
12 Complexity

When a problem/language is decidable, it simply means that the problem is
computationally solvable in principle, It may not be solvable in practice in the
sense that it may require enormous amount of computation time and memory,
In this chapter we discuss the computational complexity of a problem, The
proofs of decidability/undecidability are quite rigorous, since they depend
solely on the definition of a Turing machine and rigorous mathematical
techniques. But the proof and the discussion in complexity theory rests on the
assumption that P -:;t NP. The computer scientists and mathematicians strongly
believe that P -:;t "Nt>. but this is still open.

This problem is one of the challenging problems of the 21st century. This
problem carries a prize money of $lM. P stands for the class of problems that
can be solved by a deterministic algorithm (i.e. by a Turing machine that
halts) in polynomial time: "Nt> stands for the class of problems that can be
solved by a nondeterministic algorithm (that is, by a nondeterministic TM) in
polynomial time; P stands for polynomial and ~TJ> for nondeterminisitc
polynomial. Another important class is the class of NP-complete problems
which is a subclass of "Nt>.

In this chapter these concepts are formalized and Cook's theorem on the
NP-completeness of SAT problem is proved.

12.1 GROWTH RATE OF FUNCTIONS

\Vhen we have two algorithms for the same problem, we may require a
comparison between the running time of these two algorithms. With this in
mind. we study the grO\vth rate of functions defined on the set of natural
numbers.

In this section. lv' denotes the set of natural numbers.
346

Chapter 12: Complexity ,l;l, 347

Definition 12.1 Let ,j; g : N -7 R+ (R+ being the set of all positive real
numbers), We say that fen) = O(g(n» if there exist positive integers C and
No such that

f(n) S Cg(n) for all n ~ No,

In this case we say f is of the order of g (or f is 'big oh' of g)

Note: f(n) = O(g(n» is not an equation. It expresses a relation between two
functions f and g.

EXAMPLE 12.1

Let f(n) = 4n3 + 5112 + 7n + 3. Prove that f(n) = 0(n3
).

Solution

In order to prove that f(n) = 0(n3
), take C = 5 and No = 10. Then

f(n) = 4n3 + 5n2 + 7n + 3 S 5n3 for n ~ 10

\Vhen n = 10. 5112 + 7n + 3 = 573 < 103. For 11 > 10, 5n2 + 7n + 3 < n
3

•

Then, f(n) = 0(11\

Theorem 12.1 If pen) = Gk1/ + Gk_lnk-I + ... + ([In + Go is a polynomial
of degree k over Z and az, > 0, then pen) = O(nk).

Proof pen) = Qk1/ + aZ_ln
k
-

1 + ... + Gin + Go. As Qk is an integer and
positive, (lk ~ 1.

As {[i-i' aZ-2' ... , (Ii' ao and k are fixed integers, choose No such that for
all 11 ~ each of the numbers

Hence,

n
lak-21 la11 lao I 1
-~2-' .. ,,~. k is less than

n 11 n k
(*)

Also.

for all n 2 No

So,
S az + 1

pen) S 0/.

by (*)

where
Hence.

p(ll) = O(nk).

348];I Theory of Computer Science

Corollary The order of a polynomial is detennined by its degree.

Defmition 12.2 An exponential function is a function q : N -'7 N defined by

q(n) = a" for some fixed a > 1.

When n increases, each of n, n". 2" increases. But a comparison of these
functions for specific values of 11 will indicate the vast difference between the
growth rate of these functions.

TABLE 12.1 Growth Rate of Polynomial and Exponential Functions

n fen) = n2 g(n) = n2 + 3n + 9 q(n) = 2"

1 1 13 2

5 25 49 32

10 100 139 1024

50 2500 2659 (113)1015

100 10000 10309 (1.27)1030

1000 1000000 1003009 (1.07)10301

From Table 12.1. it is easy to see that the function q(ll) grows at a very fast
rate when compared to fen) or g(ll). In particular the exponential function
grows at a very fast rate when compared to any polynomial of large degree.
We prove a precise statement comparing the growth rate of polynomials and
exponential function.

