
Decidability and
Recursively Enumerable
Languages

In this chapter the fonnal definition of an algorithm is given. The problem of
decidability of various class of languages is discussed. The theorem on halting
problem of Turing machine is proved.

10.1 THE DEFINITION OF AN ALGORITHM

In Section 4.4, we gave the definition of an algorithm as a procedure (finite
sequence of instructions ""hich can be mechanically carried out) that tenninates
after a finite number of steps for any input. The earliest algorithm one can think
of is the Euclidean algorithm, for computing the greatest common divisor of
two natural numbers. In 1900, the mathematician David Hilbert, in his famous
address at the International congress of mathematicians in Paris, averred that
every definite mathematical problem must be susceptible for an exact settlement
either in the fonn of an exact answer or by the proof of the impossibility of its
solution. He identified 23 mathematical problems as a challenge for future
mathematicians; only ten of the problems have been solved so far.

Hilbert's tenth problem was to devise 'a process according to which it can
be detennined by a finite number of operations'. whether a polynomial over
Z has an integral root. (He did not use the word 'algorithm' but he meant the
same.) This was not answered until 1970.

The fonnal definition of algorithm emerged after the works of Alan Turing
and Alanzo Church in 1936. The Church-Turing thesis states that any
alEOlithmic procedure that can be carried out by a human or a computer, can
also be carried out by a Turing machine. Thus the Turing machine arose as
an ideal theoretical model for an algorithm. The Turing machine provided a
machinery to mathematicians for attacking the Hilberts' tenth problem, The
problem can be restated as follows: does there exist a TM that can accept a

309

31 0 ~ Theory of Computer Science

polynomial over n variables if it has an integral root and reject the polynomial
if it does not have one,

In 1970, Yuri Matijasevic. after studying the work of Martin Davis, Hilary
Putnam and Julia Robinson showed that no such algorithm (TUling machine)
exists for testing whether a polynomial over n vmiables has integral roots. Now
it is universally accepted by computer scientists that Turing machine is a
mathematical model of an algorithm.

10.2 DECIDABILITY

We are familiar with the recursive definition of a function or a set. We also
have the definitions of recursively enumerable set~ and recursive sets (refer to
Section 4.4). The notion of a recursively enumerable set (or language) and a
recursive set (or language) existed even before the dawn of computers.

Now these terms are also defined using Turing machines. When a Turing
machine reaches a final state. it ·halts.' We can also say that a Turing machine
M halts when Ai reaches a state q and a current symbol a to be scanned so
that O(q. a) is undefined. There are TMs that never halt on some inputs in any
one of these \vays, So we make a distinction between the languages accepted
by a TM that halts on all input strings and a TM that never halts on some input
strings.

DefInition 10.1 A language L ~ 2> is recursively enumerable if there exists
a TM M. such that L = rUvf).

DefInition 10.2 A language L ~ I* is recurslve if there exists some
TM M that satisfies the following two conditions.

(i) If V\' E L then M accepts H' (that is. reaches an accepting state on
processing !-t') and halts.

(ii) If 11' ~ L then Ai eventually halts. without reaching an accepting state.

Note: Definition 10.2 formalizes the notion of an 'algorithm'. An algorithm,
in the usual sense, is a well-defined sequence of steps that always terminates
and produces an answer. The Conditions (i) and (ii) of Definition 10.2 assure
us that the TM always halts. accepting H' under Condition (i) and not accepting
under Condition (ii). So a TM. defining a recursive language (Definition 10.2)
always halts eventually just as an algorithm eventually terminates.

A problem with only two answers Yes/No can be considered as a language
L. An instance of the problem with the answer 'Yes' can be considered as an
element of the corresponding language L; an instance with ans,ver 'No' is
considered as an element not in L.

DefInition 10.3 A problem with tvvo answers (Yes/No) is decidable if the
corresponding language is recursive. In this case, the language L is also called
decidable.

