attribute.
You can learn more about the RFE class3 in the scikit-learn documentation. The example below
uses RFE with the logistic regression algorithm to select the top 3 features. The choice of
algorithm does not matter too much as long as it is skillful and consistent.

# Feature Extraction with RFE

from pandas import read_csv

from sklearn.feature_selection import RFE

from sklearn.linear_model import LogisticRegression

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# feature extraction

model = LogisticRegression()

rfe = RFE(model, 3)

fit = rfe.fit(X, Y)

print("Num Features: %d") % fit.n_features_

print("Selected Features: %s") % fit.support_

print("Feature Ranking: %s") % fit.ranking_

Listing 8.3: Example of RFE feature selection.

You can see that RFE chose the top 3 features as preg, mass and pedi. These are marked
True in the support array and marked with a choice 1 in the ranking array. Again, you can
manually map the feature indexes to the indexes of attribute names.

Num Features: 3

Selected Features: [ True False False False False True True False]

Feature Ranking: [1 2 3 5 6 1 1 4]

Listing 8.4: Output of RFE feature selection.

8.4 Principal Component Analysis

Principal Component Analysis (or PCA) uses linear algebra to transform the dataset into a
compressed form. Generally this is called a data reduction technique. A property of PCA is that
you can choose the number of dimensions or principal components in the transformed result. In
the example below, we use PCA and select 3 principal components. Learn more about the PCA

class in scikit-learn by reviewing the API4.

# Feature Extraction with PCA

from pandas import read_csv

from sklearn.decomposition import PCA

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

3http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#

sklearn.feature_selection.RFE
4http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# feature extraction

pca = PCA(n_components=3)

fit = pca.fit(X)

# summarize components

print("Explained Variance: %s") % fit.explained_variance_ratio_

print(fit.components_)

Listing 8.5: Example of PCA feature extraction.

You can see that the transformed dataset (3 principal components) bare little resemblance
to the source data.

Explained Variance: [ 0.88854663 0.06159078 0.02579012]

[[ -2.02176587e-03 9.78115765e-02 1.60930503e-02 6.07566861e-02

9.93110844e-01 1.40108085e-02 5.37167919e-04 -3.56474430e-03]

[ 2.26488861e-02 9.72210040e-01 1.41909330e-01 -5.78614699e-02

-9.46266913e-02 4.69729766e-02 8.16804621e-04 1.40168181e-01]

[ -2.24649003e-02 1.43428710e-01 -9.22467192e-01 -3.07013055e-01

2.09773019e-02 -1.32444542e-01 -6.39983017e-04 -1.25454310e-01]]

Listing 8.6: Output of PCA feature extraction.

8.5 Feature Importance

Bagged decision trees like Random Forest and Extra Trees can be used to estimate the importance
of features. In the example below we construct a ExtraTreesClassifier classifier for the Pima
Indians onset of diabetes dataset. You can learn more about the ExtraTreesClassifier class5

in the scikit-learn API.

# Feature Importance with Extra Trees Classifier

from pandas import read_csv

from sklearn.ensemble import ExtraTreesClassifier

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# feature extraction

model = ExtraTreesClassifier()

model.fit(X, Y)

print(model.feature_importances_)

Listing 8.7: Example of feature importance.

5http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.

html
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You can see that we are given an importance score for each attribute where the larger the
score, the more important the attribute. The scores suggest at the importance of plas, age
and mass.

[ 0.11070069 0.2213717 0.08824115 0.08068703 0.07281761 0.14548537 0.12654214 0.15415431]

Listing 8.8: Output of feature importance.

8.6 Summary

In this chapter you discovered feature selection for preparing machine learning data in Python
with scikit-learn. You learned about 4 different automatic feature selection techniques:

� Univariate Selection.

� Recursive Feature Elimination.

� Principle Component Analysis.

� Feature Importance.

8.6.1 Next

Now it is time to start looking at how to evaluate machine learning algorithms on your dataset.
In the next lesson you will discover resampling methods that can be used to estimate the
performance of a machine learning algorithm on unseen data.



Chapter 9

Evaluate the Performance of Machine
Learning Algorithms with Resampling

You need to know how well your algorithms perform on unseen data. The best way to evaluate
the performance of an algorithm would be to make predictions for new data to which you
already know the answers. The second best way is to use clever techniques from statistics called
resampling methods that allow you to make accurate estimates for how well your algorithm will
perform on new data. In this chapter you will discover how you can estimate the accuracy of
your machine learning algorithms using resampling methods in Python and scikit-learn on the
Pima Indians dataset. Let’s get started.

9.1 Evaluate Machine Learning Algorithms

Why can’t you train your machine learning algorithm on your dataset and use predictions from
this same dataset to evaluate machine learning algorithms? The simple answer is overfitting.

Imagine an algorithm that remembers every observation it is shown during training. If you
evaluated your machine learning algorithm on the same dataset used to train the algorithm, then
an algorithm like this would have a perfect score on the training dataset. But the predictions it
made on new data would be terrible. We must evaluate our machine learning algorithms on
data that is not used to train the algorithm.

The evaluation is an estimate that we can use to talk about how well we think the algorithm
may actually do in practice. It is not a guarantee of performance. Once we estimate the
performance of our algorithm, we can then re-train the final algorithm on the entire training
dataset and get it ready for operational use. Next up we are going to look at four different
techniques that we can use to split up our training dataset and create useful estimates of
performance for our machine learning algorithms:

� Train and Test Sets.

� k-fold Cross Validation.

� Leave One Out Cross Validation.

� Repeated Random Test-Train Splits.
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9.2 Split into Train and Test Sets

The simplest method that we can use to evaluate the performance of a machine learning
algorithm is to use different training and testing datasets. We can take our original dataset and
split it into two parts. Train the algorithm on the first part, make predictions on the second
part and evaluate the predictions against the expected results. The size of the split can depend
on the size and specifics of your dataset, although it is common to use 67% of the data for
training and the remaining 33% for testing.

This algorithm evaluation technique is very fast. It is ideal for large datasets (millions of
records) where there is strong evidence that both splits of the data are representative of the
underlying problem. Because of the speed, it is useful to use this approach when the algorithm
you are investigating is slow to train. A downside of this technique is that it can have a high
variance. This means that differences in the training and test dataset can result in meaningful
differences in the estimate of accuracy. In the example below we split the Pima Indians dataset
into 67%/33% splits for training and test and evaluate the accuracy of a Logistic Regression
model.

# Evaluate using a train and a test set

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33

seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

result = model.score(X_test, Y_test)

print("Accuracy: %.3f%%") % (result*100.0)

Listing 9.1: Example of evaluating an algorithm with a train and test set.

We can see that the estimated accuracy for the model was approximately 75%. Note that
in addition to specifying the size of the split, we also specify the random seed. Because the
split of the data is random, we want to ensure that the results are reproducible. By specifying
the random seed we ensure that we get the same random numbers each time we run the code
and in turn the same split of data. This is important if we want to compare this result to
the estimated accuracy of another machine learning algorithm or the same algorithm with a
different configuration. To ensure the comparison was apples-for-apples, we must ensure that
they are trained and tested on exactly the same data.

Accuracy: 75.591%

Listing 9.2: Output of evaluating an algorithm with a train and test set.
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9.3 K-fold Cross Validation

Cross validation is an approach that you can use to estimate the performance of a machine
learning algorithm with less variance than a single train-test set split. It works by splitting
the dataset into k-parts (e.g. k = 5 or k = 10). Each split of the data is called a fold. The
algorithm is trained on k − 1 folds with one held back and tested on the held back fold. This is
repeated so that each fold of the dataset is given a chance to be the held back test set. After
running cross validation you end up with k different performance scores that you can summarize
using a mean and a standard deviation.

The result is a more reliable estimate of the performance of the algorithm on new data. It is
more accurate because the algorithm is trained and evaluated multiple times on different data.
The choice of k must allow the size of each test partition to be large enough to be a reasonable
sample of the problem, whilst allowing enough repetitions of the train-test evaluation of the
algorithm to provide a fair estimate of the algorithms performance on unseen data. For modest
sized datasets in the thousands or tens of thousands of records, k values of 3, 5 and 10 are
common. In the example below we use 10-fold cross validation.

# Evaluate using Cross Validation

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

seed = 7

kfold = KFold(n_splits=num_folds, random_state=seed)

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.3: Example of evaluating an algorithm with k-fold Cross Validation.

You can see that we report both the mean and the standard deviation of the performance
measure. When summarizing performance measures, it is a good practice to summarize the
distribution of the measures, in this case assuming a Gaussian distribution of performance (a
very reasonable assumption) and recording the mean and standard deviation.

Accuracy: 76.951% (4.841%)

Listing 9.4: Output of evaluating an algorithm with k-fold Cross Validation.

9.4 Leave One Out Cross Validation

You can configure cross validation so that the size of the fold is 1 (k is set to the number of
observations in your dataset). This variation of cross validation is called leave-one-out cross
validation. The result is a large number of performance measures that can be summarized in
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an effort to give a more reasonable estimate of the accuracy of your model on unseen data.
A downside is that it can be a computationally more expensive procedure than k-fold cross
validation. In the example below we use leave-one-out cross validation.

# Evaluate using Leave One Out Cross Validation

from pandas import read_csv

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

loocv = LeaveOneOut()

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=loocv)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.5: Example of evaluating an algorithm with Leave One Out Cross Validation.

You can see in the standard deviation that the score has more variance than the k-fold cross
validation results described above.

Accuracy: 76.823% (42.196%)

Listing 9.6: Output of evaluating an algorithm with Leave One Out Cross Validation.

9.5 Repeated Random Test-Train Splits

Another variation on k-fold cross validation is to create a random split of the data like the
train/test split described above, but repeat the process of splitting and evaluation of the
algorithm multiple times, like cross validation. This has the speed of using a train/test split and
the reduction in variance in the estimated performance of k-fold cross validation. You can also
repeat the process many more times as needed to improve the accuracy. A down side is that
repetitions may include much of the same data in the train or the test split from run to run,
introducing redundancy into the evaluation. The example below splits the data into a 67%/33%
train/test split and repeats the process 10 times.

# Evaluate using Shuffle Split Cross Validation

from pandas import read_csv

from sklearn.model_selection import ShuffleSplit

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

n_splits = 10

test_size = 0.33
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seed = 7

kfold = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=seed)

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=kfold)

print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()*100.0, results.std()*100.0)

Listing 9.7: Example of evaluating an algorithm with Shuffle Split Cross Validation.

We can see that in this case the distribution of the performance measure is on par with
k-fold cross validation above.

Accuracy: 76.496% (1.698%)

Listing 9.8: Output of evaluating an algorithm with Shuffle Split Cross Validation.

9.6 What Techniques to Use When

This section lists some tips to consider what resampling technique to use in different circum-
stances.

� Generally k-fold cross validation is the gold standard for evaluating the performance of a
machine learning algorithm on unseen data with k set to 3, 5, or 10.

� Using a train/test split is good for speed when using a slow algorithm and produces
performance estimates with lower bias when using large datasets.

� Techniques like leave-one-out cross validation and repeated random splits can be useful
intermediates when trying to balance variance in the estimated performance, model
training speed and dataset size.

The best advice is to experiment and find a technique for your problem that is fast and
produces reasonable estimates of performance that you can use to make decisions. If in doubt,
use 10-fold cross validation.

9.7 Summary

In this chapter you discovered statistical techniques that you can use to estimate the performance
of your machine learning algorithms, called resampling. Specifically, you learned about:

� Train and Test Sets.

� Cross Validation.

� Leave One Out Cross Validation.

� Repeated Random Test-Train Splits.

9.7.1 Next

In the next section you will learn how you can evaluate the performance of classification and
regression algorithms using a suite of different metrics and built in evaluation reports.



Chapter 10

Machine Learning Algorithm
Performance Metrics

The metrics that you choose to evaluate your machine learning algorithms are very important.
Choice of metrics influences how the performance of machine learning algorithms is measured
and compared. They influence how you weight the importance of different characteristics in
the results and your ultimate choice of which algorithm to choose. In this chapter you will
discover how to select and use different machine learning performance metrics in Python with
scikit-learn. Let’s get started.

10.1 Algorithm Evaluation Metrics

In this lesson, various different algorithm evaluation metrics are demonstrated for both classifi-
cation and regression type machine learning problems. In each recipe, the dataset is downloaded
directly from the UCI Machine Learning repository.

� For classification metrics, the Pima Indians onset of diabetes dataset is used as demon-
stration. This is a binary classification problem where all of the input variables are
numeric.

� For regression metrics, the Boston House Price dataset is used as demonstration. this is a
regression problem where all of the input variables are also numeric.

All recipes evaluate the same algorithms, Logistic Regression for classification and Linear
Regression for the regression problems. A 10-fold cross validation test harness is used to
demonstrate each metric, because this is the most likely scenario you will use when employing
different algorithm evaluation metrics.

A caveat in these recipes is the cross validation.cross val score function1 used to
report the performance in each recipe. It does allow the use of different scoring metrics
that will be discussed, but all scores are reported so that they can be sorted in ascending
order (largest score is best). Some evaluation metrics (like mean squared error) are naturally
descending scores (the smallest score is best) and as such are reported as negative by the

1http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_

score.html
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cross validation.cross val score() function. This is important to note, because some
scores will be reported as negative that by definition can never be negative. I will remind you
about this caveat as we work through the lesson.

You can learn more about machine learning algorithm performance metrics supported by
scikit-learn on the page Model evaluation: quantifying the quality of predictions2. Let’s get on
with the evaluation metrics.

10.2 Classification Metrics

Classification problems are perhaps the most common type of machine learning problem and as
such there are a myriad of metrics that can be used to evaluate predictions for these problems.
In this section we will review how to use the following metrics:

� Classification Accuracy.

� Logarithmic Loss.

� Area Under ROC Curve.

� Confusion Matrix.

� Classification Report.

10.2.1 Classification Accuracy

Classification accuracy is the number of correct predictions made as a ratio of all predictions
made. This is the most common evaluation metric for classification problems, it is also the most
misused. It is really only suitable when there are an equal number of observations in each class
(which is rarely the case) and that all predictions and prediction errors are equally important,
which is often not the case. Below is an example of calculating classification accuracy.

# Cross Validation Classification Accuracy

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = 'accuracy'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("Accuracy: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.1: Example of evaluating an algorithm by classification accuracy.

2http://scikit-learn.org/stable/modules/model_evaluation.html
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You can see that the ratio is reported. This can be converted into a percentage by multiplying
the value by 100, giving an accuracy score of approximately 77% accurate.

Accuracy: 0.770 (0.048)

Listing 10.2: Output of evaluating an algorithm by classification accuracy.

10.2.2 Logarithmic Loss

Logarithmic loss (or logloss) is a performance metric for evaluating the predictions of probabilities
of membership to a given class. The scalar probability between 0 and 1 can be seen as a measure
of confidence for a prediction by an algorithm. Predictions that are correct or incorrect are
rewarded or punished proportionally to the confidence of the prediction. Below is an example
of calculating logloss for Logistic regression predictions on the Pima Indians onset of diabetes
dataset.

# Cross Validation Classification LogLoss

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = 'neg_log_loss'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("Logloss: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.3: Example of evaluating an algorithm by logloss.

Smaller logloss is better with 0 representing a perfect logloss. As mentioned above, the
measure is inverted to be ascending when using the cross val score() function.

Logloss: -0.493 (0.047)

Listing 10.4: Output of evaluating an algorithm by logloss.

10.2.3 Area Under ROC Curve

Area under ROC Curve (or AUC for short) is a performance metric for binary classification
problems. The AUC represents a model’s ability to discriminate between positive and negative
classes. An area of 1.0 represents a model that made all predictions perfectly. An area of
0.5 represents a model that is as good as random. ROC can be broken down into sensitivity
and specificity. A binary classification problem is really a trade-off between sensitivity and
specificity.

� Sensitivity is the true positive rate also called the recall. It is the number of instances
from the positive (first) class that actually predicted correctly.
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� Specificity is also called the true negative rate. Is the number of instances from the
negative (second) class that were actually predicted correctly.

The example below provides a demonstration of calculating AUC.

# Cross Validation Classification ROC AUC

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = 'roc_auc'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("AUC: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.5: Example of evaluating an algorithm by AUC.

You can see the AUC is relatively close to 1 and greater than 0.5, suggesting some skill in
the predictions

AUC: 0.824 (0.041)

Listing 10.6: Output of evaluating an algorithm by AUC.

10.2.4 Confusion Matrix

The confusion matrix is a handy presentation of the accuracy of a model with two or more
classes. The table presents predictions on the x-axis and accuracy outcomes on the y-axis. The
cells of the table are the number of predictions made by a machine learning algorithm. For
example, a machine learning algorithm can predict 0 or 1 and each prediction may actually have
been a 0 or 1. Predictions for 0 that were actually 0 appear in the cell for prediction = 0 and
actual = 0, whereas predictions for 0 that were actually 1 appear in the cell for prediction = 0
and actual = 1. And so on. Below is an example of calculating a confusion matrix for a set of
predictions by a Logistic Regression on the Pima Indians onset of diabetes dataset.

# Cross Validation Classification Confusion Matrix

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33
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seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

predicted = model.predict(X_test)

matrix = confusion_matrix(Y_test, predicted)

print(matrix)

Listing 10.7: Example of evaluating an algorithm by confusion matrix.

Although the array is printed without headings, you can see that the majority of the
predictions fall on the diagonal line of the matrix (which are correct predictions).

[[141 21]

[ 41 51]]

Listing 10.8: Output of evaluating an algorithm by confusion matrix.

10.2.5 Classification Report

The scikit-learn library provides a convenience report when working on classification prob-
lems to give you a quick idea of the accuracy of a model using a number of measures. The
classification report() function displays the precision, recall, F1-score and support for each
class. The example below demonstrates the report on the binary classification problem.