Deftnition 12.3 We say g '* O(j), if for any constant C and No, there exists
n :2: No such that g(l1) > Cf(n).

Definition 12.4 If f and g are two functions and f = O(g), but g '* O(f),
we say that the growth rate of g is greater than that of.f (In this case
g(n)/f(n) becomes unbounded as 11 increases to 00.)

Theorem 12.2 The growth rate of any exponential function is greater than
that of any polynomial.

Proof Let pen) = ae/ + ak-lnk-1 + . , . + a1n + ao and q(n) = a" for some
a > 1.

As the growth rate of any polynomial is determined by its term with the
highest power, it is enough to prove that Ilk = O(a") and a" '* O(ll), By

L'Hospital's rule. log 11 tends to 0 as n -'7 00. (Here log n = 10gel1.) If
n

then.

I
(~(n»" = le

(log n 'I
As 11 gets large, k ~-'-l-) tends to 0 and hence ~(Il) tends to O.

is unbounded for large

Chapter 12: Complexity &;! 349

So we can choose No such that ::;(n) ::; a for all n 2: No. Hence n' =
::;(n)" ::; all, proving It' = Oed').

To prove a" i= O(n') , it is enough to show that a"hl is unbounded for
large n. But we have proved that n' ::; a" for large n and any positive integer

a"
k and hence for k + 1. SO ,/+J ::; d' or t:+l:::: 1.

n

Multiplying by n, n(~) 2: n, which means a~
nk+ l n

values of 11. I

Note: The function n1og " lies between any polynomial function and d 1 for
any constant a. As log n 2: k for a given constant k and large values of n,
nJog " ;:: 11' for large values of n. Hence nJog 11 dominates any polynomial. But

100 Joo , 1. 1 1 I' (log x)2 B L"H '1'n ,,11= (eJog ,,) "I =e(Jog"f.Letuscacuate 1m . y . ospnas
x~O) ex

. (logx)2 I' 21 lIx I' 210gx l' 2 0rule, 11m = 1m(ogx)- = 1m --- = 1m - = .
x~o: ex x~o: e X~O: ex X~O: ex

So (log n)2 grows more slowly than en. Hence I1
Jog " = e{]og 11)2 grows more

slowly than 2'''. The same holds good when logarithm is taken over base 2
since logell and lOg211 differ by a constant factor.

Hence there exist functions lying between polynomials and exponential
functions.

12.2 THE CLASSES P AND NP

In this section we introduce the classes P and l'Ii"'P of languages.

Definition 12.5 A Turing machine M is said to be of time complexity T(n)
if the following holds: Given an input 11' of length n. M halts after making at
most T(n) moves.

Note: In this case. lH eventually halts. Recall that the standard TM is called
a deterministic TM.

Definition 12.6 A language L is in class P if there exists some polynomial
T(n) such that L = TUI1) for some deterministic TM M of time complexity
T(n).

EXAMPLE 12.2

Construct the time complexity T(n) for the Turing machine M gIven in
Example 9,7.

350 ~ Theory ofComputer Science

Solution

In Example 9.7. the step (i) consists of going through the input string (0"1")
forward and backward and replacing the leftmost 0 by x and the leftmost 1
by Y. SO we require at most 2n moves to match a 0 with a 1. Step (ii) is
repetition of step (i) 11 times. Hence the number of moves for accepting a"Yl
is at most (2n)(nl. For strings not of the form ailb", TM halts with less than
2n~ steps. Hence T(Al) = O(n~).

We can also define the complexity of algorithms. In the case of
algorithms. nn) denotes the running time for solving a problem \vith an input
of size n. using this algorithm.

In Example 12.2. we use the notation f- which is used in expressing
algorithm. For example. a f- b means replacing a by b.

iac denotes the smallest integer greater than or equal to a. This is called
the ceiling junction.

EXAMPLE 12.3

Find the running time for the Euclidean algorithm for evaluating gcd(a. b)

where a and 17 are positive integers expressed in binary representation.