Chapter 10: Decidability and Recursively Enumerable Languages I;! 311

Definition 10.4 A problemflanguage is undecidable if it is not decidable.

Note: A decidable problem is called a solvable problem and an undecidable
problem an unsolvable problem by some authors.

10.3 DECIDABLE LANGUAGES

In this section we consider the decidability of regular and context-free
languages.

First of all. we consider the problem of testing whether a detenninistic
finite automaton accepts a given input string lV,

Definition 10.5

Am; = {(B, lV) IB accepts the input string w}

Theorem 10.1 ADFA is decidable.

Proof To prove the theorem. we have to construct a TM that always halts
and also accepts ADf.-\' We describe the TM M using high level description
(refer to Section 9.5). Note that a DFM B always ends in some state of B after
n transitions for an input string of length n.

We defme a TM M as follows:

1. Let B be a DFA and w an input string. (B, w) is an input for the Turing
machine M.

2. Simulate B and input H' in the TM M.
3. If the simulation ends in an accepting state of B. then M accepts w.

If it ends in a nonaccepting state of B, then M rejects w.

We can discuss a few implementation details regarding steps 1. 2 and 3
above. The input (B, H') for 1\1 is represented by representing the five
components Q, L, 8, qo, f by strings of L* and input string W E L*. M checks
whether (B. w) is a valid input. If not. it rejectes (B, w) and halts. If (B, w)

is a valid input. ['vi writes the initial state qo and the leftmost input symbol of
w. It updates the state using 0 and then reads the next symbol in w. This
explains step 2.

If the simulation ends in an accepting state w' then M accepts (B, w)..
Otherwise, Iv! rejects (B, IV). This is the description of step 3.

It is evident that M accepts (B, if and only if H' is accepted by the
DFA B. I

Definition 10.6

ACFG = {(G, w) i the context-free grammar G accepts the input string w}

Theorem 10.2 ACFG IS decidable.

Proof We convert a CFG into Chomsky 110lmal form. Then any derivation
of H' of length k requires 2k - 1 steps if the grammar is in C]\IF (refer
to Example 6.18). So for checking whether the input string ft of length k is

312 g, Theory ofComputer Science

in L(G), it is enough to check derivations in 2k - 1 steps. We know that there
are only finitely many derivations in 2k - 1 steps. Now we design a TM M
that halts as follows.

1. Let G be a CFG in Chomsky normal form and w an input string.
(G, w) is an input for M.

2. If k = 0, list all the single-step delivations. If k '* 0, list all the
derivations with 2k - 1 steps.

3. If any of the derivations in step 2 generates the given string 'v, M
accepts (G, w). Otherwise M rejects.

The implementation of steps 1-3 is similar to the steps in Theorem 10.1.
(G, w) is represented by representing the four components ViV, L, P, S of G
and input string w. The next step of the derivation is got by the production
to be applied.

M accepts (G, w) if and only if w is accepted by the CFG G.
In Theorem 4.3, we proved that a context-sensitive language is recursive.

The main idea of the proof of Theorem 4.3 was to construct a sequence
{Wo, WI> ..., Wd of subsets of (VV u L)*, that terminates after a finite
number of iterations. The given string w E L* is in L(G) if and only if w E

WI.' With this idea in mind we can prove the decidability of the context
sensitive language. I

Defmition 10.7 ACSG = {(G, ,v) I the context-sensitive grammar G accepts
the input string w}.

Theroem 10.3 ACSG is decidable.

Proof The proof is a modification of the proof of Theorem 10.2. In
Theorem 10.2, we considered derivations with 2k - 1 steps for testing whether
an input string of length k was in L(G). In the case of context-sensitive

grammar we construct Wi = {a E (Vv u L)* IS ~ a in i or fewer steps and

Ia I :; n}. There exists a natural number k such that WI. =Wk+1 =Wk+2 =...
(refer to proof of Theorem 4.3).