# Cross Validation Classification Report

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

test_size = 0.33

seed = 7

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,

random_state=seed)

model = LogisticRegression()

model.fit(X_train, Y_train)

predicted = model.predict(X_test)

report = classification_report(Y_test, predicted)

print(report)

Listing 10.9: Example of evaluating an algorithm by classification report.

You can see good prediction and recall for the algorithm.

precision recall f1-score support

0.0 0.77 0.87 0.82 162

1.0 0.71 0.55 0.62 92
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avg / total 0.75 0.76 0.75 254

Listing 10.10: Output of evaluating an algorithm by classification report.

10.3 Regression Metrics

In this section will review 3 of the most common metrics for evaluating predictions on regression
machine learning problems:

� Mean Absolute Error.

� Mean Squared Error.

� R2.

10.3.1 Mean Absolute Error

The Mean Absolute Error (or MAE) is the sum of the absolute differences between predictions
and actual values. It gives an idea of how wrong the predictions were. The measure gives an
idea of the magnitude of the error, but no idea of the direction (e.g. over or under predicting).
The example below demonstrates calculating mean absolute error on the Boston house price
dataset.

# Cross Validation Regression MAE

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = 'neg_mean_absolute_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("MAE: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.11: Example of evaluating an algorithm by Mean Absolute Error.

A value of 0 indicates no error or perfect predictions. Like logloss, this metric is inverted by
the cross val score() function.

MAE: -4.005 (2.084)

Listing 10.12: Output of evaluating an algorithm by Mean Absolute Error.
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10.3.2 Mean Squared Error

The Mean Squared Error (or MSE) is much like the mean absolute error in that it provides a
gross idea of the magnitude of error. Taking the square root of the mean squared error converts
the units back to the original units of the output variable and can be meaningful for description
and presentation. This is called the Root Mean Squared Error (or RMSE). The example below
provides a demonstration of calculating mean squared error.

# Cross Validation Regression MSE

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("MSE: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.13: Example of evaluating an algorithm by Mean Squared Error.

This metric too is inverted so that the results are increasing. Remember to take the absolute
value before taking the square root if you are interested in calculating the RMSE.

MSE: -34.705 (45.574)

Listing 10.14: Output of evaluating an algorithm by Mean Squared Error.

10.3.3 R2 Metric

The R2 (or R Squared) metric provides an indication of the goodness of fit of a set of predictions
to the actual values. In statistical literature this measure is called the coefficient of determination.
This is a value between 0 and 1 for no-fit and perfect fit respectively. The example below
provides a demonstration of calculating the mean R2 for a set of predictions.

# Cross Validation Regression R^2

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]
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kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = 'r2'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print("R^2: %.3f (%.3f)") % (results.mean(), results.std())

Listing 10.15: Example of evaluating an algorithm by R Squared.

You can see the predictions have a poor fit to the actual values with a value closer to zero
and less than 0.5.

R^2: 0.203 (0.595)

Listing 10.16: Output of evaluating an algorithm by R Squared.

10.4 Summary

In this chapter you discovered metrics that you can use to evaluate your machine learning
algorithms.

You learned about three classification metrics: Accuracy, Logarithmic Loss and Area Under
ROC Curve. You also learned about two convenience methods for classification prediction
results: the Confusion Matrix and the Classification Report. Finally, you also learned about
three metrics for regression problems: Mean Absolute Error, Mean Squared Error and R2.

10.4.1 Next

You now know how to evaluate the performance of machine learning algorithms using a variety
of different metrics and how to use those metrics to estimate the performance of algorithms on
new unseen data using resampling. In the next lesson you will start looking at machine learning
algorithms themselves, starting with classification techniques.



Chapter 11

Spot-Check Classification Algorithms

Spot-checking is a way of discovering which algorithms perform well on your machine learning
problem. You cannot know which algorithms are best suited to your problem beforehand. You
must trial a number of methods and focus attention on those that prove themselves the most
promising. In this chapter you will discover six machine learning algorithms that you can use
when spot-checking your classification problem in Python with scikit-learn. After completing
this lesson you will know:

1. How to spot-check machine learning algorithms on a classification problem.

2. How to spot-check two linear classification algorithms.

3. How to spot-check four nonlinear classification algorithms.

Let’s get started.

11.1 Algorithm Spot-Checking

You cannot know which algorithm will work best on your dataset beforehand. You must use
trial and error to discover a shortlist of algorithms that do well on your problem that you can
then double down on and tune further. I call this process spot-checking.

The question is not: What algorithm should I use on my dataset? Instead it is: What
algorithms should I spot-check on my dataset? You can guess at what algorithms might do
well on your dataset, and this can be a good starting point. I recommend trying a mixture of
algorithms and see what is good at picking out the structure in your data. Below are some
suggestions when spot-checking algorithms on your dataset:

� Try a mixture of algorithm representations (e.g. instances and trees).

� Try a mixture of learning algorithms (e.g. different algorithms for learning the same type
of representation).

� Try a mixture of modeling types (e.g. linear and nonlinear functions or parametric and
nonparametric).

Let’s get specific. In the next section, we will look at algorithms that you can use to
spot-check on your next classification machine learning project in Python.
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11.2 Algorithms Overview

We are going to take a look at six classification algorithms that you can spot-check on your
dataset. Starting with two linear machine learning algorithms:

� Logistic Regression.

� Linear Discriminant Analysis.

Then looking at four nonlinear machine learning algorithms:

� k-Nearest Neighbors.

� Naive Bayes.

� Classification and Regression Trees.

� Support Vector Machines.

Each recipe is demonstrated on the Pima Indians onset of Diabetes dataset. A test harness
using 10-fold cross validation is used to demonstrate how to spot-check each machine learning
algorithm and mean accuracy measures are used to indicate algorithm performance. The recipes
assume that you know about each machine learning algorithm and how to use them. We will
not go into the API or parameterization of each algorithm.

11.3 Linear Machine Learning Algorithms

This section demonstrates minimal recipes for how to use two linear machine learning algorithms:
logistic regression and linear discriminant analysis.

11.3.1 Logistic Regression

Logistic regression assumes a Gaussian distribution for the numeric input variables and can
model binary classification problems. You can construct a logistic regression model using the
LogisticRegression class1.

# Logistic Regression Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

1http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.

html
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kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.1: Example of the logistic regression algorithm.

Running the example prints the mean estimated accuracy.

0.76951469583

Listing 11.2: Output of the logistic regression algorithm.

11.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis or LDA is a statistical technique for binary and multiclass
classification. It too assumes a Gaussian distribution for the numerical input variables. You can
construct an LDA model using the LinearDiscriminantAnalysis class2.

# LDA Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = LinearDiscriminantAnalysis()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.3: Example of the LDA algorithm.

Running the example prints the mean estimated accuracy.

0.773462064252

Listing 11.4: Output of the LDA algorithm.

11.4 Nonlinear Machine Learning Algorithms

This section demonstrates minimal recipes for how to use 4 nonlinear machine learning algorithms.

2http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.

LinearDiscriminantAnalysis.html
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11.4.1 k-Nearest Neighbors

The k-Nearest Neighbors algorithm (or KNN) uses a distance metric to find the k most similar
instances in the training data for a new instance and takes the mean outcome of the neighbors
as the prediction. You can construct a KNN model using the KNeighborsClassifier class3.

# KNN Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = KNeighborsClassifier()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.5: Example of the KNN algorithm.

Running the example prints the mean estimated accuracy.

0.726555023923

Listing 11.6: Output of the KNN algorithm.

11.4.2 Naive Bayes

Naive Bayes calculates the probability of each class and the conditional probability of each class
given each input value. These probabilities are estimated for new data and multiplied together,
assuming that they are all independent (a simple or naive assumption). When working with
real-valued data, a Gaussian distribution is assumed to easily estimate the probabilities for
input variables using the Gaussian Probability Density Function. You can construct a Naive
Bayes model using the GaussianNB class4.

# Gaussian Naive Bayes Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.naive_bayes import GaussianNB

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

3http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.

html
4http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
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kfold = KFold(n_splits=10, random_state=7)

model = GaussianNB()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.7: Example of the Naive Bayes algorithm.

Running the example prints the mean estimated accuracy.

0.75517771702

Listing 11.8: Output of the Naive Bayes algorithm.

11.4.3 Classification and Regression Trees

Classification and Regression Trees (CART or just decision trees) construct a binary tree from
the training data. Split points are chosen greedily by evaluating each attribute and each value
of each attribute in the training data in order to minimize a cost function (like the Gini index).
You can construct a CART model using the DecisionTreeClassifier class5.

# CART Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.tree import DecisionTreeClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = DecisionTreeClassifier()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.9: Example of the CART algorithm.

Running the example prints the mean estimated accuracy.

0.692600820232

Listing 11.10: Output of the CART algorithm.

11.4.4 Support Vector Machines

Support Vector Machines (or SVM) seek a line that best separates two classes. Those data
instances that are closest to the line that best separates the classes are called support vectors
and influence where the line is placed. SVM has been extended to support multiple classes.
Of particular importance is the use of different kernel functions via the kernel parameter. A

5http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.

html
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powerful Radial Basis Function is used by default. You can construct an SVM model using the
SVC class6.

# SVM Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.svm import SVC

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = SVC()

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 11.11: Example of the SVM algorithm.

Running the example prints the mean estimated accuracy.

0.651025290499

Listing 11.12: Output of the SVM algorithm.

11.5 Summary

In this chapter you discovered 6 machine learning algorithms that you can use to spot-check
on your classification problem in Python using scikit-learn. Specifically, you learned how to
spot-check two linear machine learning algorithms: Logistic Regression and Linear Discriminant
Analysis. You also learned how to spot-check four nonlinear algorithms: k-Nearest Neighbors,
Naive Bayes, Classification and Regression Trees and Support Vector Machines.

11.5.1 Next

In the next lesson you will discover how you can use spot-checking on regression machine learning
problems and practice with seven different regression algorithms.

6http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Spot-Check Regression Algorithms

Spot-checking is a way of discovering which algorithms perform well on your machine learning
problem. You cannot know which algorithms are best suited to your problem beforehand. You
must trial a number of methods and focus attention on those that prove themselves the most
promising. In this chapter you will discover six machine learning algorithms that you can use
when spot-checking your regression problem in Python with scikit-learn. After completing this
lesson you will know:

1. How to spot-check machine learning algorithms on a regression problem.

2. How to spot-check four linear regression algorithms.

3. How to spot-check three nonlinear regression algorithms.

Let’s get started.

12.1 Algorithms Overview

In this lesson we are going to take a look at seven regression algorithms that you can spot-check
on your dataset. Starting with four linear machine learning algorithms:

� Linear Regression.

� Ridge Regression.

� LASSO Linear Regression.

� Elastic Net Regression.

Then looking at three nonlinear machine learning algorithms:

� k-Nearest Neighbors.

� Classification and Regression Trees.

� Support Vector Machines.
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Each recipe is demonstrated on the Boston House Price dataset. This is a regression
problem where all attributes are numeric. A test harness with 10-fold cross validation is used
to demonstrate how to spot-check each machine learning algorithm and mean squared error
measures are used to indicate algorithm performance. Note that mean squared error values are
inverted (negative). This is a quirk of the cross val score() function used that requires all
algorithm metrics to be sorted in ascending order (larger value is better). The recipes assume
that you know about each machine learning algorithm and how to use them. We will not go
into the API or parameterization of each algorithm.

12.2 Linear Machine Learning Algorithms

This section provides examples of how to use four different linear machine learning algorithms
for regression in Python with scikit-learn.

12.2.1 Linear Regression

Linear regression assumes that the input variables have a Gaussian distribution. It is also
assumed that input variables are relevant to the output variable and that they are not highly
correlated with each other (a problem called collinearity). You can construct a linear regression
model using the LinearRegression class1.

# Linear Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = LinearRegression()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.1: Example of the linear regression algorithm.

Running the example provides a estimate of mean squared error.

-34.7052559445

Listing 12.2: Output of the linear regression algorithm.

1http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.

html
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12.2.2 Ridge Regression

Ridge regression is an extension of linear regression where the loss function is modified to
minimize the complexity of the model measured as the sum squared value of the coefficient
values (also called the L2-norm). You can construct a ridge regression model by using the Ridge

class2.

# Ridge Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import Ridge

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = Ridge()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.3: Example of the ridge regression algorithm.

Running the example provides an estimate of the mean squared error.

-34.0782462093

Listing 12.4: Output of the ridge regression algorithm.

12.2.3 LASSO Regression

The Least Absolute Shrinkage and Selection Operator (or LASSO for short) is a modification
of linear regression, like ridge regression, where the loss function is modified to minimize the
complexity of the model measured as the sum absolute value of the coefficient values (also called
the L1-norm). You can construct a LASSO model by using the Lasso class3.

# Lasso Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import Lasso

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

2http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
3http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
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Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = Lasso()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.5: Example of the LASSO regression algorithm.

Running the example provides an estimate of the mean squared error.

-34.4640845883

Listing 12.6: Output of the LASSO regression algorithm.

12.2.4 ElasticNet Regression

ElasticNet is a form of regularization regression that combines the properties of both Ridge
Regression and LASSO regression. It seeks to minimize the complexity of the regression model
(magnitude and number of regression coefficients) by penalizing the model using both the
L2-norm (sum squared coefficient values) and the L1-norm (sum absolute coefficient values).
You can construct an ElasticNet model using the ElasticNet class4.

# ElasticNet Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import ElasticNet

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = ElasticNet()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.7: Example of the ElasticNet regression algorithm.

Running the example provides an estimate of the mean squared error.

-31.1645737142

Listing 12.8: Output of the ElasticNet regression algorithm.

12.3 Nonlinear Machine Learning Algorithms

This section provides examples of how to use three different nonlinear machine learning algorithms
for regression in Python with scikit-learn.

4http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
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12.3.1 K-Nearest Neighbors

The k-Nearest Neighbors algorithm (or KNN) locates the k most similar instances in the
training dataset for a new data instance. From the k neighbors, a mean or median output
variable is taken as the prediction. Of note is the distance metric used (the metric argument).
The Minkowski distance is used by default, which is a generalization of both the Euclidean
distance (used when all inputs have the same scale) and Manhattan distance (for when the
scales of the input variables differ). You can construct a KNN model for regression using the
KNeighborsRegressor class5.

# KNN Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsRegressor

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = KNeighborsRegressor()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.9: Example of the KNN regression algorithm.

Running the example provides an estimate of the mean squared error.

-107.28683898

Listing 12.10: Output of the KNN regression algorithm.

12.3.2 Classification and Regression Trees

Decision trees or the Classification and Regression Trees (CART as they are known) use the train-
ing data to select the best points to split the data in order to minimize a cost metric. The default
cost metric for regression decision trees is the mean squared error, specified in the criterion

parameter. You can create a CART model for regression using the DecisionTreeRegressor

class6.

# Decision Tree Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.tree import DecisionTreeRegressor

filename = 'housing.csv'

5http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.

html
6http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

kfold = KFold(n_splits=10, random_state=7)

model = DecisionTreeRegressor()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.11: Example of the CART regression algorithm.

Running the example provides an estimate of the mean squared error.

-35.4906027451

Listing 12.12: Output of the CART regression algorithm.

12.3.3 Support Vector Machines

Support Vector Machines (SVM) were developed for binary classification. The technique has
been extended for the prediction real-valued problems called Support Vector Regression (SVR).
Like the classification example, SVR is built upon the LIBSVM library. You can create an SVM
model for regression using the SVR class7.

# SVM Regression

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.svm import SVR

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataframe = read_csv(filename, delim_whitespace=True, names=names)

array = dataframe.values

X = array[:,0:13]

Y = array[:,13]

num_folds = 10

kfold = KFold(n_splits=10, random_state=7)

model = SVR()

scoring = 'neg_mean_squared_error'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print(results.mean())

Listing 12.13: Example of the SVM regression algorithm.

Running the example provides an estimate of the mean squared error.

-91.0478243332

Listing 12.14: Output of the SVM regression algorithm.

7http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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12.4 Summary

In this chapter you discovered how to spot-check machine learning algorithms for regression
problems in Python using scikit-learn. Specifically, you learned about four linear machine
learning algorithms: Linear Regression, Ridge Regression, LASSO Linear Regression and Elastic
Net Regression. You also learned about three nonlinear algorithms: k-Nearest Neighbors,
Classification and Regression Trees and Support Vector Machines.

12.4.1 Next

Now that you know how to use classification and regression algorithms you need to know how
to compare the results of different algorithms to each other. In the next lesson you will discover
how to design simple experiments to directly compare machine learning algorithms to each other
on your dataset.



Chapter 13

Compare Machine Learning Algorithms

It is important to compare the performance of multiple different machine learning algorithms
consistently. In this chapter you will discover how you can create a test harness to compare
multiple different machine learning algorithms in Python with scikit-learn. You can use this
test harness as a template on your own machine learning problems and add more and different
algorithms to compare. After completing this lesson you will know:

1. How to formulate an experiment to directly compare machine learning algorithms.

2. A reusable template for evaluating the performance of multiple algorithms on one dataset.

3. How to report and visualize the results when comparing algorithm performance.

Let’s get started.

13.1 Choose The Best Machine Learning Model

When you work on a machine learning project, you often end up with multiple good models
to choose from. Each model will have different performance characteristics. Using resampling
methods like cross validation, you can get an estimate for how accurate each model may be on
unseen data. You need to be able to use these estimates to choose one or two best models from
the suite of models that you have created.

When you have a new dataset, it is a good idea to visualize the data using different techniques
in order to look at the data from different perspectives. The same idea applies to model selection.
You should use a number of different ways of looking at the estimated accuracy of your machine
learning algorithms in order to choose the one or two algorithm to finalize. A way to do this is
to use visualization methods to show the average accuracy, variance and other properties of the
distribution of model accuracies. In the next section you will discover exactly how you can do
that in Python with scikit-learn.