Solution

The Euclidean algOlithm has the following steps:

1. The input is (a. b)

') Repeat until 17 = 0
3. Assign a f- a mod 17
-1-. Exchange a and b
5. Output a.

Step 3 replaces a by a mod b. If a/2 2 b, then a mod 17 < b :::; al2. If
a/2 < 17, then a < 217. Wlite a = 17 + r for some r < b. Then a mod b =
r < 17 < a/2. Hence ([mod b :::; a/2. So a is reduced by at least half in size on
the application of step 3. Hence one iteration of step 3 and step 4 reduces a

and b by at least half in size. So the maximum number of times the steps 3
and -1- are executed is min {Dog~a1. 'log~bT If n denotes the maximum of the
number of digits of a and b. that is max{ilog~al. !log~bl} then the number of
iterations of steps 3 and 4 is O(ll). We have to perform step 2 at most
min {ilog~aI. ilog~b l} times or n times. Hence T(n) = nO(n) = O(n\

Note: The Euclidean algorithm is a polynomial algOlithm.

DefInition 12.7 A language L is in class NP if there is a nondeterministic
TIvl M and a polynomial time complexity T(n) such that L = T(lv1) and Ai
executes at most nn) moves for every input 1\' of length n.

Chapter 12: Complexity f;;! 351

We have seen that a deterministic TM i'vJ I simulating a nondetenninistic
TM At exists (refer to Theorem 9.3). If T(n) is the complexity of M, then the
complexity of the equivalent deterministic TM M I is 2°!TIII)). This can be
justified as follows. The processing of an input string w of length n by M is
equivalent to a ·tree' of computations by M j • Let k be the maximum of the
number of choices forced by the nondeterministic transition function. (It is
maxlo(q, .1.')1, the maximum taken over all states q and all tape symbol K)
Every branch of the computation tree has a length T(n) or less. Hence the total
number of leaves is atmost kT(n). Hence the complexity of M I is at most
20ITII/I)

It is not known whether the complexity of M] is less than 2°([(11)). Once
again an answer to this question will prove or disprove P 1= NP. But there do
exist algorithms where T(n) lies between a polynomial and an exponential
function (refer to Section 12.1).

12.3 POLYNOMIAL TIME REDUCTION AND
NP-COMPLETENESS

If P j and P~ are t\vo problems and P~ EO P, then we can decide whether
Pi EO P by relating the t\VO problems P j and P~. If there is an algorithm for
obtaining an instance of P~ given any instance of Pj, then we can decide about
the problem P j' Intuitively if this algOlithm is a polynomial one, then the
problem PI can be decided in polynomial time.

DefInition 12.8 Let PI and P~ be two problems. A reduction from PI to P~

is an algorithm which converts an instance of PI to an instance of P~. If the
time taken by the algOlithm is a polynomial pen), n being the length of the
input of Pj. then the reduction is called a polynomial reduction PI to P~.

Theorem 12.3 If there is a polynomial time reduction from P j to P: and if
P: is in P then P j is in P.

Proof Let In denote the size of the input of PI' As there is a polynomial­
time reduction of P j to P:. the corresponding instance of P~ can be got in
polynomial-time. Let it be O(;1'zi), So the size of the resulting input of P: is
atmost Cln! for some constant c. As P~ is in P. the time taken for deciding the
membership in P: is O(ni:} n being the size of the input of P:. So the total
time taken for deciding the membership of m-size input of P I is the sum of
the time taken for conversion into an instance of p, and the time for decision
of the corresponding input in P~. This is O[mi + (cmjll which is the same
as o (mfk). So PI is in P.

Definition 12.9 Let L be a language or problem in NP. Then L is NP­
complete if

1. L is in NP

360 g Theory of Computer Science

5. Knapsack problem-Given a set A = {al' a2, ... , an} of nonnegative
integers. and an integer K, does there exist a subset B of A such that

~ b i = K?
!J,ER '

This list of NP-complete problems can be expanded by having a
polynomial reduction of known NP-complete problems to the problems which
are in I\it> and which are suspected to be NP-complete.