13.2 Compare Machine Learning Algorithms Consistently

The key to a fair comparison of machine learning algorithms is ensuring that each algorithm is
evaluated in the same way on the same data. You can achieve this by forcing each algorithm
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to be evaluated on a consistent test harness. In the example below six different classification
algorithms are compared on a single dataset:

� Logistic Regression.

� Linear Discriminant Analysis.

� k-Nearest Neighbors.

� Classification and Regression Trees.

� Naive Bayes.

� Support Vector Machines.

The dataset is the Pima Indians onset of diabetes problem. The problem has two classes and
eight numeric input variables of varying scales. The 10-fold cross validation procedure is used to
evaluate each algorithm, importantly configured with the same random seed to ensure that the
same splits to the training data are performed and that each algorithm is evaluated in precisely
the same way. Each algorithm is given a short name, useful for summarizing results afterward.

# Compare Algorithms

from pandas import read_csv

from matplotlib import pyplot

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

# load dataset

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# prepare models

models = []

models.append(('LR', LogisticRegression()))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC()))

# evaluate each model in turn

results = []

names = []

scoring = 'accuracy'

for name, model in models:

kfold = KFold(n_splits=10, random_state=7)

cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

results.append(cv_results)
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names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

# boxplot algorithm comparison

fig = pyplot.figure()

fig.suptitle('Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 13.1: Example of comparing multiple algorithms.

Running the example provides a list of each algorithm short name, the mean accuracy and
the standard deviation accuracy.

LR: 0.769515 (0.048411)

LDA: 0.773462 (0.051592)

KNN: 0.726555 (0.061821)

CART: 0.695232 (0.062517)

NB: 0.755178 (0.042766)

SVM: 0.651025 (0.072141)

Listing 13.2: Output of comparing multiple algorithms.

The example also provides a box and whisker plot showing the spread of the accuracy scores
across each cross validation fold for each algorithm.
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Figure 13.1: Box and Whisker Plots Comparing Algorithm Performance

From these results, it would suggest that both logistic regression and linear discriminant
analysis are perhaps worthy of further study on this problem.

13.3 Summary

In this chapter you discovered how to evaluate multiple different machine learning algorithms
on a dataset in Python with scikit-learn. You learned how to both use the same test harness to
evaluate the algorithms and how to summarize the results both numerically and using a box
and whisker plot. You can use this recipe as a template for evaluating multiple algorithms on
your own problems.

13.3.1 Next

In this lesson you learned how to compare the performance of machine learning algorithms to
each other. But what if you need to prepare your data as part of the comparison process. In
the next lesson you will discover Pipelines in scikit-learn and how they overcome the common
problems of data leakage when comparing machine learning algorithms.



Chapter 14

Automate Machine Learning
Workflows with Pipelines

There are standard workflows in a machine learning project that can be automated. In Python
scikit-learn, Pipelines help to clearly define and automate these workflows. In this chapter you
will discover Pipelines in scikit-learn and how you can automate common machine learning
workflows. After completing this lesson you will know:

1. How to use pipelines to minimize data leakage.

2. How to construct a data preparation and modeling pipeline.

3. How to construct a feature extraction and modeling pipeline.

Let’s get started.

14.1 Automating Machine Learning Workflows

There are standard workflows in applied machine learning. Standard because they overcome
common problems like data leakage in your test harness. Python scikit-learn provides a Pipeline
utility to help automate machine learning workflows. Pipelines work by allowing for a linear
sequence of data transforms to be chained together culminating in a modeling process that can
be evaluated.

The goal is to ensure that all of the steps in the pipeline are constrained to the data available
for the evaluation, such as the training dataset or each fold of the cross validation procedure.
You can learn more about Pipelines in scikit-learn by reading the Pipeline section1 of the user
guide. You can also review the API documentation for the Pipeline and FeatureUnion classes
and the pipeline module2.

14.2 Data Preparation and Modeling Pipeline

An easy trap to fall into in applied machine learning is leaking data from your training dataset
to your test dataset. To avoid this trap you need a robust test harness with strong separation of

1http://scikit-learn.org/stable/modules/pipeline.html
2http://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline
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training and testing. This includes data preparation. Data preparation is one easy way to leak
knowledge of the whole training dataset to the algorithm. For example, preparing your data
using normalization or standardization on the entire training dataset before learning would not
be a valid test because the training dataset would have been influenced by the scale of the data
in the test set.

Pipelines help you prevent data leakage in your test harness by ensuring that data preparation
like standardization is constrained to each fold of your cross validation procedure. The example
below demonstrates this important data preparation and model evaluation workflow on the
Pima Indians onset of diabetes dataset. The pipeline is defined with two steps:

1. Standardize the data.

2. Learn a Linear Discriminant Analysis model.

The pipeline is then evaluated using 10-fold cross validation.

# Create a pipeline that standardizes the data then creates a model

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# create pipeline

estimators = []

estimators.append(('standardize', StandardScaler()))

estimators.append(('lda', LinearDiscriminantAnalysis()))

model = Pipeline(estimators)

# evaluate pipeline

kfold = KFold(n_splits=10, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 14.1: Example of a Pipeline to standardize and model data.

Notice how we create a Python list of steps that are provided to the Pipeline for process
the data. Also notice how the Pipeline itself is treated like an estimator and is evaluated in its
entirety by the k-fold cross validation procedure. Running the example provides a summary of
accuracy of the setup on the dataset.

0.773462064252

Listing 14.2: Output of a Pipeline to standardize and model data.
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14.3 Feature Extraction and Modeling Pipeline

Feature extraction is another procedure that is susceptible to data leakage. Like data preparation,
feature extraction procedures must be restricted to the data in your training dataset. The
pipeline provides a handy tool called the FeatureUnion which allows the results of multiple
feature selection and extraction procedures to be combined into a larger dataset on which a
model can be trained. Importantly, all the feature extraction and the feature union occurs
within each fold of the cross validation procedure. The example below demonstrates the pipeline
defined with four steps:

1. Feature Extraction with Principal Component Analysis (3 features).

2. Feature Extraction with Statistical Selection (6 features).

3. Feature Union.

4. Learn a Logistic Regression Model.

The pipeline is then evaluated using 10-fold cross validation.

# Create a pipeline that extracts features from the data then creates a model

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.pipeline import Pipeline

from sklearn.pipeline import FeatureUnion

from sklearn.linear_model import LogisticRegression

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

# load data

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

# create feature union

features = []

features.append(('pca', PCA(n_components=3)))

features.append(('select_best', SelectKBest(k=6)))

feature_union = FeatureUnion(features)

# create pipeline

estimators = []

estimators.append(('feature_union', feature_union))

estimators.append(('logistic', LogisticRegression()))

model = Pipeline(estimators)

# evaluate pipeline

kfold = KFold(n_splits=10, random_state=7)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 14.3: Example of a Pipeline extract and combine features before modeling.
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Notice how the FeatureUnion is it’s own Pipeline that in turn is a single step in the final
Pipeline used to feed Logistic Regression. This might get you thinking about how you can start
embedding pipelines within pipelines. Running the example provides a summary of accuracy of
the setup on the dataset.

0.776042378674

Listing 14.4: Output of a Pipeline extract and combine features before modeling.

14.4 Summary

In this chapter you discovered the difficulties of data leakage in applied machine learning. You
discovered the Pipeline utilities in Python scikit-learn and how they can be used to automate
standard applied machine learning workflows. You learned how to use Pipelines in two important
use cases:

� Data preparation and modeling constrained to each fold of the cross validation procedure.

� Feature extraction and feature union constrained to each fold of the cross validation
procedure.

14.4.1 Next

This completes the lessons on how to evaluate machine learning algorithms. In the next lesson
you will take your first look at how to improve algorithm performance on your problems by
using ensemble methods.



Chapter 15

Improve Performance with Ensembles

Ensembles can give you a boost in accuracy on your dataset. In this chapter you will discover
how you can create some of the most powerful types of ensembles in Python using scikit-learn.
This lesson will step you through Boosting, Bagging and Majority Voting and show you how you
can continue to ratchet up the accuracy of the models on your own datasets. After completing
this lesson you will know:

1. How to use bagging ensemble methods such as bagged decision trees, random forest and
extra trees.

2. How to use boosting ensemble methods such as AdaBoost and stochastic gradient boosting.

3. How to use voting ensemble methods to combine the predictions from multiple algorithms.

Let’s get started.

15.1 Combine Models Into Ensemble Predictions

The three most popular methods for combining the predictions from different models are:

� Bagging. Building multiple models (typically of the same type) from different subsamples
of the training dataset.

� Boosting. Building multiple models (typically of the same type) each of which learns to
fix the prediction errors of a prior model in the sequence of models.

� Voting. Building multiple models (typically of differing types) and simple statistics (like
calculating the mean) are used to combine predictions.

This assumes you are generally familiar with machine learning algorithms and ensemble
methods and will not go into the details of how the algorithms work or their parameters.
The Pima Indians onset of Diabetes dataset is used to demonstrate each algorithm. Each
ensemble algorithm is demonstrated using 10-fold cross validation and the classification accuracy
performance metric.
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15.2 Bagging Algorithms

Bootstrap Aggregation (or Bagging) involves taking multiple samples from your training dataset
(with replacement) and training a model for each sample. The final output prediction is averaged
across the predictions of all of the sub-models. The three bagging models covered in this section
are as follows:

� Bagged Decision Trees.

� Random Forest.

� Extra Trees.

15.2.1 Bagged Decision Trees

Bagging performs best with algorithms that have high variance. A popular example are
decision trees, often constructed without pruning. In the example below is an example
of using the BaggingClassifier with the Classification and Regression Trees algorithm
(DecisionTreeClassifier1). A total of 100 trees are created.

# Bagged Decision Trees for Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

seed = 7

kfold = KFold(n_splits=10, random_state=seed)

cart = DecisionTreeClassifier()

num_trees = 100

model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 15.1: Example of Bagged Decision Trees Ensemble Algorithm.

Running the example, we get a robust estimate of model accuracy.

0.770745044429

Listing 15.2: Output of Bagged Decision Trees Ensemble Algorithm.

1http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
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15.2.2 Random Forest

Random Forests is an extension of bagged decision trees. Samples of the training dataset are
taken with replacement, but the trees are constructed in a way that reduces the correlation
between individual classifiers. Specifically, rather than greedily choosing the best split point in
the construction of each tree, only a random subset of features are considered for each split. You
can construct a Random Forest model for classification using the RandomForestClassifier

class2. The example below demonstrates using Random Forest for classification with 100 trees
and split points chosen from a random selection of 3 features.

# Random Forest Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import RandomForestClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_trees = 100

max_features = 3

kfold = KFold(n_splits=10, random_state=7)

model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 15.3: Example of Random Forest Ensemble Algorithm.

Running the example provides a mean estimate of classification accuracy.

0.770727956254

Listing 15.4: Output of Random Forest Ensemble Algorithm.

15.2.3 Extra Trees

Extra Trees are another modification of bagging where random trees are constructed from
samples of the training dataset. You can construct an Extra Trees model for classification using
the ExtraTreesClassifier class3. The example below provides a demonstration of extra trees
with the number of trees set to 100 and splits chosen from 7 random features.

# Extra Trees Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import ExtraTreesClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

2http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html
3http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.

html
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dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

num_trees = 100

max_features = 7

kfold = KFold(n_splits=10, random_state=7)

model = ExtraTreesClassifier(n_estimators=num_trees, max_features=max_features)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 15.5: Example of Extra Trees Ensemble Algorithm.

Running the example provides a mean estimate of classification accuracy.

0.760269993165

Listing 15.6: Output of Extra Trees Ensemble Algorithm.

15.3 Boosting Algorithms

Boosting ensemble algorithms creates a sequence of models that attempt to correct the mistakes
of the models before them in the sequence. Once created, the models make predictions which
may be weighted by their demonstrated accuracy and the results are combined to create a final
output prediction. The two most common boosting ensemble machine learning algorithms are:

� AdaBoost.

� Stochastic Gradient Boosting.

15.3.1 AdaBoost

AdaBoost was perhaps the first successful boosting ensemble algorithm. It generally works
by weighting instances in the dataset by how easy or difficult they are to classify, allowing
the algorithm to pay or less attention to them in the construction of subsequent models. You
can construct an AdaBoost model for classification using the AdaBoostClassifier class4. The
example below demonstrates the construction of 30 decision trees in sequence using the AdaBoost
algorithm.

# AdaBoost Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import AdaBoostClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

4http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.

html
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num_trees = 30

seed=7

kfold = KFold(n_splits=10, random_state=seed)

model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 15.7: Example of AdaBoost Ensemble Algorithm.

Running the example provides a mean estimate of classification accuracy.

0.76045796309

Listing 15.8: Output of AdaBoost Ensemble Algorithm.

15.3.2 Stochastic Gradient Boosting

Stochastic Gradient Boosting (also called Gradient Boosting Machines) are one of the most
sophisticated ensemble techniques. It is also a technique that is proving to be perhaps one of
the best techniques available for improving performance via ensembles. You can construct a
Gradient Boosting model for classification using the GradientBoostingClassifier class5. The
example below demonstrates Stochastic Gradient Boosting for classification with 100 trees.

# Stochastic Gradient Boosting Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import GradientBoostingClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

seed = 7

num_trees = 100

kfold = KFold(n_splits=10, random_state=seed)

model = GradientBoostingClassifier(n_estimators=num_trees, random_state=seed)

results = cross_val_score(model, X, Y, cv=kfold)

print(results.mean())

Listing 15.9: Example of Stochastic Gradient Boosting Ensemble Algorithm.

Running the example provides a mean estimate of classification accuracy.

0.764285714286

Listing 15.10: Output of Stochastic Gradient Boosting Ensemble Algorithm.

5http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html
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15.4 Voting Ensemble

Voting is one of the simplest ways of combining the predictions from multiple machine learning
algorithms. It works by first creating two or more standalone models from your training dataset.
A Voting Classifier can then be used to wrap your models and average the predictions of the
sub-models when asked to make predictions for new data. The predictions of the sub-models can
be weighted, but specifying the weights for classifiers manually or even heuristically is difficult.
More advanced methods can learn how to best weight the predictions from sub-models, but this
is called stacking (stacked aggregation) and is currently not provided in scikit-learn.

You can create a voting ensemble model for classification using the VotingClassifier

class6. The code below provides an example of combining the predictions of logistic regression,
classification and regression trees and support vector machines together for a classification
problem.

# Voting Ensemble for Classification

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import VotingClassifier

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

# create the sub models

estimators = []

model1 = LogisticRegression()

estimators.append(('logistic', model1))

model2 = DecisionTreeClassifier()

estimators.append(('cart', model2))

model3 = SVC()

estimators.append(('svm', model3))

# create the ensemble model

ensemble = VotingClassifier(estimators)

results = cross_val_score(ensemble, X, Y, cv=kfold)

print(results.mean())

Listing 15.11: Example of the Voting Ensemble Algorithm.

Running the example provides a mean estimate of classification accuracy.

0.729049897471

Listing 15.12: Output of the Voting Ensemble Algorithm.

6http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
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15.5 Summary

In this chapter you discovered ensemble machine learning algorithms for improving the perfor-
mance of models on your problems. You learned about:

� Bagging Ensembles including Bagged Decision Trees, Random Forest and Extra Trees.

� Boosting Ensembles including AdaBoost and Stochastic Gradient Boosting.

� Voting Ensembles for averaging the predictions for any arbitrary models.

15.5.1 Next

In the next section you will discover another technique that you can use to improve the
performance of algorithms on your dataset called algorithm tuning.



Chapter 16

Improve Performance with Algorithm
Tuning

Machine learning models are parameterized so that their behavior can be tuned for a given
problem. Models can have many parameters and finding the best combination of parameters can
be treated as a search problem. In this chapter you will discover how to tune the parameters of
machine learning algorithms in Python using the scikit-learn. After completing this lesson you
will know:

1. The importance of algorithm parameter tuning to improve algorithm performance.

2. How to use a grid search algorithm tuning strategy.

3. How to use a random search algorithm tuning strategy.

Let’s get started.

16.1 Machine Learning Algorithm Parameters

Algorithm tuning is a final step in the process of applied machine learning before finalizing your
model. It is sometimes called hyperparameter optimization where the algorithm parameters
are referred to as hyperparameters, whereas the coefficients found by the machine learning
algorithm itself are referred to as parameters. Optimization suggests the search-nature of the
problem. Phrased as a search problem, you can use different search strategies to find a good and
robust parameter or set of parameters for an algorithm on a given problem. Python scikit-learn
provides two simple methods for algorithm parameter tuning:

� Grid Search Parameter Tuning.

� Random Search Parameter Tuning.

16.2 Grid Search Parameter Tuning

Grid search is an approach to parameter tuning that will methodically build and evaluate a
model for each combination of algorithm parameters specified in a grid. You can perform a grid
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search using the GridSearchCV class1. The example below evaluates different alpha values for
the Ridge Regression algorithm on the standard diabetes dataset. This is a one-dimensional
grid search.

# Grid Search for Algorithm Tuning

import numpy

from pandas import read_csv

from sklearn.linear_model import Ridge

from sklearn.model_selection import GridSearchCV

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0])

param_grid = dict(alpha=alphas)

model = Ridge()

grid = GridSearchCV(estimator=model, param_grid=param_grid)

grid.fit(X, Y)

print(grid.best_score_)

print(grid.best_estimator_.alpha)

Listing 16.1: Example of a grid search for algorithm parameters.

Running the example lists out the optimal score achieved and the set of parameters in the
grid that achieved that score. In this case the alpha value of 1.0.

0.279617559313

1.0

Listing 16.2: Output of a grid search for algorithm parameters.

16.3 Random Search Parameter Tuning

Random search is an approach to parameter tuning that will sample algorithm parameters from
a random distribution (i.e. uniform) for a fixed number of iterations. A model is constructed
and evaluated for each combination of parameters chosen. You can perform a random search
for algorithm parameters using the RandomizedSearchCV class2. The example below evaluates
different random alpha values between 0 and 1 for the Ridge Regression algorithm on the
standard diabetes dataset. A total of 100 iterations are performed with uniformly random alpha

values selected in the range between 0 and 1 (the range that alpha values can take).

# Randomized for Algorithm Tuning

import numpy

from pandas import read_csv

from scipy.stats import uniform

from sklearn.linear_model import Ridge

from sklearn.model_selection import RandomizedSearchCV

1http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.

html
2http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

RandomizedSearchCV.html
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filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

param_grid = {'alpha': uniform()}

model = Ridge()

rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100,

random_state=7)

rsearch.fit(X, Y)

print(rsearch.best_score_)

print(rsearch.best_estimator_.alpha)

Listing 16.3: Example of a random search for algorithm parameters.

Running the example produces results much like those in the grid search example above. An
optimal alpha value near 1.0 is discovered.

0.279617354112

0.989527376274

Listing 16.4: Output of a random search for algorithm parameters.

16.4 Summary

Algorithm parameter tuning is an important step for improving algorithm performance right
before presenting results or preparing a system for production. In this chapter you discovered
algorithm parameter tuning and two methods that you can use right now in Python and
scikit-learn to improve your algorithm results:

� Grid Search Parameter Tuning

� Random Search Parameter Tuning

16.4.1 Next

This lesson concludes the coverage of techniques that you can use to improve the performance of
algorithms on your dataset. In the next and final lesson you will discover how you can finalize
your model for using it on unseen data.



Chapter 17

Save and Load Machine Learning
Models

Finding an accurate machine learning model is not the end of the project. In this chapter you
will discover how to save and load your machine learning model in Python using scikit-learn.
This allows you to save your model to file and load it later in order to make predictions. After
completing this lesson you will know:

1. The importance of serializing models for reuse.

2. How to use pickle to serialize and deserialize machine learning models.

3. How to use Joblib to serialize and deserialize machine learning models.

Let’s get started.

17.1 Finalize Your Model with pickle

Pickle is the standard way of serializing objects in Python. You can use the pickle1 operation
to serialize your machine learning algorithms and save the serialized format to a file. Later you
can load this file to deserialize your model and use it to make new predictions. The example
below demonstrates how you can train a logistic regression model on the Pima Indians onset of
diabetes dataset, save the model to file and load it to make predictions on the unseen test set.

# Save Model Using Pickle

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from pickle import dump

from pickle import load

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

1https://docs.python.org/2/library/pickle.html
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X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

# Fit the model on 33%

model = LogisticRegression()

model.fit(X_train, Y_train)

# save the model to disk

filename = 'finalized_model.sav'

dump(model, open(filename, 'wb'))

# some time later...

# load the model from disk

loaded_model = load(open(filename, 'rb'))

result = loaded_model.score(X_test, Y_test)

print(result)

Listing 17.1: Example of using pickle to serialize and deserialize a model.

Running the example saves the model to finalized model.sav in your local working
directory. Load the saved model and evaluating it provides an estimate of accuracy of the model
on unseen data.

0.755905511811

Listing 17.2: Output of using pickle to serialize and deserialize a model.

17.2 Finalize Your Model with Joblib

The Joblib2 library is part of the SciPy ecosystem and provides utilities for pipelining Python
jobs. It provides utilities for saving and loading Python objects that make use of NumPy data
structures, efficiently3. This can be useful for some machine learning algorithms that require a
lot of parameters or store the entire dataset (e.g. k-Nearest Neighbors). The example below
demonstrates how you can train a logistic regression model on the Pima Indians onset of diabetes
dataset, save the model to file using Joblib and load it to make predictions on the unseen test
set.

# Save Model Using joblib

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.externals.joblib import dump

from sklearn.externals.joblib import load

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:,0:8]

Y = array[:,8]

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=7)

# Fit the model on 33%

model = LogisticRegression()

model.fit(X_train, Y_train)

2https://pypi.python.org/pypi/joblib
3https://pythonhosted.org/joblib/generated/joblib.dump.html
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# save the model to disk

filename = 'finalized_model.sav'

dump(model, filename)

# some time later...

# load the model from disk

loaded_model = load(filename)

result = loaded_model.score(X_test, Y_test)

print(result)

Listing 17.3: Example of using pickle to serialize and deserialize a model.

Running the example saves the model to file as finalized model.sav and also creates one
file for each NumPy array in the model (four additional files). After the model is loaded an
estimate of the accuracy of the model on unseen data is reported.

0.755905511811

Listing 17.4: Output of using Joblib to serialize and deserialize a model.

17.3 Tips for Finalizing Your Model

This section lists some important considerations when finalizing your machine learning models.

� Python Version. Take note of the Python version. You almost certainly require the
same major (and maybe minor) version of Python used to serialize the model when you
later load it and deserialize it.

� Library Versions. The version of all major libraries used in your machine learning
project almost certainly need to be the same when deserializing a saved model. This is
not limited to the version of NumPy and the version of scikit-learn.

� Manual Serialization. You might like to manually output the parameters of your
learned model so that you can use them directly in scikit-learn or another platform in
the future. Often the techniques used internally by machine learning algorithms to make
predictions are a lot simpler than those used to learn the parameters can may be easy to
implement in custom code that you have control over.

Take note of the version so that you can re-create the environment if for some reason you
cannot reload your model on another machine or another platform at a later time.

17.4 Summary

In this chapter you discovered how to persist your machine learning algorithms in Python with
scikit-learn. You learned two techniques that you can use:

� The pickle API for serializing standard Python objects.

� The Joblib API for efficiently serializing Python objects with NumPy arrays.
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17.4.1 Next

This concludes your lessons on machine learning in Python with SciPy and scikit-learn. Next in
Part III you will tie together everything you have learned and work through end-to-end applied
machine learning projects.



Part III

Projects
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Chapter 18

Predictive Modeling Project Template

Applied machine learning is an empirical skill. You cannot get better at it by reading books and
articles. You have to practice. In this lesson you will discover the simple six-step machine learning
project template that you can use to jump-start your project in Python. After completing this
lesson you will know:

1. How to structure an end-to-end predictive modeling project.

2. How to map the tasks you learned about in Part II onto a project.

3. How to best use the structured project template to ensure an accurate result for your
dataset.

Let’s get started.

18.1 Practice Machine Learning With Projects

Working through machine learning problems from end-to-end is critically important. You can
read about machine learning. You can also try out small one-off recipes. But applied machine
learning will not come alive for you until you work through a dataset from beginning to end.

Working through a project forces you to think about how the model will be used, to challenge
your assumptions and to get good at all parts of a project, not just your favorite parts. The best
way to practice predictive modeling machine learning projects is to use standardized datasets
from the UCI Machine Learning Repository. Once you have a practice dataset and a bunch of
Python recipes, how do you put it all together and work through the problem end-to-end?

18.1.1 Use A Structured Step-By-Step Process

Any predictive modeling machine learning project can be broken down into six common tasks:

1. Define Problem.

2. Summarize Data.

3. Prepare Data.
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4. Evaluate Algorithms.

5. Improve Results.

6. Present Results.

Tasks can be combined or broken down further, but this is the general structure. To work
through predictive modeling machine learning problems in Python, you need to map Python
onto this process. The tasks may need to be adapted or renamed slightly to suit the Python
way of doing things (e.g. Pandas for data loading and scikit-learn for modeling). The next
section provides exactly this mapping and elaborates each task and the types of sub-tasks and
libraries that you can use.

18.2 Machine Learning Project Template in Python

This section presents a project template that you can use to work through machine learning
problems in Python end-to-end.

18.2.1 Template Summary

Below is the project template that you can use in your machine learning projects in Python.

# Python Project Template

# 1. Prepare Problem

# a) Load libraries

# b) Load dataset

# 2. Summarize Data

# a) Descriptive statistics

# b) Data visualizations

# 3. Prepare Data

# a) Data Cleaning

# b) Feature Selection

# c) Data Transforms

# 4. Evaluate Algorithms

# a) Split-out validation dataset

# b) Test options and evaluation metric

# c) Spot Check Algorithms

# d) Compare Algorithms

# 5. Improve Accuracy

# a) Algorithm Tuning

# b) Ensembles

# 6. Finalize Model

# a) Predictions on validation dataset

# b) Create standalone model on entire training dataset

# c) Save model for later use

Listing 18.1: Predictive modeling machine learning project template.
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18.2.2 How To Use The Project Template

1. Create a new file for your project (e.g. project name.py).

2. Copy the project template.

3. Paste it into your empty project file.

4. Start to fill it in, using recipes from this book and others.

18.3 Machine Learning Project Template Steps

This section gives you additional details on each of the steps of the template.

18.3.1 Prepare Problem

This step is about loading everything you need to start working on your problem. This includes:

� Python modules, classes and functions that you intend to use.

� Loading your dataset from CSV.

This is also the home of any global configuration you might need to do. It is also the place
where you might need to make a reduced sample of your dataset if it is too large to work with.
Ideally, your dataset should be small enough to build a model or create a visualization within a
minute, ideally 30 seconds. You can always scale up well performing models later.

18.3.2 Summarize Data

This step is about better understanding the data that you have available. This includes
understanding your data using:

� Descriptive statistics such as summaries.

� Data visualizations such as plots with Matplotlib, ideally using convenience functions from
Pandas.

Take your time and use the results to prompt a lot of questions, assumptions and hypotheses
that you can investigate later with specialized models.

18.3.3 Prepare Data

This step is about preparing the data in such a way that it best exposes the structure of the
problem and the relationships between your input attributes with the output variable. This
includes tasks such as:

� Cleaning data by removing duplicates, marking missing values and even imputing missing
values.
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� Feature selection where redundant features may be removed and new features developed.

� Data transforms where attributes are scaled or redistributed in order to best expose the
structure of the problem later to learning algorithms.

Start simple. Revisit this step often and cycle with the next step until you converge on a
subset of algorithms and a presentation of the data that results in accurate or accurate-enough
models to proceed.

18.3.4 Evaluate Algorithms

This step is about finding a subset of machine learning algorithms that are good at exploiting
the structure of your data (e.g. have better than average skill). This involves steps such as:

� Separating out a validation dataset to use for later confirmation of the skill of your
developed model.

� Defining test options using scikit-learn such as cross validation and the evaluation metric
to use.

� Spot-checking a suite of linear and nonlinear machine learning algorithms.

� Comparing the estimated accuracy of algorithms.

On a given problem you will likely spend most of your time on this and the previous step
until you converge on a set of 3-to-5 well performing machine learning algorithms.

18.3.5 Improve Accuracy

Once you have a shortlist of machine learning algorithms, you need to get the most out of them.
There are two different ways to improve the accuracy of your models:

� Search for a combination of parameters for each algorithm using scikit-learn that yields
the best results.

� Combine the prediction of multiple models into an ensemble prediction using ensemble
techniques.

The line between this and the previous step can blur when a project becomes concrete.
There may be a little algorithm tuning in the previous step. And in the case of ensembles, you
may bring more than a shortlist of algorithms forward to combine their predictions.

18.3.6 Finalize Model

Once you have found a model that you believe can make accurate predictions on unseen data,
you are ready to finalize it. Finalizing a model may involve sub-tasks such as:

� Using an optimal model tuned by scikit-learn to make predictions on unseen data.

� Creating a standalone model using the parameters tuned by scikit-learn.
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� Saving an optimal model to file for later use.

Once you make it this far you are ready to present results to stakeholders and/or deploy
your model to start making predictions on unseen data.

18.4 Tips For Using The Template Well

This section lists tips that you can use to make the most of the machine learning project
template in Python.

� Fast First Pass. Make a first-pass through the project steps as fast as possible. This
will give you confidence that you have all the parts that you need and a baseline from
which to improve.

� Cycles. The process in not linear but cyclic. You will loop between steps, and probably
spend most of your time in tight loops between steps 3-4 or 3-4-5 until you achieve a level
of accuracy that is sufficient or you run out of time.

� Attempt Every Step. It is easy to skip steps, especially if you are not confident or
familiar with the tasks of that step. Try and do something at each step in the process,
even if it does not improve accuracy. You can always build upon it later. Don’t skip steps,
just reduce their contribution.

� Ratchet Accuracy. The goal of the project is model accuracy. Every step contributes
towards this goal. Treat changes that you make as experiments that increase accuracy as
the golden path in the process and reorganize other steps around them. Accuracy is a
ratchet that can only move in one direction (better, not worse).

� Adapt As Needed. Modify the steps as you need on a project, especially as you become
more experienced with the template. Blur the edges of tasks, such as steps 4-5 to best
serve model accuracy.

18.5 Summary

In this lesson you discovered a machine learning project template in Python. It laid out the
steps of a predictive modeling machine learning project with the goal of maximizing model
accuracy. You can copy-and-paste the template and use it to jump-start your current or next
machine learning project in Python.

18.5.1 Next Step

Now that you know how to structure a predictive modeling machine learning project in Python,
you need to put this knowledge to use. In the next lesson you will work through a simple case
study problem end-to-end. This is a famous case study and the hello world of machine learning
projects.



Chapter 19

Your First Machine Learning Project
in Python Step-By-Step

You need to see how all of the pieces of a predictive modeling machine learning project actually
fit together. In this lesson you will complete your first machine learning project using Python.
In this step-by-step tutorial project you will:

� Download and install Python SciPy and get the most useful package for machine learning
in Python.

� Load a dataset and understand it’s structure using statistical summaries and data visual-
ization.

� Create 6 machine learning models, pick the best and build confidence that the accuracy is
reliable.

If you are a machine learning beginner and looking to finally get started using Python, this
tutorial was designed for you. Let’s get started!

19.1 The Hello World of Machine Learning

The best small project to start with on a new tool is the classification of iris flowers. This is a
good dataset for your first project because it is so well understood.

� Attributes are numeric so you have to figure out how to load and handle data.

� It is a classification problem, allowing you to practice with an easier type of supervised
learning algorithm.

� It is a multiclass classification problem (multi-nominal) that may require some specialized
handling.

� It only has 4 attributes and 150 rows, meaning it is small and easily fits into memory (and
a screen or single sheet of paper).

� All of the numeric attributes are in the same units and the same scale not requiring any
special scaling or transforms to get started.
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In this tutorial we are going to work through a small machine learning project end-to-end.
Here is an overview of what we are going to cover:

1. Loading the dataset.

2. Summarizing the dataset.

3. Visualizing the dataset.

4. Evaluating some algorithms.

5. Making some predictions.

Take your time and work through each step. Try to type in the commands yourself or
copy-and-paste the commands to speed things up. Start your Python interactive environment
and let’s get started with your hello world machine learning project in Python.

19.2 Load The Data

In this step we are going to load the libraries and the iris data CSV file from URL.

19.2.1 Import libraries

First, let’s import all of the modules, functions and objects we are going to use in this tutorial.

# Load libraries

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

from matplotlib import pyplot

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

Listing 19.1: Load libraries.

Everything should load without error. If you have an error, stop. You need a working SciPy
environment before continuing. See the advice in Chapter 2 about setting up your environment.

19.2.2 Load Dataset

The iris dataset can be downloaded from the UCI Machine Learning repository1. We are using
Pandas to load the data. We will also use Pandas next to explore the data both with descriptive

1https://goo.gl/mLmoIz
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statistics and data visualization. Note that we are specifying the names of each column when
loading the data. This will help later when we explore the data.

# Load dataset

filename = 'iris.data.csv'

names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']

dataset = read_csv(filename, names=names)

Listing 19.2: Load the Iris dataset.

19.3 Summarize the Dataset

Now it is time to take a look at the data. In this step we are going to take a look at the data a
few different ways:

� Dimensions of the dataset.

� Peek at the data itself.

� Statistical summary of all attributes.

� Breakdown of the data by the class variable.

Don’t worry, each look at the data is one command. These are useful commands that you
can use again and again on future projects.

19.3.1 Dimensions of Dataset

We can get a quick idea of how many instances (rows) and how many attributes (columns) the
data contains with the shape property.

# shape

print(dataset.shape)

Listing 19.3: Print the shape of the dataset.

You should see 150 instances and 5 attributes:

(150, 5)

Listing 19.4: Output of shape of the dataset.

19.3.2 Peek at the Data

It is also always a good idea to actually eyeball your data.

# head

print(dataset.head(20))

Listing 19.5: Print the first few rows of the dataset.

You should see the first 20 rows of the data:
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sepal-length sepal-width petal-length petal-width class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

7 5.0 3.4 1.5 0.2 Iris-setosa

8 4.4 2.9 1.4 0.2 Iris-setosa

9 4.9 3.1 1.5 0.1 Iris-setosa

10 5.4 3.7 1.5 0.2 Iris-setosa

11 4.8 3.4 1.6 0.2 Iris-setosa

12 4.8 3.0 1.4 0.1 Iris-setosa

13 4.3 3.0 1.1 0.1 Iris-setosa

14 5.8 4.0 1.2 0.2 Iris-setosa

15 5.7 4.4 1.5 0.4 Iris-setosa

16 5.4 3.9 1.3 0.4 Iris-setosa

17 5.1 3.5 1.4 0.3 Iris-setosa

18 5.7 3.8 1.7 0.3 Iris-setosa

19 5.1 3.8 1.5 0.3 Iris-setosa

Listing 19.6: Output of the first few rows of the dataset.

19.3.3 Statistical Summary

Now we can take a look at a summary of each attribute. This includes the count, mean, the
min and max values as well as some percentiles.

# descriptions

print(dataset.describe())

Listing 19.7: Print the statistical descriptions of the dataset.