12.7 USE OF NP-COMPLETENESS

One practical use in discovering that problem is NP-complete is that it
prevents us from wasting our time and energy over finding polynomial or easy
algorithms for that problem.

Also \ve may not need the full generality of an NP-complete problem.
Particular cases may be useful and they may admit polynomial algOlithms.
Also there may exist polynomial algorithms for getting an approximate
optimal solution to a given NP-complete problem.

For example, the travelling salesman problem satisfying the triangular
inequality for distances between cities (i.e. dij ::; dik + dki for all i, j, k) has
approximate polynomial algorithm such that the ratio of the error to the
optimal values of total distance travelled is less than or equal to 1/2.

12.8 QUANTUM COMPUTATION

In the earlier sections we discussed the complexity of algorithm and the dead
end was the open problem P = I\it>. Also the class of NP-complete problems
provided us with a class of problems. If we get a polynomial algorithm for
solving one NP-complete problem we can get a polynomial algorithm for any
other NP-complete problem.

In 1982. Richard Feynmann, a Nobel laurate in physics suggested that
scientists should start thinking of building computers based on the principles
of quantum mechanics. The subject of physics studies elementary objects and
simple systems and the study becomes more intersting when things are larger
and more complicated. Quantum computation and information based on the
principles of Quantum Mechanics will provide tools to fill up the gulf between
the small and the relatively complex systems in physics. In this section we
provide a brief survey of quantum computation and information and its impact
on complexity theory.

Quantum mechanics arose in the early 1920s, when classical physics could
not explain everything even after adding ad hoc hypotheses. The rules of
quantum mechanics were simple but looked counterintuitive, and even Albert
Einstein reconciled himself with quantum mechanics only \vith a pinch of salt.

Quantum i'vfechanics is real black magic calculus.
-A. Einstein

Chapter 12: Complexity);! 361

12.8.1 QUANTUM COMPUTERS

We know that a bit (a 0 or a 1) is the fundamental concept of classical
computation and information. Also a classical computer is built from an
electronic circuit containing wires and logical gates. Let us study quantum bits
and quantum circuits which are analogous to bits and (classical) circuits.

A quantum bit, or simply qubit can be described mathematically as

Ilf/) = alO; + 1310)
The qubit can be explained as follows. A classical bit has two states, a °and
a 1. Two possible states for a qubit are the states 10; and 11). (The notation
I-l is due to Dirac.) Unlike a classical bit, a qubit can be in infinite number
of states other than 10) and 11). It can be in a state IVJ> = alO) + 1310), where
a and 13 are complex numbers such that lal2 + 11312 = 1. The 0 and 1are called
the computational basis states and IVJ> is called a superposition. We can call
Ilf/) = alO) + 1310) a quantum state.

In the classical case, we can observe it as a 0 or a 1. But it is not possible
to determine the quantum state on observation. When we measure/observe a
qubit we get either the state 10; with probability lal2 or the state 11) with
probability 11312.

This is difficult to visualize. using our 'classical thinking' but this is the
source of power of the quantum computation.

Multiple qubits can be defined in a similar way. For example. a two-qubit
system has four computational basis states, 100), 1°1), 110; and Ill) and
quantum states Ilf/) = O'{)oIOO) + aodOl) + aiOlI0) + a11I11) with 10'{)o12 + lo:od2

+ la101
2 + lal112 = l.

Now we define the qubit gates. The classical NOT gate interchanges 0
and 1. In the case of the qubit the NOT gate, a 10) + 1311), is changed to
al1) + 1310;.

The action of the qubit NOT gate is linear on two-dimensional complex
vector spaces. So the qubit NOT gate can be described by

lal~[O 1]la]=[13]
L13 J 1 ° l13 a

The matrix [~ ~] is a unitary matrix. (A matrix A is unitary if A adjA = I.)

We have seen earlier that {NOR} is functionally complete (refer to
Exercises of Chapter 1). The qubit gate conesponding to NOR is the
cLntrolled-NOT or CNOT gate. It can be described by

IA. B) -7 IA. B EB A)

362 g Theorv of Computer Science

where EB denotes addition modulo 2. The action on computational basis is
100) ~ 100). 101) ~ 101). 110) ~ Ill), Ill) ~ 110). It can be described by
the following 4 x 4 unitary matrix:

1 ° °
~I° 1 °u cx

° ° °
° ° 1 OJ

Now. we are in a position to define a quantum computer:

A quantum computer is a system built from quantllm circuits, contaznmg
wires and elementary quantum gates, to carry out manipulation of quantum
il(foJ7natiol/.

12.8.2 CHURCH-TURING THESIS

Since 1970s many techniques for controHing the single quantum systems have
been developed but with only modest success. But an experimental prototype
for performing quantum cryptography. even at the initial level may be useful
for some real-world applications.

Recall the Church-Turing thesis which asserts that any algorithm that can
be performed on any computing machine can be performed on a Turing
machine as well.

NIiniaturization of chips has increased the power of the computer. The
grmvth of computer power is now described by Moore's law. which states that
the computer power will double for constant cost once in every two years.
Now it is felt that a limit to this doubling power will be reached in two or
three decades. since the quantum effects will begin to interfere in the
functioning of electronic devices as they are made smaller and smaller. So
efforts are on to provide a theory of quantum computation \vhich wi]]
compensate for the possible failure of the Moore's law.

As an algorithm requiring polynomial time was considered as an efficient
algorithm. a strengthened version of the Church-TUling thesis was enunciated.

Any algorithmic process can be simulated efficiently by a Turing machine.
But a challenge to the strong Cburch-Turing thesis arose from analog
computation. Certain types of analog computers solved some problems
efficiently whereas these problems had no efficient solution on a TUling
machine. But when the presence of noise was taken into account, the power
of the analog computers disappeared.

In mid-1970s. Robert Soiovay and Volker Strassen gave a randomized
algorithm for testing the primality of a number. (A deterministic polynomial
algorithm was given by Manindra Agrawal. Neeraj Kayal and Nitein Saxena
of IIT Kanpur in 2003.) This led to the modification of the Church thesis.

Chapter 12: Complexity ~ 363

Strong Church-Turing Thesis

An\' algorithmic process can be simulated efficiently llsing a nondetenninistic
Turing machine.

In 1985, David Deutsch tried to build computing devices using quantum
mechanics.

Computers are ph}'sical o~jects, and computations are physical processes.
What computers can or callnot compute is determined by the lmv of
physics alone, and not by pure mathematics

-David Deutsch

But it is not known whether Deutsch's notion of universal quantum
computer will efficiently simulate any physical process. In 1994, Peter Shor
proved that finding the prime factors of a composite number and the discrete
logarithm problem (i.e. finding the positive value of s such that b =as for the
given positive integers a and b) could be solved efficiently by a quantum
computer. This may be a pointer to proving that quantum computers are more
efficient than Turing machines (and classical computers).

12.8.3 POWER OF QUANTUM COMPUTATION

In classical complexity theory, the classes P and NP play a major role, but
there are other classes of interest. Some of them are given below:

L - The class of all decision problems which may be decided by a TM
running in logarithmic space.

PSPACE- The class of decision problems which may be decided on a Turing
machine using a polynomial number of working bits, with no limitation on the
amount of time that may be used by the machine.

EXP - The class of all decision problems which may be decided by a TM in
exponential time, that is, O(2"

k
), k being a constant.

The hierarchy of these classes is given by

L <;;; P <;;; NP <;;; PSPACE <;;; EXP

The inclusions are strongly believed to be strict but none of them has been
proved so far in classical complexity theory.

We also have two more classes.

BPP- The class of problems that can be solved using the randomized
algorithm in polynomial time, if a bounded probability of error (say 1110) is
allowed in the solution of the problem.