We can see that all of the numerical values have the same scale (centimeters) and similar
ranges between 0 and 8 centimeters.

sepal-length sepal-width petal-length petal-width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

Listing 19.8: Output of the statistical descriptions of the dataset.

19.3.4 Class Distribution

Let’s now take a look at the number of instances (rows) that belong to each class. We can view
this as an absolute count.
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# class distribution

print(dataset.groupby('class').size())

Listing 19.9: Print the class distribution in the dataset.

We can see that each class has the same number of instances (50 or 33% of the dataset).

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

Listing 19.10: Output of the class distribution in the dataset.

19.4 Data Visualization

We now have a basic idea about the data. We need to extend this with some visualizations. We
are going to look at two types of plots:

� Univariate plots to better understand each attribute.

� Multivariate plots to better understand the relationships between attributes.

19.4.1 Univariate Plots

We will start with some univariate plots, that is, plots of each individual variable. Given that
the input variables are numeric, we can create box and whisker plots of each.

# box and whisker plots

dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)

pyplot.show()

Listing 19.11: Visualize the dataset using box and whisker plots.
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Figure 19.1: Box and Whisker Plots of Each Attribute.

We can also create a histogram of each input variable to get an idea of the distribution.

# histograms

dataset.hist()

pyplot.show()

Listing 19.12: Visualize the dataset using histogram plots.

It looks like perhaps two of the input variables have a Gaussian distribution. This is useful
to note as we can use algorithms that can exploit this assumption.
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Figure 19.2: Histogram Plots of Each Attribute.

19.4.2 Multivariate Plots

Now we can look at the interactions between the variables. Let’s look at scatter plots of all
pairs of attributes. This can be helpful to spot structured relationships between input variables.

# scatter plot matrix

scatter_matrix(dataset)

pyplot.show()

Listing 19.13: Visualize the dataset using scatter plots.

Note the diagonal grouping of some pairs of attributes. This suggests a high correlation and
a predictable relationship.
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Figure 19.3: Scatter Plots of Each Pairwise Set of Attribute.

19.5 Evaluate Some Algorithms

Now it is time to create some models of the data and estimate their accuracy on unseen data.
Here is what we are going to cover in this step:

1. Separate out a validation dataset.

2. Setup the test harness to use 10-fold cross validation.

3. Build 5 different models to predict species from flower measurements

4. Select the best model.

19.5.1 Create a Validation Dataset

We need to know whether or not the model that we created is any good. Later, we will use
statistical methods to estimate the accuracy of the models that we create on unseen data.
We also want a more concrete estimate of the accuracy of the best model on unseen data by
evaluating it on actual unseen data. That is, we are going to hold back some data that the
algorithms will not get to see and we will use this data to get a second and independent idea of
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how accurate the best model might actually be. We will split the loaded dataset into two, 80%
of which we will use to train our models and 20% that we will hold back as a validation dataset.

# Split-out validation dataset

array = dataset.values

X = array[:,0:4]

Y = array[:,4]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y,

test_size=validation_size, random_state=seed)

Listing 19.14: Separate data into Train and Validation Datasets.

You now have training data in the X train and Y train for preparing models and a
X validation and Y validation sets that we can use later.

19.5.2 Test Harness

We will use 10-fold cross validation to estimate accuracy. This will split our dataset into 10
parts, train on 9 and test on 1 and repeat for all combinations of train-test splits. We are using
the metric of accuracy to evaluate models. This is a ratio of the number of correctly predicted
instances divided by the total number of instances in the dataset multiplied by 100 to give a
percentage (e.g. 95% accurate). We will be using the scoring variable when we run build and
evaluate each model next.

19.5.3 Build Models

We don’t know which algorithms would be good on this problem or what configurations to use.
We get an idea from the plots that some of the classes are partially linearly separable in some
dimensions, so we are expecting generally good results. Let’s evaluate six different algorithms:

� Logistic Regression (LR).

� Linear Discriminant Analysis (LDA).

� k-Nearest Neighbors (KNN).

� Classification and Regression Trees (CART).

� Gaussian Naive Bayes (NB).

� Support Vector Machines (SVM).

This list is a good mixture of simple linear (LR and LDA), nonlinear (KNN, CART, NB
and SVM) algorithms. We reset the random number seed before each run to ensure that the
evaluation of each algorithm is performed using exactly the same data splits. It ensures the
results are directly comparable. Let’s build and evaluate our five models:
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# Spot-Check Algorithms

models = []

models.append(('LR', LogisticRegression()))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC()))

# evaluate each model in turn

results = []

names = []

for name, model in models:

kfold = KFold(n_splits=10, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 19.15: Evaluate a suite of algorithms on the dataset.

19.5.4 Select The Best Model

We now have 6 models and accuracy estimations for each. We need to compare the models to
each other and select the most accurate. Running the example above, we get the following raw
results:

LR: 0.966667 (0.040825)

LDA: 0.975000 (0.038188)

KNN: 0.983333 (0.033333)

CART: 0.975000 (0.038188)

NB: 0.975000 (0.053359)

SVM: 0.981667 (0.025000)

Listing 19.16: Output of evaluating a suite of algorithms.

We can see that it looks like KNN has the largest estimated accuracy score. We can also
create a plot of the model evaluation results and compare the spread and the mean accuracy
of each model. There is a population of accuracy measures for each algorithm because each
algorithm was evaluated 10 times (10 fold cross validation).

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 19.17: Plot the distribution of scores for each algorithm.

You can see that the box and whisker plots are squashed at the top of the range, with many
samples achieving 100% accuracy.
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Figure 19.4: Box and Whisker Plots Comparing Algorithm Performance.

19.6 Make Predictions

The KNN algorithm was the most accurate model that we tested. Now we want to get an idea
of the accuracy of the model on our validation dataset. This will give us an independent final
check on the accuracy of the best model. It is important to keep a validation set just in case
you made a slip during training, such as overfitting to the training set or a data leak. Both
will result in an overly optimistic result. We can run the KNN model directly on the validation
set and summarize the results as a final accuracy score, a confusion matrix and a classification
report.

# Make predictions on validation dataset

knn = KNeighborsClassifier()

knn.fit(X_train, Y_train)

predictions = knn.predict(X_validation)

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions))

Listing 19.18: Make Predictions on the Validation Dataset.

We can see that the accuracy is 0.9 or 90%. The confusion matrix provides an indication of
the three errors made. Finally the classification report provides a breakdown of each class by
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precision, recall, f1-score and support showing excellent results (granted the validation dataset
was small).

0.9

[[ 7 0 0]

[ 0 11 1]

[ 0 2 9]]

precision recall f1-score support

Iris-setosa 1.00 1.00 1.00 7

Iris-versicolor 0.85 0.92 0.88 12

Iris-virginica 0.90 0.82 0.86 11

avg / total 0.90 0.90 0.90 30

Listing 19.19: Output of Making Predictions on the Validation Dataset.

19.7 Summary

In this lesson you discovered step-by-step how to complete your first machine learning project
in Python. You discovered that completing a small end-to-end project from loading the data to
making predictions is the best way to get familiar with the platform.

19.7.1 Next Step

You have applied the lessons from Part II on a simple problem and completed your first machine
learning project. Next you will take things one step further and work through a regression
predictive modeling problem. It will be a slightly more complex project and involve data
transforms, algorithm tuning and use of ensemble methods to improve results.
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Regression Machine Learning Case
Study Project

How do you work through a predictive modeling machine learning problem end-to-end? In this
lesson you will work through a case study regression predictive modeling problem in Python
including each step of the applied machine learning process. After completing this project, you
will know:

� How to work through a regression predictive modeling problem end-to-end.

� How to use data transforms to improve model performance.

� How to use algorithm tuning to improve model performance.

� How to use ensemble methods and tuning of ensemble methods to improve model perfor-
mance.

Let’s get started.

20.1 Problem Definition

For this project we will investigate the Boston House Price dataset. Each record in the database
describes a Boston suburb or town. The data was drawn from the Boston Standard Metropolitan
Statistical Area (SMSA) in 1970. The attributes are defined as follows (taken from the UCI
Machine Learning Repository1):

1. CRIM: per capita crime rate by town

2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.

3. INDUS: proportion of non-retail business acres per town

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

5. NOX: nitric oxides concentration (parts per 10 million)

1https://archive.ics.uci.edu/ml/datasets/Housing
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6. RM: average number of rooms per dwelling

7. AGE: proportion of owner-occupied units built prior to 1940

8. DIS: weighted distances to five Boston employment centers

9. RAD: index of accessibility to radial highways

10. TAX: full-value property-tax rate per $10,000

11. PTRATIO: pupil-teacher ratio by town

12. B: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

13. LSTAT: % lower status of the population

14. MEDV: Median value of owner-occupied homes in $1000s

We can see that the input attributes have a mixture of units.

20.2 Load the Dataset

Let’s start off by loading the libraries required for this project.

# Load libraries

import numpy

from numpy import arange

from matplotlib import pyplot

from pandas import read_csv

from pandas import set_option

from pandas.tools.plotting import scatter_matrix

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import LinearRegression

from sklearn.linear_model import Lasso

from sklearn.linear_model import ElasticNet

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.svm import SVR

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.ensemble import ExtraTreesRegressor

from sklearn.ensemble import AdaBoostRegressor

from sklearn.metrics import mean_squared_error

Listing 20.1: Load libraries.

We can now load the dataset that you can download from the UCI Machine Learning
repository website.
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# Load dataset

filename = 'housing.csv'

names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',

'B', 'LSTAT', 'MEDV']

dataset = read_csv(filename, delim_whitespace=True, names=names)

Listing 20.2: Load the dataset.

You can see that we are specifying the short names for each attribute so that we can reference
them clearly later. You can also see that attributes are delimited by whitespace rather than
commas in this file and we indicate this to read csv() function via the delim whitespace

argument. We now have our data loaded.

20.3 Analyze Data

We can now take a closer look at our loaded data.

20.3.1 Descriptive Statistics

Let’s start off by confirming the dimensions of the dataset, e.g. the number of rows and columns.

# shape

print(dataset.shape)

Listing 20.3: Print the shape of the dataset.

We have 506 instances to work with and can confirm the data has 14 attributes including
the output attribute MEDV.

(506, 14)

Listing 20.4: Output of shape of the dataset.

Let’s also look at the data types of each attribute.

# types

print(dataset.dtypes)

Listing 20.5: Print the data types of each attribute.

We can see that all of the attributes are numeric, mostly real values (float) and some have
been interpreted as integers (int).

CRIM float64

ZN float64

INDUS float64

CHAS int64

NOX float64

RM float64

AGE float64

DIS float64

RAD int64

TAX float64

PTRATIO float64

B float64
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LSTAT float64

MEDV float64

Listing 20.6: Output of the data types for each attribute.

Let’s now take a peek at the first 20 rows of the data.

# head

print(dataset.head(20))

Listing 20.7: Print the first few rows of the dataset.

We can confirm that the scales for the attributes are all over the place because of the differing
units. We may benefit from some transforms later on.

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV

0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4

4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

5 0.02985 0.0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21 28.7

6 0.08829 12.5 7.87 0 0.524 6.012 66.6 5.5605 5 311 15.2 395.60 12.43 22.9

7 0.14455 12.5 7.87 0 0.524 6.172 96.1 5.9505 5 311 15.2 396.90 19.15 27.1

8 0.21124 12.5 7.87 0 0.524 5.631 100.0 6.0821 5 311 15.2 386.63 29.93 16.5

9 0.17004 12.5 7.87 0 0.524 6.004 85.9 6.5921 5 311 15.2 386.71 17.10 18.9

10 0.22489 12.5 7.87 0 0.524 6.377 94.3 6.3467 5 311 15.2 392.52 20.45 15.0

11 0.11747 12.5 7.87 0 0.524 6.009 82.9 6.2267 5 311 15.2 396.90 13.27 18.9

12 0.09378 12.5 7.87 0 0.524 5.889 39.0 5.4509 5 311 15.2 390.50 15.71 21.7

13 0.62976 0.0 8.14 0 0.538 5.949 61.8 4.7075 4 307 21.0 396.90 8.26 20.4

14 0.63796 0.0 8.14 0 0.538 6.096 84.5 4.4619 4 307 21.0 380.02 10.26 18.2

15 0.62739 0.0 8.14 0 0.538 5.834 56.5 4.4986 4 307 21.0 395.62 8.47 19.9

16 1.05393 0.0 8.14 0 0.538 5.935 29.3 4.4986 4 307 21.0 386.85 6.58 23.1

17 0.78420 0.0 8.14 0 0.538 5.990 81.7 4.2579 4 307 21.0 386.75 14.67 17.5

18 0.80271 0.0 8.14 0 0.538 5.456 36.6 3.7965 4 307 21.0 288.99 11.69 20.2

19 0.72580 0.0 8.14 0 0.538 5.727 69.5 3.7965 4 307 21.0 390.95 11.28 18.2

Listing 20.8: Output of the first few rows of the dataset.

Let’s summarize the distribution of each attribute.

# descriptions

set_option('precision', 1)

print(dataset.describe())

Listing 20.9: Print the statistical descriptions of the dataset.

We now have a better feeling for how different the attributes are. The min and max values
as well are the means vary a lot. We are likely going to get better results by rescaling the data
in some way.

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B

LSTAT MEDV

count 5.1e+02 506.0 506.0 5.1e+02 506.0 506.0 506.0 506.0 506.0 506.0 506.0 506.0

506.0 506.0

mean 3.6e+00 11.4 11.1 6.9e-02 0.6 6.3 68.6 3.8 9.5 408.2 18.5 356.7

12.7 22.5

std 8.6e+00 23.3 6.9 2.5e-01 0.1 0.7 28.1 2.1 8.7 168.5 2.2 91.3

7.1 9.2
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min 6.3e-03 0.0 0.5 0.0e+00 0.4 3.6 2.9 1.1 1.0 187.0 12.6 0.3

1.7 5.0

25% 8.2e-02 0.0 5.2 0.0e+00 0.4 5.9 45.0 2.1 4.0 279.0 17.4 375.4

6.9 17.0

50% 2.6e-01 0.0 9.7 0.0e+00 0.5 6.2 77.5 3.2 5.0 330.0 19.1 391.4

11.4 21.2

75% 3.7e+00 12.5 18.1 0.0e+00 0.6 6.6 94.1 5.2 24.0 666.0 20.2 396.2

17.0 25.0

max 8.9e+01 100.0 27.7 1.0e+00 0.9 8.8 100.0 12.1 24.0 711.0 22.0 396.9

38.0 50.0

Listing 20.10: Output of the statistical descriptions of the dataset.

Now, let’s now take a look at the correlation between all of the numeric attributes.

# correlation

set_option('precision', 2)

print(dataset.corr(method='pearson'))

Listing 20.11: Print the correlations between the attributes.

This is interesting. We can see that many of the attributes have a strong correlation (e.g.
> 0.70 or < −0.70). For example:

� NOX and INDUS with 0.77.

� DIS and INDUS with -0.71.

� TAX and INDUS with 0.72.

� AGE and NOX with 0.73.

� DIS and NOX with -0.78.

It also looks like LSTAT has a good negative correlation with the output variable MEDV with
a value of -0.74.

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

MEDV

CRIM 1.00 -0.20 0.41 -5.59e-02 0.42 -0.22 0.35 -0.38 6.26e-01 0.58 0.29 -0.39 0.46

-0.39

ZN -0.20 1.00 -0.53 -4.27e-02 -0.52 0.31 -0.57 0.66 -3.12e-01 -0.31 -0.39 0.18 -0.41

0.36

INDUS 0.41 -0.53 1.00 6.29e-02 0.76 -0.39 0.64 -0.71 5.95e-01 0.72 0.38 -0.36 0.60

-0.48

CHAS -0.06 -0.04 0.06 1.00e+00 0.09 0.09 0.09 -0.10 -7.37e-03 -0.04 -0.12 0.05 -0.05

0.18

NOX 0.42 -0.52 0.76 9.12e-02 1.00 -0.30 0.73 -0.77 6.11e-01 0.67 0.19 -0.38 0.59

-0.43

RM -0.22 0.31 -0.39 9.13e-02 -0.30 1.00 -0.24 0.21 -2.10e-01 -0.29 -0.36 0.13 -0.61

0.70

AGE 0.35 -0.57 0.64 8.65e-02 0.73 -0.24 1.00 -0.75 4.56e-01 0.51 0.26 -0.27 0.60

-0.38

DIS -0.38 0.66 -0.71 -9.92e-02 -0.77 0.21 -0.75 1.00 -4.95e-01 -0.53 -0.23 0.29 -0.50

0.25

RAD 0.63 -0.31 0.60 -7.37e-03 0.61 -0.21 0.46 -0.49 1.00e+00 0.91 0.46 -0.44 0.49

-0.38
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TAX 0.58 -0.31 0.72 -3.56e-02 0.67 -0.29 0.51 -0.53 9.10e-01 1.00 0.46 -0.44 0.54

-0.47

PTRATIO 0.29 -0.39 0.38 -1.22e-01 0.19 -0.36 0.26 -0.23 4.65e-01 0.46 1.00 -0.18 0.37

-0.51

B -0.39 0.18 -0.36 4.88e-02 -0.38 0.13 -0.27 0.29 -4.44e-01 -0.44 -0.18 1.00 -0.37

0.33

LSTAT 0.46 -0.41 0.60 -5.39e-02 0.59 -0.61 0.60 -0.50 4.89e-01 0.54 0.37 -0.37 1.00

-0.74

MEDV -0.39 0.36 -0.48 1.75e-01 -0.43 0.70 -0.38 0.25 -3.82e-01 -0.47 -0.51 0.33 -0.74

1.00

Listing 20.12: Output of the statistical descriptions of the dataset.