Bnp-The class of all computational problems which can be solved
efficiently (in polynomial time) on a quantum computer where a bounded
probability of error is allowed. It is easy to see that BPP <;;; BQP. The class
BQP lies somewhere benveen P and PSPACE, but where exactly it lies with
respect to P, NP and PSPACE is not known,

l

Chapter 12: Complexity);! 369

Let /1 be the number of clauses in E. Step 1 consists of deleting (x; v xi)

from E or deleting x i from (x; v xi)' This is done at most 11 times for each
clause. In step 2, step 1 is applied at most two times. one for Xi and the second
for Xi' As the number of variables appearing in E is less than or equal to n,

we delete (Xi v Xj) or delete Xi from (x; V),) at most O(n) times while
applying steps 1 and 2 repeatedly. Hence 2SAT is in P.

SELF-TEST

Choose the correct answer to Questions 1-7:

1. If f(l1) = 2n3 + 3 and g(n) = 10000n2 + 1000, then:
(a) the growth rate of g is greater than that of f
(b) the growth rate of f is greater than that of g.

(c) the growth rate of f is equal to that of g.

(d) none of these.

2. If fen) = n3 + 4/1 + 7 and g(n) = 1000n2 + 10000. then f(n) + g(n) is
(a) 0(/12)
(b) 0(11)

(c) 0(n3)

(d) 0(/15)

3. If f(n) = O(lh and g(n) = O(lh then f(n)g(/1) is
(a) max{k, l}
(b) k + 1

(c) kl

(d) none of these.

4. The gcd of (1024. 28) is
(al 2
(bl 4
(c) 7
(d) 14

S. 110.7: + '9.9l is equal to
(a) 19
(b) 20
(c) 18
(d) none of these.

6. log21024 is equal to
(a) 8
(b) 9
(c) 10
(d) none of these.

370 J;;I. Theory ofcomputer Science

7. The truth value of f(x, Y, .::) = (x v -,y) 1\ (-, X V y) 1\ .:: is T if x, y. z

have the truth values
(a) T. T. T
(b) F. F. F
(c) T, F. F
(d) F. T. F

State whether the following Statements 8-15 are true or false.

8. If the truth values of x, y. .:: are T. F. F respectively. then the truth value
of f(x. y, .::) = x 1\ -,(v v .::) is T.

9. The complexity of a k-tape TM and an equivalent standard TM are the
same.

10. If the time complexity of a standard TM is polynomial, then the time
complexity of an equivalent k-tape TM is exponential.

11. If the time complexity of a standard TM is polynomial. then the time
complexity of an equivalent 1'.TTM is exponential.

12. fix. y, .::) = (x v y v :::) 1\ (-, X 1\ -, Y 1\ -,.::) is satisfiable.

13. f(x. Y. .::) = (x v y) 1\ (-,.Y 1\ -, v) is satisfiable.

14. If f and g are satisfiable expressions, then f v g is satisfiable.

15. If f and g are satisfiable expressions. then f 1\ g is satisfiable.

EXERCISES

12.1 If fen) = O(ll) and g(n) = O(lh then show that fen) + g(n) = O(nt)
where t = max{k, l} and f(n)g(n) = O(nk

+
I
).

12.2 Evaluate the growth rates of (i) fin) = 2n2
. (ii) g(n) = 1On2 + 7n log n +

log 11. (iii) hen) = n210g n + 211 log n + 7n + 3 and compare them.

12.3 Use the O-notation to estimate (i) the sum of squares of first n natural
numbers. (ii) the sum of cubes of first n natural numbers, (iii) the sum
of the first n terms of a geometric progression whose first term is a and
the common ratio is r, and (iv) the sum of the first n terms of the
arithmetic progression whose first term is a and the common difference
is d.

12.4 Show that fen) = 3112log2 11 + 411 log3 11 + 5 log2log211 + log 11 + 100
dominates 11

2 but is dominated by 11'.

12.5 Find the gcd (294. 15) using the Euclid's algoritr,m.

12.6 Show that there are five truth assignments for (P, Q, R) satisfying
p v (-, P /\ -, Q 1\ R).

	Binder1
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012