20.4 Data Visualizations

20.4.1 Unimodal Data Visualizations

Let’s look at visualizations of individual attributes. It is often useful to look at your data
using multiple different visualizations in order to spark ideas. Let’s look at histograms of each
attribute to get a sense of the data distributions.

# histograms

dataset.hist(sharex=False, sharey=False, xlabelsize=1, ylabelsize=1)

pyplot.show()

Listing 20.13: Visualize the dataset using histogram plots.

We can see that some attributes may have an exponential distribution, such as CRIM, ZN,
AGE and B. We can see that others may have a bimodal distribution such as RAD and TAX.
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Figure 20.1: Histogram Plots of Each Attribute.

Let’s look at the same distributions using density plots that smooth them out a bit.

# density

dataset.plot(kind='density', subplots=True, layout=(4,4), sharex=False, legend=False,

fontsize=1)

pyplot.show()

Listing 20.14: Visualize the dataset using density plots.

This perhaps adds more evidence to our suspicion about possible exponential and bimodal
distributions. It also looks like NOX, RM and LSTAT may be skewed Gaussian distributions, which
might be helpful later with transforms.
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Figure 20.2: Density Plots of Each Attribute.

Let’s look at the data with box and whisker plots of each attribute.

# box and whisker plots

dataset.plot(kind='box', subplots=True, layout=(4,4), sharex=False, sharey=False,

fontsize=8)

pyplot.show()

Listing 20.15: Visualize the dataset using box and whisker plots.

This helps point out the skew in many distributions so much so that data looks like outliers
(e.g. beyond the whisker of the plots).
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Figure 20.3: Box and Whisker Plots of Each Attribute.

20.4.2 Multimodal Data Visualizations

Let’s look at some visualizations of the interactions between variables. The best place to start
is a scatter plot matrix.

# scatter plot matrix

scatter_matrix(dataset)

pyplot.show()

Listing 20.16: Visualize the dataset using scatter plots.

We can see that some of the higher correlated attributes do show good structure in their
relationship. Not linear, but nice predictable curved relationships.
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Figure 20.4: Scatter Plot Matrix of Dataset Attributes.

Let’s also visualize the correlations between the attributes.

# correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(dataset.corr(), vmin=-1, vmax=1, interpolation='none')

fig.colorbar(cax)

ticks = numpy.arange(0,14,1)

ax.set_xticks(ticks)

ax.set_yticks(ticks)

ax.set_xticklabels(names)

ax.set_yticklabels(names)

pyplot.show()

Listing 20.17: Visualize the correlations between attributes.

The dark red color shows positive correlation whereas the dark blue color shows negative
correlation. We can also see some dark red and dark blue that suggest candidates for removal
to better improve accuracy of models later on.
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Figure 20.5: Correlation Matrix of Dataset Attributes.

20.4.3 Summary of Ideas

There is a lot of structure in this dataset. We need to think about transforms that we could use
later to better expose the structure which in turn may improve modeling accuracy. So far it
would be worth trying:

� Feature selection and removing the most correlated attributes.

� Normalizing the dataset to reduce the effect of differing scales.

� Standardizing the dataset to reduce the effects of differing distributions.

With lots of additional time I would also explore the possibility of binning (discretization)
of the data. This can often improve accuracy for decision tree algorithms.

20.5 Validation Dataset

It is a good idea to use a validation hold-out set. This is a sample of the data that we hold
back from our analysis and modeling. We use it right at the end of our project to confirm the
accuracy of our final model. It is a smoke test that we can use to see if we messed up and to
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give us confidence on our estimates of accuracy on unseen data. We will use 80% of the dataset
for modeling and hold back 20% for validation.

# Split-out validation dataset

array = dataset.values

X = array[:,0:13]

Y = array[:,13]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y,

test_size=validation_size, random_state=seed)

Listing 20.18: Separate Data into a Training and Validation Datasets.

20.6 Evaluate Algorithms: Baseline

We have no idea what algorithms will do well on this problem. Gut feel suggests regression
algorithms like Linear Regression and ElasticNet may do well. It is also possible that decision
trees and even SVM may do well. I have no idea. Let’s design our test harness. We will use
10-fold cross validation. The dataset is not too small and this is a good standard test harness
configuration. We will evaluate algorithms using the Mean Squared Error (MSE) metric. MSE
will give a gross idea of how wrong all predictions are (0 is perfect).

# Test options and evaluation metric

num_folds = 10

seed = 7

scoring = 'neg_mean_squared_error'

Listing 20.19: Configure Algorithm Evaluation Test Harness.

Let’s create a baseline of performance on this problem and spot-check a number of different
algorithms. We will select a suite of different algorithms capable of working on this regression
problem. The six algorithms selected include:

� Linear Algorithms: Linear Regression (LR), Lasso Regression (LASSO) and ElasticNet
(EN).

� Nonlinear Algorithms: Classification and Regression Trees (CART), Support Vector
Regression (SVR) and k-Nearest Neighbors (KNN).

# Spot-Check Algorithms

models = []

models.append(('LR', LinearRegression()))

models.append(('LASSO', Lasso()))

models.append(('EN', ElasticNet()))

models.append(('KNN', KNeighborsRegressor()))

models.append(('CART', DecisionTreeRegressor()))

models.append(('SVR', SVR()))

Listing 20.20: Create the List of Algorithms to Evaluate.
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The algorithms all use default tuning parameters. Let’s compare the algorithms. We will
display the mean and standard deviation of MSE for each algorithm as we calculate it and
collect the results for use later.

# evaluate each model in turn

results = []

names = []

for name, model in models:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 20.21: Evaluate the List of Algorithms.

It looks like LR has the lowest MSE, followed closely by CART.

LR: -21.379856 (9.414264)

LASSO: -26.423561 (11.651110)

EN: -27.502259 (12.305022)

KNN: -41.896488 (13.901688)

CART: -23.608957 (12.033061)

SVR: -85.518342 (31.994798)

Listing 20.22: Results from Evaluating Algorithms.

Let’s take a look at the distribution of scores across all cross validation folds by algorithm.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 20.23: Visualzie the Differences in Algorithm Performance.

We can see similar distributions for the regression algorithms and perhaps a tighter distribu-
tion of scores for CART.
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Figure 20.6: Compare Algorithm Performance.

The differing scales of the data is probably hurting the skill of all of the algorithms and
perhaps more so for SVR and KNN. In the next section we will look at running the same
algorithms using a standardized copy of the data.

20.7 Evaluate Algorithms: Standardization

We suspect that the differing scales of the raw data may be negatively impacting the skill of
some of the algorithms. Let’s evaluate the same algorithms with a standardized copy of the
dataset. This is where the data is transformed such that each attribute has a mean value of
zero and a standard deviation of 1. We also need to avoid data leakage when we transform the
data. A good way to avoid leakage is to use pipelines that standardize the data and build the
model for each fold in the cross validation test harness. That way we can get a fair estimation
of how each model with standardized data might perform on unseen data.

# Standardize the dataset

pipelines = []

pipelines.append(('ScaledLR', Pipeline([('Scaler', StandardScaler()),('LR',

LinearRegression())])))

pipelines.append(('ScaledLASSO', Pipeline([('Scaler', StandardScaler()),('LASSO',

Lasso())])))
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pipelines.append(('ScaledEN', Pipeline([('Scaler', StandardScaler()),('EN',

ElasticNet())])))

pipelines.append(('ScaledKNN', Pipeline([('Scaler', StandardScaler()),('KNN',

KNeighborsRegressor())])))

pipelines.append(('ScaledCART', Pipeline([('Scaler', StandardScaler()),('CART',

DecisionTreeRegressor())])))

pipelines.append(('ScaledSVR', Pipeline([('Scaler', StandardScaler()),('SVR', SVR())])))

results = []

names = []

for name, model in pipelines:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 20.24: Evaluate Algorithms On Standardized Dataset.

Running the example provides a list of mean squared errors. We can see that scaling did
have an effect on KNN, driving the error lower than the other models.

ScaledLR: -21.379856 (9.414264)

ScaledLASSO: -26.607314 (8.978761)

ScaledEN: -27.932372 (10.587490)

ScaledKNN: -20.107620 (12.376949)

ScaledCART: -23.360362 (9.671240)

ScaledSVR: -29.633086 (17.009186)

Listing 20.25: Results from Evaluating Algorithms On Standardized Dataset.

Let’s take a look at the distribution of the scores across the cross validation folds.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Scaled Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 20.26: Visualzie the Differences in Algorithm Performance on Standardized Dataset.

We can see that KNN has both a tight distribution of error and has the lowest score.
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Figure 20.7: Compare Algorithm Performance on the Standardized dataset.

20.8 Improve Results With Tuning

We know from the results in the previous section that KNN achieves good results on a scaled
version of the dataset. But can it do better. The default value for the number of neighbors in
KNN is 7. We can use a grid search to try a set of different numbers of neighbors and see if we
can improve the score. The below example tries odd k values from 1 to 21, an arbitrary range
covering a known good value of 7. Each k value (n neighbors) is evaluated using 10-fold cross
validation on a standardized copy of the training dataset.

# KNN Algorithm tuning

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

k_values = numpy.array([1,3,5,7,9,11,13,15,17,19,21])

param_grid = dict(n_neighbors=k_values)

model = KNeighborsRegressor()

kfold = KFold(n_splits=num_folds, random_state=seed)

grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, cv=kfold)

grid_result = grid.fit(rescaledX, Y_train)

Listing 20.27: Tune the Parameters of the KNN Algorithm on the Standardized Dataset.
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We can display the mean and standard deviation scores as well as the best performing value
for k below.

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

print("%f (%f) with: %r" % (mean, stdev, param))

Listing 20.28: Print Output From Tuning the KNN Algorithm.

You can see that the best for k (n neighbors) is 3 providing a mean squared error of
-18.172137, the best so far.

Best: -18.172137 using {'n_neighbors': 3}

-20.169640 (14.986904) with: {'n_neighbors': 1}

-18.109304 (12.880861) with: {'n_neighbors': 3}

-20.063115 (12.138331) with: {'n_neighbors': 5}

-20.514297 (12.278136) with: {'n_neighbors': 7}

-20.319536 (11.554509) with: {'n_neighbors': 9}

-20.963145 (11.540907) with: {'n_neighbors': 11}

-21.099040 (11.870962) with: {'n_neighbors': 13}

-21.506843 (11.468311) with: {'n_neighbors': 15}

-22.739137 (11.499596) with: {'n_neighbors': 17}

-23.829011 (11.277558) with: {'n_neighbors': 19}

-24.320892 (11.849667) with: {'n_neighbors': 21}

Listing 20.29: Output From Tuning the KNN Algorithm.

20.9 Ensemble Methods

Another way that we can improve the performance of algorithms on this problem is by using
ensemble methods. In this section we will evaluate four different ensemble machine learning
algorithms, two boosting and two bagging methods:

� Boosting Methods: AdaBoost (AB) and Gradient Boosting (GBM).

� Bagging Methods: Random Forests (RF) and Extra Trees (ET).

We will use the same test harness as before, 10-fold cross validation and pipelines that
standardize the training data for each fold.

# ensembles

ensembles = []

ensembles.append(('ScaledAB', Pipeline([('Scaler', StandardScaler()),('AB',

AdaBoostRegressor())])))

ensembles.append(('ScaledGBM', Pipeline([('Scaler', StandardScaler()),('GBM',

GradientBoostingRegressor())])))

ensembles.append(('ScaledRF', Pipeline([('Scaler', StandardScaler()),('RF',

RandomForestRegressor())])))

ensembles.append(('ScaledET', Pipeline([('Scaler', StandardScaler()),('ET',

ExtraTreesRegressor())])))
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results = []

names = []

for name, model in ensembles:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 20.30: Evaluate Ensemble Algorithms on the Standardized Dataset.

Running the example calculates the mean squared error for each method using the default
parameters. We can see that we’re generally getting better scores than our linear and nonlinear
algorithms in previous sections.

ScaledAB: -14.964638 (6.069505)

ScaledGBM: -9.999626 (4.391458)

ScaledRF: -13.676055 (6.968407)

ScaledET: -11.497637 (7.164636)

Listing 20.31: Output from Evaluating Ensemble Algorithms.

We can also plot the distribution of scores across the cross validation folds.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Scaled Ensemble Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 20.32: Visualzie the Differences in Ensemble Algorithm Performance on Standardized
Dataset.

It looks like Gradient Boosting has a better mean score, it also looks like Extra Trees has a
similar distribution and perhaps a better median score.
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Figure 20.8: Compare the Performance of Ensemble Algorithms.

We can probably do better, given that the ensemble techniques used the default parameters.
In the next section we will look at tuning the Gradient Boosting to further lift the performance.

20.10 Tune Ensemble Methods

The default number of boosting stages to perform (n estimators) is 100. This is a good
candidate parameter of Gradient Boosting to tune. Often, the larger the number of boosting
stages, the better the performance but the longer the training time. In this section we will
look at tuning the number of stages for gradient boosting. Below we define a parameter grid
n estimators values from 50 to 400 in increments of 50. Each setting is evaluated using 10-fold
cross validation.

# Tune scaled GBM

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

param_grid = dict(n_estimators=numpy.array([50,100,150,200,250,300,350,400]))

model = GradientBoostingRegressor(random_state=seed)

kfold = KFold(n_splits=num_folds, random_state=seed)

grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, cv=kfold)

grid_result = grid.fit(rescaledX, Y_train)
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Listing 20.33: Tune GBM on Scaled Dataset.

As before, we can summarize the best configuration and get an idea of how performance
changed with each different configuration.

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

print("%f (%f) with: %r" % (mean, stdev, param))

Listing 20.34: Print Performance of Tuned GBM on Scaled Dataset.

We can see that the best configuration was n estimators=400 resulting in a mean squared
error of -9.356471, about 0.65 units better than the untuned method.

Best: -9.356471 using {'n_estimators': 400}

-10.794196 (4.711473) with: {'n_estimators': 50}

-10.023378 (4.430026) with: {'n_estimators': 100}

-9.677657 (4.264829) with: {'n_estimators': 150}

-9.523680 (4.259064) with: {'n_estimators': 200}

-9.432755 (4.250884) with: {'n_estimators': 250}

-9.414258 (4.262219) with: {'n_estimators': 300}

-9.353381 (4.242264) with: {'n_estimators': 350}

-9.339880 (4.255717) with: {'n_estimators': 400}

Listing 20.35: Output Performance of Tuned GBM on Scaled Dataset.

Next we can finalize the model and prepare it for general use.

20.11 Finalize Model

In this section we will finalize the gradient boosting model and evaluate it on our hold out
validation dataset. First we need to prepare the model and train it on the entire training dataset.
This includes standardizing the training dataset before training.

# prepare the model

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

model = GradientBoostingRegressor(random_state=seed, n_estimators=400)

model.fit(rescaledX, Y_train)

Listing 20.36: Construct the Finalized Model.

We can then scale the inputs for the validation dataset and generate predictions.

# transform the validation dataset

rescaledValidationX = scaler.transform(X_validation)

predictions = model.predict(rescaledValidationX)

print(mean_squared_error(Y_validation, predictions))

Listing 20.37: Evaluate the Finalized Model.
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We can see that the estimated mean squared error is 11.8, close to our estimate of -9.3.

11.8752520792

Listing 20.38: Output of Evaluating the Finalized Model.

20.12 Summary

In this chapter you worked through a regression predictive modeling machine learning problem
from end-to-end using Python. Specifically, the steps covered were:

� Problem Definition (Boston house price data).

� Loading the Dataset.

� Analyze Data (some skewed distributions and correlated attributes).

� Evaluate Algorithms (Linear Regression looked good).

� Evaluate Algorithms with Standardization (KNN looked good).

� Algorithm Tuning (K=3 for KNN was best).

� Ensemble Methods (Bagging and Boosting, Gradient Boosting looked good).

� Tuning Ensemble Methods (getting the most from Gradient Boosting).

� Finalize Model (use all training data and confirm using validation dataset).

Working through this case study showed you how the recipes for specific machine learning
tasks can be pulled together into a complete project. Working through this case study is good
practice at applied machine learning using Python and scikit-learn.

20.12.1 Next Step

You have now completed two predictive modeling machine learning projects end-to-end. The
first was a multiclass classification problem and this second project was a regression problem.
Next is the third and final case study on a binary classification problem.



Chapter 21

Binary Classification Machine Learning
Case Study Project

How do you work through a predictive modeling machine learning problem end-to-end? In this
lesson you will work through a case study classification predictive modeling problem in Python
including each step of the applied machine learning process. After completing this project, you
will know:

� How to work through a classification predictive modeling problem end-to-end.

� How to use data transforms to improve model performance.

� How to use algorithm tuning to improve model performance.

� How to use ensemble methods and tuning of ensemble methods to improve model perfor-
mance.

Let’s get started.

21.1 Problem Definition

The focus of this project will be the Sonar Mines vs Rocks dataset1. The problem is to predict
metal or rock objects from sonar return data. Each pattern is a set of 60 numbers in the range
0.0 to 1.0. Each number represents the energy within a particular frequency band, integrated
over a certain period of time. The label associated with each record contains the letter R if
the object is a rock and M if it is a mine (metal cylinder). The numbers in the labels are in
increasing order of aspect angle, but they do not encode the angle directly.

21.2 Load the Dataset

Let’s start off by loading the libraries required for this project.

1https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

144
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# Load libraries

import numpy

from matplotlib import pyplot

from pandas import read_csv

from pandas import set_option

from pandas.tools.plotting import scatter_matrix

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

Listing 21.1: Load libraries.

You can download the dataset from the UCI Machine Learning repository website2 and save
it in the local working directory with the filename sonar.all-data.csv.

# Load dataset

url = 'sonar.all-data.csv'

dataset = read_csv(url, header=None)

Listing 21.2: Load the dataset.

You can see that we are not specifying the names of the attributes this time. This is because
other than the class attribute (the last column), the variables do not have meaningful names.
We also indicate that there is no header information, this is to avoid file loading code taking the
first record as the column names. Now that we have the dataset loaded we can take a look at it.

21.3 Analyze Data

Let’s take a closer look at our loaded data.

21.3.1 Descriptive Statistics

We will start off by confirming the dimensions of the dataset, e.g. the number of rows and
columns.

2https://goo.gl/NXoJfR
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# shape

print(dataset.shape)

Listing 21.3: Print the shape of the dataset.

We have 208 instances to work with and can confirm the data has 61 attributes including
the class attribute.

(208, 61)

Listing 21.4: Output of shape of the dataset.

Let’s also look at the data types of each attribute.

# types

set_option('display.max_rows', 500)

print(dataset.dtypes)

Listing 21.5: Print the data types of each attribute.

We can see that all of the attributes are numeric (float) and that the class value has been
read in as an object.

0 float64

1 float64

2 float64

3 float64

4 float64

5 float64

6 float64

7 float64

8 float64

9 float64

10 float64

...

49 float64

50 float64

51 float64

52 float64

53 float64

54 float64

55 float64

56 float64

57 float64

58 float64

59 float64

60 object

Listing 21.6: Output of the data types for each attribute.

Let’s now take a peek at the first 20 rows of the data.

# head

set_option('display.width', 100)

print(dataset.head(20))

Listing 21.7: Print the first few rows of the dataset.
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This does not show all of the columns, but we can see all of the data has the same scale. We
can also see that the class attribute (60) has string values.

0 1 2 3 4 5 6 7 8 9 ... 51 \

0 0.0200 0.0371 0.0428 0.0207 0.0954 0.0986 0.1539 0.1601 0.3109 0.2111 ... 0.0027

1 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.3481 0.3337 0.2872 ... 0.0084

2 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.5598 0.6194 ... 0.0232

3 0.0100 0.0171 0.0623 0.0205 0.0205 0.0368 0.1098 0.1276 0.0598 0.1264 ... 0.0121

4 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564 0.4459 ... 0.0031

5 0.0286 0.0453 0.0277 0.0174 0.0384 0.0990 0.1201 0.1833 0.2105 0.3039 ... 0.0045

6 0.0317 0.0956 0.1321 0.1408 0.1674 0.1710 0.0731 0.1401 0.2083 0.3513 ... 0.0201

7 0.0519 0.0548 0.0842 0.0319 0.1158 0.0922 0.1027 0.0613 0.1465 0.2838 ... 0.0081

8 0.0223 0.0375 0.0484 0.0475 0.0647 0.0591 0.0753 0.0098 0.0684 0.1487 ... 0.0145

9 0.0164 0.0173 0.0347 0.0070 0.0187 0.0671 0.1056 0.0697 0.0962 0.0251 ... 0.0090

10 0.0039 0.0063 0.0152 0.0336 0.0310 0.0284 0.0396 0.0272 0.0323 0.0452 ... 0.0062

11 0.0123 0.0309 0.0169 0.0313 0.0358 0.0102 0.0182 0.0579 0.1122 0.0835 ... 0.0133

12 0.0079 0.0086 0.0055 0.0250 0.0344 0.0546 0.0528 0.0958 0.1009 0.1240 ... 0.0176

13 0.0090 0.0062 0.0253 0.0489 0.1197 0.1589 0.1392 0.0987 0.0955 0.1895 ... 0.0059

14 0.0124 0.0433 0.0604 0.0449 0.0597 0.0355 0.0531 0.0343 0.1052 0.2120 ... 0.0083

15 0.0298 0.0615 0.0650 0.0921 0.1615 0.2294 0.2176 0.2033 0.1459 0.0852 ... 0.0031

16 0.0352 0.0116 0.0191 0.0469 0.0737 0.1185 0.1683 0.1541 0.1466 0.2912 ... 0.0346

17 0.0192 0.0607 0.0378 0.0774 0.1388 0.0809 0.0568 0.0219 0.1037 0.1186 ... 0.0331

18 0.0270 0.0092 0.0145 0.0278 0.0412 0.0757 0.1026 0.1138 0.0794 0.1520 ... 0.0084

19 0.0126 0.0149 0.0641 0.1732 0.2565 0.2559 0.2947 0.4110 0.4983 0.5920 ... 0.0092

52 53 54 55 56 57 58 59 60

0 0.0065 0.0159 0.0072 0.0167 0.0180 0.0084 0.0090 0.0032 R

1 0.0089 0.0048 0.0094 0.0191 0.0140 0.0049 0.0052 0.0044 R

2 0.0166 0.0095 0.0180 0.0244 0.0316 0.0164 0.0095 0.0078 R

3 0.0036 0.0150 0.0085 0.0073 0.0050 0.0044 0.0040 0.0117 R

4 0.0054 0.0105 0.0110 0.0015 0.0072 0.0048 0.0107 0.0094 R

5 0.0014 0.0038 0.0013 0.0089 0.0057 0.0027 0.0051 0.0062 R

6 0.0248 0.0131 0.0070 0.0138 0.0092 0.0143 0.0036 0.0103 R

7 0.0120 0.0045 0.0121 0.0097 0.0085 0.0047 0.0048 0.0053 R

8 0.0128 0.0145 0.0058 0.0049 0.0065 0.0093 0.0059 0.0022 R

9 0.0223 0.0179 0.0084 0.0068 0.0032 0.0035 0.0056 0.0040 R

10 0.0120 0.0052 0.0056 0.0093 0.0042 0.0003 0.0053 0.0036 R

11 0.0265 0.0224 0.0074 0.0118 0.0026 0.0092 0.0009 0.0044 R

12 0.0127 0.0088 0.0098 0.0019 0.0059 0.0058 0.0059 0.0032 R

13 0.0095 0.0194 0.0080 0.0152 0.0158 0.0053 0.0189 0.0102 R

14 0.0057 0.0174 0.0188 0.0054 0.0114 0.0196 0.0147 0.0062 R

15 0.0153 0.0071 0.0212 0.0076 0.0152 0.0049 0.0200 0.0073 R

16 0.0158 0.0154 0.0109 0.0048 0.0095 0.0015 0.0073 0.0067 R

17 0.0131 0.0120 0.0108 0.0024 0.0045 0.0037 0.0112 0.0075 R

18 0.0010 0.0018 0.0068 0.0039 0.0120 0.0132 0.0070 0.0088 R

19 0.0035 0.0098 0.0121 0.0006 0.0181 0.0094 0.0116 0.0063 R

Listing 21.8: Output of the first few rows of the dataset.

Let’s summarize the distribution of each attribute.

# descriptions, change precision to 3 places

set_option('precision', 3)

print(dataset.describe())

Listing 21.9: Print the statistical descriptions of the dataset.
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Again, as we expect, the data has the same range, but interestingly differing mean values.
There may be some benefit from standardizing the data.

0 1 2 3 4 5 6 7 8 9 \

count 208.000 2.080e+02 208.000 208.000 208.000 208.000 208.000 208.000 208.000 208.000

mean 0.029 3.844e-02 0.044 0.054 0.075 0.105 0.122 0.135 0.178 0.208

std 0.023 3.296e-02 0.038 0.047 0.056 0.059 0.062 0.085 0.118 0.134

min 0.002 6.000e-04 0.002 0.006 0.007 0.010 0.003 0.005 0.007 0.011

25% 0.013 1.645e-02 0.019 0.024 0.038 0.067 0.081 0.080 0.097 0.111

50% 0.023 3.080e-02 0.034 0.044 0.062 0.092 0.107 0.112 0.152 0.182

75% 0.036 4.795e-02 0.058 0.065 0.100 0.134 0.154 0.170 0.233 0.269

max 0.137 2.339e-01 0.306 0.426 0.401 0.382 0.373 0.459 0.683 0.711

... 50 51 52 53 54 55 56 \

count ... 208.000 2.080e+02 2.080e+02 208.000 2.080e+02 2.080e+02 2.080e+02

mean ... 0.016 1.342e-02 1.071e-02 0.011 9.290e-03 8.222e-03 7.820e-03

std ... 0.012 9.634e-03 7.060e-03 0.007 7.088e-03 5.736e-03 5.785e-03

min ... 0.000 8.000e-04 5.000e-04 0.001 6.000e-04 4.000e-04 3.000e-04

25% ... 0.008 7.275e-03 5.075e-03 0.005 4.150e-03 4.400e-03 3.700e-03

50% ... 0.014 1.140e-02 9.550e-03 0.009 7.500e-03 6.850e-03 5.950e-03

75% ... 0.021 1.673e-02 1.490e-02 0.015 1.210e-02 1.058e-02 1.043e-02

max ... 0.100 7.090e-02 3.900e-02 0.035 4.470e-02 3.940e-02 3.550e-02

57 58 59

count 2.080e+02 2.080e+02 2.080e+02

mean 7.949e-03 7.941e-03 6.507e-03

std 6.470e-03 6.181e-03 5.031e-03

min 3.000e-04 1.000e-04 6.000e-04

25% 3.600e-03 3.675e-03 3.100e-03

50% 5.800e-03 6.400e-03 5.300e-03

75% 1.035e-02 1.033e-02 8.525e-03

max 4.400e-02 3.640e-02 4.390e-02

Listing 21.10: Output of the statistical descriptions of the dataset.

Let’s take a quick look at the breakdown of class values.

# class distribution

print(dataset.groupby(60).size())

Listing 21.11: Print the class breakdown of the dataset.

We can see that the classes are reasonably balanced between M (mines) and R (rocks).

M 111

R 97

Listing 21.12: Output of the class breakdown of the dataset.

21.3.2 Unimodal Data Visualizations

Let’s look at visualizations of individual attributes. It is often useful to look at your data
using multiple different visualizations in order to spark ideas. Let’s look at histograms of each
attribute to get a sense of the data distributions.

# histograms

dataset.hist(sharex=False, sharey=False, xlabelsize=1, ylabelsize=1)
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pyplot.show()

Listing 21.13: Visualize the dataset with Histogram Plots.

We can see that there are a lot of Gaussian-like distributions and perhaps some exponential-
like distributions for other attributes.

Figure 21.1: Histogram Plots of Attributes from the Dataset.

Let’s take a look at the same perspective of the data using density plots.

# density

dataset.plot(kind='density', subplots=True, layout=(8,8), sharex=False, legend=False,

fontsize=1)

pyplot.show()

Listing 21.14: Visualize the dataset with Density Plots.

This is useful, you can see that many of the attributes have a skewed distribution. A power
transform like a Box-Cox transform that can correct for the skew in distributions might be
useful.



21.3. Analyze Data 150

Figure 21.2: Density Plots of Attributes from the Dataset.

It is always good to look at box and whisker plots of numeric attributes to get an idea of
the spread of values.

# box and whisker plots

dataset.plot(kind='box', subplots=True, layout=(8,8), sharex=False, sharey=False,

fontsize=1)

pyplot.show()

Listing 21.15: Visualize the dataset with Box and Whisker Plots.

We can see that attributes do have quite different spreads. Given the scales are the same, it
may suggest some benefit in standardizing the data for modeling to get all of the means lined
up.
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Figure 21.3: Box and Whisker Plots of Attributes from the Dataset.

21.3.3 Multimodal Data Visualizations

Let’s visualize the correlations between the attributes.

# correlation matrix

fig = pyplot.figure()

ax = fig.add_subplot(111)

cax = ax.matshow(dataset.corr(), vmin=-1, vmax=1, interpolation='none')

fig.colorbar(cax)

pyplot.show()

Listing 21.16: Visualize the correlations between attributes.

It looks like there is also some structure in the order of the attributes. The red around
the diagonal suggests that attributes that are next to each other are generally more correlated
with each other. The blue patches also suggest some moderate negative correlation the further
attributes are away from each other in the ordering. This makes sense if the order of the
attributes refers to the angle of sensors for the sonar chirp.
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Figure 21.4: Plot of Correlations Between Attributes from the Dataset.

21.4 Validation Dataset

It is a good idea to use a validation hold-out set. This is a sample of the data that we hold
back from our analysis and modeling. We use it right at the end of our project to confirm the
accuracy of our final model. It is a smoke test that we can use to see if we messed up and to
give us confidence on our estimates of accuracy on unseen data. We will use 80% of the dataset
for modeling and hold back 20% for validation.

# Split-out validation dataset

array = dataset.values

X = array[:,0:60].astype(float)

Y = array[:,60]

validation_size = 0.20

seed = 7

X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y,

test_size=validation_size, random_state=seed)

Listing 21.17: Create Separate Training and Validation Datasets.
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21.5 Evaluate Algorithms: Baseline

We don’t know what algorithms will do well on this dataset. Gut feel suggests distance based
algorithms like k-Nearest Neighbors and Support Vector Machines may do well. Let’s design
our test harness. We will use 10-fold cross validation. The dataset is not too small and this is
a good standard test harness configuration. We will evaluate algorithms using the accuracy

metric. This is a gross metric that will give a quick idea of how correct a given model is. More
useful on binary classification problems like this one.

# Test options and evaluation metric

num_folds = 10

seed = 7

scoring = 'accuracy'

Listing 21.18: Prepare the Test Harness for Evaluating Algorithms.

Let’s create a baseline of performance on this problem and spot-check a number of different
algorithms. We will select a suite of different algorithms capable of working on this classification
problem. The six algorithms selected include:

� Linear Algorithms: Logistic Regression (LR) and Linear Discriminant Analysis (LDA).

� Nonlinear Algorithms: Classification and Regression Trees (CART), Support Vector
Machines (SVM), Gaussian Naive Bayes (NB) and k-Nearest Neighbors (KNN).

# Spot-Check Algorithms

models = []

models.append(('LR', LogisticRegression()))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC()))

Listing 21.19: Prepare Algorithms to Evaluate.

The algorithms all use default tuning parameters. Let’s compare the algorithms. We will
display the mean and standard deviation of accuracy for each algorithm as we calculate it and
collect the results for use later.

results = []

names = []

for name, model in models:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 21.20: Evaluate Algorithms Using the Test Harness.

Running the example provides the output below. The results suggest That both Logistic
Regression and k-Nearest Neighbors may be worth further study.



21.5. Evaluate Algorithms: Baseline 154

LR: 0.782721 (0.093796)

LDA: 0.746324 (0.117854)

KNN: 0.808088 (0.067507)

CART: 0.740809 (0.118120)

NB: 0.648897 (0.141868)

SVM: 0.608824 (0.118656)

Listing 21.21: Output of Evaluating Algorithms.

These are just mean accuracy values. It is always wise to look at the distribution of accuracy
values calculated across cross validation folds. We can do that graphically using box and whisker
plots.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 21.22: Visualization of the Distribution of Algorithm Performance.

The results show a tight distribution for KNN which is encouraging, suggesting low variance.
The poor results for SVM are surprising.
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Figure 21.5: Box and Whisker Plots of Algorithm Performance.

It is possible that the varied distribution of the attributes is having an effect on the accuracy
of algorithms such as SVM. In the next section we will repeat this spot-check with a standardized
copy of the training dataset.

21.6 Evaluate Algorithms: Standardize Data

We suspect that the differing distributions of the raw data may be negatively impacting the skill
of some of the algorithms. Let’s evaluate the same algorithms with a standardized copy of the
dataset. This is where the data is transformed such that each attribute has a mean value of zero
and a standard deviation of one. We also need to avoid data leakage when we transform the
data. A good way to avoid leakage is to use pipelines that standardize the data and build the
model for each fold in the cross validation test harness. That way we can get a fair estimation
of how each model with standardized data might perform on unseen data.

# Standardize the dataset

pipelines = []

pipelines.append(('ScaledLR', Pipeline([('Scaler', StandardScaler()),('LR',

LogisticRegression())])))

pipelines.append(('ScaledLDA', Pipeline([('Scaler', StandardScaler()),('LDA',

LinearDiscriminantAnalysis())])))
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pipelines.append(('ScaledKNN', Pipeline([('Scaler', StandardScaler()),('KNN',

KNeighborsClassifier())])))

pipelines.append(('ScaledCART', Pipeline([('Scaler', StandardScaler()),('CART',

DecisionTreeClassifier())])))

pipelines.append(('ScaledNB', Pipeline([('Scaler', StandardScaler()),('NB',

GaussianNB())])))

pipelines.append(('ScaledSVM', Pipeline([('Scaler', StandardScaler()),('SVM', SVC())])))

results = []

names = []

for name, model in pipelines:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 21.23: Evaluate Algorithms on a Scaled Dataset.

Running the example provides the results listed below. We can see that KNN is still doing
well, even better than before. We can also see that the standardization of the data has lifted
the skill of SVM to be the most accurate algorithm tested so far.

ScaledLR: 0.734191 (0.095885)

ScaledLDA: 0.746324 (0.117854)

ScaledKNN: 0.825735 (0.054511)

ScaledCART: 0.711765 (0.107567)

ScaledNB: 0.648897 (0.141868)

ScaledSVM: 0.836397 (0.088697)

Listing 21.24: Output of Evaluating Algorithms on the Scaled Dataset.

Again, we should plot the distribution of the accuracy scores using box and whisker plots.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Scaled Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 21.25: Visualization of the Distribution of Algorithm Performance on the Scaled Dataset.

The results suggest digging deeper into the SVM and KNN algorithms. It is very likely that
configuration beyond the default may yield even more accurate models.
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Figure 21.6: Box and Whisker Plots of Algorithm Performance on the Standardized Dataset.

21.7 Algorithm Tuning

In this section we investigate tuning the parameters for two algorithms that show promise from
the spot-checking in the previous section: KNN and SVM.

21.7.1 Tuning KNN

We can start off by tuning the number of neighbors for KNN. The default number of neighbors
is 7. Below we try all odd values of k from 1 to 21, covering the default value of 7. Each k value
is evaluated using 10-fold cross validation on the training standardized dataset.

# Tune scaled KNN

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

neighbors = [1,3,5,7,9,11,13,15,17,19,21]

param_grid = dict(n_neighbors=neighbors)

model = KNeighborsClassifier()

kfold = KFold(n_splits=num_folds, random_state=seed)

grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, cv=kfold)

grid_result = grid.fit(rescaledX, Y_train)

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))



21.7. Algorithm Tuning 158

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

print("%f (%f) with: %r" % (mean, stdev, param))

Listing 21.26: Tune the KNN Algorithm on the Scaled Dataset.

We can print out configuration that resulted in the highest accuracy as well as the accuracy
of all values tried. Running the example we see the results below.

Best: 0.849398 using {'n_neighbors': 1}

0.850000 (0.059686) with: {'n_neighbors': 1}

0.837132 (0.066014) with: {'n_neighbors': 3}

0.837500 (0.037377) with: {'n_neighbors': 5}

0.763971 (0.089374) with: {'n_neighbors': 7}

0.751471 (0.087051) with: {'n_neighbors': 9}

0.733456 (0.104831) with: {'n_neighbors': 11}

0.733088 (0.105806) with: {'n_neighbors': 13}

0.727941 (0.076148) with: {'n_neighbors': 15}

0.709926 (0.079287) with: {'n_neighbors': 17}

0.722059 (0.085088) with: {'n_neighbors': 19}

0.710294 (0.109505) with: {'n_neighbors': 21}

Listing 21.27: Results of Tuning KNN on the Scaled Dataset.

We can see that the optimal configuration is K=1. This is interesting as the algorithm will
make predictions using the most similar instance in the training dataset alone.

21.7.2 Tuning SVM

We can tune two key parameters of the SVM algorithm, the value of C (how much to relax the
margin) and the type of kernel. The default for SVM (the SVC class) is to use the Radial
Basis Function (RBF) kernel with a C value set to 1.0. Like with KNN, we will perform a grid
search using 10-fold cross validation with a standardized copy of the training dataset. We will
try a number of simpler kernel types and C values with less bias and more bias (less than and
more than 1.0 respectively).

# Tune scaled SVM

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

c_values = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 1.7, 2.0]

kernel_values = ['linear', 'poly', 'rbf', 'sigmoid']

param_grid = dict(C=c_values, kernel=kernel_values)

model = SVC()

kfold = KFold(n_splits=num_folds, random_state=seed)

grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, cv=kfold)

grid_result = grid.fit(rescaledX, Y_train)

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

means = grid_result.cv_results_['mean_test_score']

stds = grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

print("%f (%f) with: %r" % (mean, stdev, param))
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Listing 21.28: Tune the SVM Algorithm on the Scaled Dataset.

Running the example prints out the best configuration, the accuracy as well as the accuracies
for all configuration combinations.

Best: 0.867470 using {'kernel': 'rbf', 'C': 1.5}

0.758456 (0.099483) with: {'kernel': 'linear', 'C': 0.1}

0.529412 (0.118825) with: {'kernel': 'poly', 'C': 0.1}

0.573162 (0.130930) with: {'kernel': 'rbf', 'C': 0.1}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 0.1}

0.746324 (0.109507) with: {'kernel': 'linear', 'C': 0.3}

0.642647 (0.132187) with: {'kernel': 'poly', 'C': 0.3}

0.765809 (0.091692) with: {'kernel': 'rbf', 'C': 0.3}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 0.3}

0.740074 (0.082636) with: {'kernel': 'linear', 'C': 0.5}

0.680147 (0.098595) with: {'kernel': 'poly', 'C': 0.5}

0.788235 (0.064190) with: {'kernel': 'rbf', 'C': 0.5}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 0.5}

0.746691 (0.084198) with: {'kernel': 'linear', 'C': 0.7}

0.740074 (0.127908) with: {'kernel': 'poly', 'C': 0.7}

0.812500 (0.085513) with: {'kernel': 'rbf', 'C': 0.7}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 0.7}

0.758824 (0.096520) with: {'kernel': 'linear', 'C': 0.9}

0.770221 (0.102510) with: {'kernel': 'poly', 'C': 0.9}

0.836397 (0.088697) with: {'kernel': 'rbf', 'C': 0.9}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 0.9}

0.752574 (0.098883) with: {'kernel': 'linear', 'C': 1.0}

0.788235 (0.108418) with: {'kernel': 'poly', 'C': 1.0}

0.836397 (0.088697) with: {'kernel': 'rbf', 'C': 1.0}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 1.0}

0.769853 (0.106086) with: {'kernel': 'linear', 'C': 1.3}

0.818382 (0.107151) with: {'kernel': 'poly', 'C': 1.3}

0.848162 (0.080414) with: {'kernel': 'rbf', 'C': 1.3}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 1.3}

0.758088 (0.092026) with: {'kernel': 'linear', 'C': 1.5}

0.830147 (0.110255) with: {'kernel': 'poly', 'C': 1.5}

0.866176 (0.091458) with: {'kernel': 'rbf', 'C': 1.5}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 1.5}

0.746324 (0.090414) with: {'kernel': 'linear', 'C': 1.7}

0.830515 (0.116706) with: {'kernel': 'poly', 'C': 1.7}

0.860294 (0.088281) with: {'kernel': 'rbf', 'C': 1.7}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 1.7}

0.758456 (0.094064) with: {'kernel': 'linear', 'C': 2.0}

0.830882 (0.108950) with: {'kernel': 'poly', 'C': 2.0}

0.866176 (0.095166) with: {'kernel': 'rbf', 'C': 2.0}

0.409559 (0.073625) with: {'kernel': 'sigmoid', 'C': 2.0}

Listing 21.29: Results of Tuning SVM on the Scaled Dataset.

We can see the most accurate configuration was SVM with an RBF kernel and a C value
of 1.5. The accuracy 86.7470% is seemingly better than what KNN could achieve.
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21.8 Ensemble Methods

Another way that we can improve the performance of algorithms on this problem is by using
ensemble methods. In this section we will evaluate four different ensemble machine learning
algorithms, two boosting and two bagging methods:

� Boosting Methods: AdaBoost (AB) and Gradient Boosting (GBM).

� Bagging Methods: Random Forests (RF) and Extra Trees (ET).

We will use the same test harness as before, 10-fold cross validation. No data standardization
is used in this case because all four ensemble algorithms are based on decision trees that are
less sensitive to data distributions.

# ensembles

ensembles = []

ensembles.append(('AB', AdaBoostClassifier()))

ensembles.append(('GBM', GradientBoostingClassifier()))

ensembles.append(('RF', RandomForestClassifier()))

ensembles.append(('ET', ExtraTreesClassifier()))

results = []

names = []

for name, model in ensembles:

kfold = KFold(n_splits=num_folds, random_state=seed)

cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)

results.append(cv_results)

names.append(name)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

Listing 21.30: Evaluate Ensemble Algorithms.

Running the example provides the following accuracy scores.

AB: 0.819853 (0.058293)

GBM: 0.829044 (0.143517)

RF: 0.765074 (0.107129)

ET: 0.794485 (0.087874)

Listing 21.31: Output of Evaluate Ensemble Algorithms.

We can see that both boosting techniques provide strong accuracy scores in the low 80s (%)
with default configurations. We can plot the distribution of accuracy scores across the cross
validation folds.

# Compare Algorithms

fig = pyplot.figure()

fig.suptitle('Ensemble Algorithm Comparison')

ax = fig.add_subplot(111)

pyplot.boxplot(results)

ax.set_xticklabels(names)

pyplot.show()

Listing 21.32: Visualize the Distribution of Ensemble Algorithm Performance.
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The results suggest GBM may be worthy of further study, with a strong mean and a spread
that skews up towards high 90s (%) in accuracy.

Figure 21.7: Box and Whisker Plots of Ensemble Performance.

21.9 Finalize Model

The SVM showed the most promise as a low complexity and stable model for this problem. In
this section we will finalize the model by training it on the entire training dataset and make
predictions for the hold-out validation dataset to confirm our findings. A part of the findings was
that SVM performs better when the dataset is standardized so that all attributes have a mean
value of zero and a standard deviation of one. We can calculate this from the entire training
dataset and apply the same transform to the input attributes from the validation dataset.

# prepare the model

scaler = StandardScaler().fit(X_train)

rescaledX = scaler.transform(X_train)

model = SVC(C=1.5)

model.fit(rescaledX, Y_train)

# estimate accuracy on validation dataset

rescaledValidationX = scaler.transform(X_validation)

predictions = model.predict(rescaledValidationX)

print(accuracy_score(Y_validation, predictions))
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print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions))

Listing 21.33: Evaluate SVM on the Validation Dataset.

We can see that we achieve an accuracy of nearly 86% on the held-out validation dataset. A
score that matches closely to our expectations estimated above during the tuning of SVM.

0.857142857143

[[23 4]

[ 2 13]]

precision recall f1-score support

M 0.92 0.85 0.88 27

R 0.76 0.87 0.81 15

avg / total 0.86 0.86 0.86 42

Listing 21.34: Output of Evaluating SVM on the Validation Dataset.

21.10 Summary

In this chapter you worked through a classification predictive modeling machine learning problem
from end-to-end using Python. Specifically, the steps covered were:

� Problem Definition (Sonar return data).

� Loading the Dataset.

� Analyze Data (same scale but different distributions of data).

� Evaluate Algorithms (KNN looked good).

� Evaluate Algorithms with Standardization (KNN and SVM looked good).

� Algorithm Tuning (K=1 for KNN was good, SVM with an RBF kernel and C=1.5 was
best).

� Ensemble Methods (Bagging and Boosting, not quite as good as SVM).

� Finalize Model (use all training data and confirm using validation dataset).

Working through this case study showed you how the recipes for specific machine learning
tasks can be pulled together into a complete project. Working through this case study is good
practice at applied machine learning using Python.

21.10.1 Next Step

This was the third and final predictive modeling project case study. Well done! You now
have experience and skills in working through predictive modeling machine learning projects
end-to-end. In the next section you will discover ideas for additional small case study projects
that you could work on for further practice.



Chapter 22

More Predictive Modeling Projects

You can now work through predictive modeling machine learning projects using Python. Now
what? In this chapter, we look at ways that you can practice and refine your new found skills.

22.1 Build And Maintain Recipes

Throughout this book you have worked through many machine learning lessons using Python.
Taken together, this is the start of your own private code base that you can use to jump-start
your current or next machine learning project. These recipes are a beginning, not an end. The
larger and more sophisticated that your catalog of machine learning recipes becomes, the faster
you can get started on new projects and the more accurate the models that you can develop.

As you apply your machine learning skills using the Python platform, you will develop
experience and skills with new and different techniques with Python. You can pull out or
abstract snippets and recipes as you go along and add them to your own collection of recipes,
building upon the code that you can use on future machine learning projects. With time, you
will amass your own mature and highly-tailored catalog of machine learning code for Python.

22.2 Small Projects on Small Datasets

Keep practicing your skills using Python. Datasets from the UCI Machine Learning Repository1

were used throughout this book to demonstrate how to achieve specific tasks in a machine
learning project. They were also used in the longer case study projects. They are standardized,
relatively clean, well understood and excellent for you to use as practice datasets.

You can use the datasets on the UCI Machine Learning repository as the focus of small
(5-to-10 hours of effort) focused machine learning projects using the Python platform. Once
completed, you can write-up your findings and share them online as part of your expanding
portfolio of machine learning projects.

These can be used by you later as a repository of knowledge on which you can build and
further develop your skills. They can also be used to demonstrate to managers or future
employers that you are capable of delivering results on predictive modeling machine learning
projects using the Python platform. Here is a process that you can use to practice machine
learning on Python:

1http://archive.ics.uci.edu/ml/
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1. Browse the list of free datasets on the repository and download some that look interesting
to you.

2. Use the project template and recipes in this book to work through the dataset and develop
an accurate model.

3. Write up your work-flow and findings in a way that you can refer to them later or perhaps
share it publicly on a website.

Keep the project short, limit your projects to 5-to-10 hours, say a week worth of nights and
spare time.

22.3 Competitive Machine Learning

Use competitive machine learning to push your skills. Working on small projects in the previous
section is a good way to practice the fundamentals. At some point the problems will become
easy for you. You also need to be pushed out of your comfort zone to help you grow your skills
further.

An excellent way to develop your machine learning skills with Python further is to start
participating in competitions. In a competition, the organizer provides you with a training
dataset, a test dataset on which you are to make predictions, a performance measure and a
time limit. You and your competitors then work to create the most accurate model possible.
Winners often get prize money.

These competitions often last weeks to months and can be a lot of fun. They also offer a
great opportunity to test your skills with machine learning tools on datasets that often require
a lot of cleaning and preparation. The premier website for machine learning competitions is
Kaggle2.

Competitions are stratified into different classes such as research, recruitment and 101 for
beginners. A good place to start would be the beginner competitions as they are often less
challenging and have a lot of help in the form of tutorials to get you started.

22.4 Summary

In this chapter you have discovered three areas where you could practice your new found machine
learning skills with Python. They were:

1. To continue to build up and maintain your catalog of machine learning recipes starting
with the catalog of recipes provided as a bonus with this book.

2. To continue to work on the standard machine learning datasets on the UCI Machine
Learning Repository.

3. To start work through the larger datasets from competitive machine learning and even
start participating in machine learning competitions.

2https://www.kaggle.com
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22.4.1 Next Step

This concludes Part III of this book on machine learning projects. Up next we finish off the
book with a summary of how far you have come and where you can look if you need additional
help with Python.



Part IV

Conclusions

166



Chapter 23

How Far You Have Come

You made it. Well done. Take a moment and look back at how far you have come.

1. You started off with an interest in machine learning and a strong desire to be able to
practice and apply machine learning using Python.

2. You downloaded, installed and started Python, perhaps for the first time, and started to
get familiar with the syntax of the language and the SciPy ecosystem.

3. Slowly and steadily over the course of a number of lessons you learned how the standard
tasks of a predictive modeling machine learning project map onto the Python platform.

4. Building upon the recipes for common machine learning tasks you worked through your
first machine learning problems end-to-end using Python.

5. Using a standard template, the recipes and experience you have gathered, you are now
capable of working through new and different predictive modeling machine learning
problems on your own.

Don’t make light of this. You have come a long way in a short amount of time. You have
developed the important and valuable skill of being able to work through machine learning
problems end-to-end using Python. This is a platform that is used by a majority of working
data scientist professionals. The sky is the limit for you.

I want to take a moment and sincerely thank you for letting me help you start your machine
learning journey with Python. I hope you keep learning and have fun as you continue to master
machine learning.
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Chapter 24

Getting More Help

This is just the beginning of your machine learning journey with Python. As you start to work
on your own machine learning projects you may need help. This chapter points out some of the
best sources of Python and machine learning help that you can find.

24.1 General Advice

Generally the documentation for Python and the SciPy stack is excellent. There are a good mix
of user guides and API documentation. I would advise you to read the API documentation for
the classes and functions you are using, now that you know which classes and functions to use.
The API documentation will give you a fuller understanding on the deeper configuration that
you can explore to serve your interests of better performing models.

Another invaluable resources are Question and Answer sites like StackOverflow1. You can
search for error messages and problems that you are having and find sample code and ideas
that will directly help you. Also make use of the Related posts on the right-hand side of the
screen as they can guide you to related and perhaps just as helpful posts.

24.2 Help With Python

Python is a fully featured programming language. As such, the more you learn about it, the
better you can use it. If you are relatively new to the Python platform here are some valuable
resources for going one step deeper:

� Google Python Class.
https://developers.google.com/edu/python/

� Python HOWTOs, invaluable for learning idioms and such (Python 2).
https://docs.python.org/2/howto/index.html

� Python Standard Library Reference (Python 2).
https://docs.python.org/2/library/index.html

1http://StackOverflow.com
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24.3 Help With SciPy and NumPy

It is a great idea to become familiar with the broader SciPy ecosystem and for that I would
recommend the SciPy Lecture Notes listed below. I think the NumPy documentation is excellent
(and deep) but you probably don’t need it unless you are doing something exotic.

� SciPy Lecture Notes.
http://www.scipy-lectures.org/

� NumPy User Guide.
http://docs.scipy.org/doc/numpy/user/

24.4 Help With Matplotlib

Get good at plotting. Confident to the point that you can copy-and-paste a recipe to plot data
at the drop of a hat. It is an invaluable skill. I think you will be best served looking at lots
of Matplotlib examples for different plot types and preparing recipes for yourself to use later.
Making pretty plots is a different topic entirely and for that I would recommend studying the
API carefully. I see plots as disposable tools for learning more about a problem.

� Matplotlib gallery of plot types and sample code.
http://matplotlib.org/gallery.html

� Matplotlib Beginners Guide.
http://matplotlib.org/users/beginner.html

� Matplotlib API Reference.
http://matplotlib.org/api/index.html

24.5 Help With Pandas

There is a lot of documentation for Pandas, I think because it is such a flexible tool. Generally,
the cookbook examples will be most useful to you here as they will give you ideas on different
ways to slice and dice your data.

� Pandas documentation page (user guide). Note the table of contents of the left hand side,
it’s very extensive.
http://pandas.pydata.org/pandas-docs/stable/

� Pandas cookbook providing many short and sweet examples.
http://pandas.pydata.org/pandas-docs/stable/cookbook.html

� Pandas API Reference.
http://pandas.pydata.org/pandas-docs/stable/api.html
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24.6 Help With scikit-learn

There is excellent documentation on the scikit-learn website. I highly recommend spending time
reading the API for each class and function that you use in order to get the most from them.

� The scikit-learn API Reference.
http://scikit-learn.org/stable/modules/classes.html

� The scikit-learn User Guide.
http://scikit-learn.org/stable/user_guide.html

� The scikit-learn Example Gallery.
http://scikit-learn.org/stable/auto_examples/index.html
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