So w E L(G) if and only if W E Wk' The construction of WI. is the key
idea used in the construction of a TM accepting AcsG . Now we can design a
Turing machine M as follows:

1. Let G be a context-sensitive grammar and w an input string of length
n. Then (G, w) is an input for TM.

2. Construct Wo = {S}. W'+l = W, U {{3 E (Vv u L)* I there exists
ai E Wi such that a=>{3 and I{3! :; n}. Continue until WI. = Wk+1

for some k. (This is possible by Theorem 4.3.)
3. If W E WI., 'v E L(G) and M accepts (G, w); otherwise M rejects

(G, w). I

Note: If cid denotes the class of all decidable languages over L, then

Chapter 10: Decidahility and Recursively Enumerahle Languages l;l 313

10.4 UNDECIDABLE LANGUAGES

In this section we prove the existence of languages that are not recursively
enumerable and address the undecidability of recursively enumerable
languages.

Theorem 10.4 There exists a language over 2: that is not recursively
enumerable.

Proof A language L is recursively enumerable if there exists a TM M such
that L =T(M). As L is finite, 2:* is countable (that is, there exists a one-to
one correspondence between 2:* and N).

As a Turing machine M is a 7-tuple (Q. 2:, f', 8, qo. b, F) and each
member of the 7-tuple is a finite set M can be encoded as a string. So the
set I of all TMs is countable.

Let J: be the set of all languages over 2:. Then a member of J: is a subset

of P (Note that P is infinite even though I is finite), We show that ;i is
uncountable (that is, an infinite set not in one-to correspondence with N).

We prove this by contradiction. If ;L were countable then J: can be
written as a sequence {L[, L2• L3, ... }. We \\Tite 2:* as a sequence {11']. W2'

We, }. So L i can be represented as an infinite binary sequence XnXi2Xi3' ..

where

r1 ihv} E L;

lO otherwise

Using this representation we write L; as an infinite binary sequence.

L] XI]X12X 13 x]i

L, x2I x ::x :3 x:}

L i Xil Xi2Xi3 xi)

Fig. 10.1 Representation of T

We define a subset L of 2:* by the binary sequence ."].":."3 ... where Y; =
1 - Xii' If Xii =0, Yi = 1 and if Xii = I, ."; =O. Thus according to our assumption
the subset L of I* represented by the infinite binary sequence YIY:Y3 ...

should be Lk for some natural number k. But L =f. Lt. since Wk E L if and only
if Hk It: Lk~ This contradicts our assumption that ci is countable. Therefore 1.
is uncountable. As J is countable. ;L should have some members not
corresponding to any TM in 1. This proves the existence of a language over
2: tnat is not recursively enumerable. I

Defmition 10.8 ATM = {(M, w) IThe TM M accepts w}.

D(D»

314 l;i Theory of Computer Science

Theorem 10.5 An! is undecidable.

Proof We can prove that i'inl is recursively enumerable. Construct a TM U
as follows:

(M, 11') is an input to U. Simulate M on w. If M enters an accepting state,
L! accepts (lyl, wL Hence ADl is recursively enumerable. We prove that AT1I1

is undecidable by contradiction. We assume that Anl is decidable by a TM H
that eventually halts on all inputs. Then

{
accept if M accepts 1'1i

H(M, 1V) = reject if M does not accept Hi

We construct a new TM D with H as subroutine. D calls H to determine
what M does when it receives the input (M;, the encoded description of M as
a string. Based on the received information on (M, (I"1» , D rejects M if M
accepts (M) and accepts 1vl if 1v1 rejects (IVI). D is described as follows:

1, (A1) is an input to D, where (M) is the encoded string representing M.
2, D calls H to run on (M, (A1)
3. D rejects (M) if H accepts (M, (M» and accepts (M) if H rejects

(lvI, (AI».
Now step 3 can be described as follows:

raccept if M does not accept (M)
D(UvI») = ~'" lreject if M accepts (M)

Let us look at the action of D on the input (D). According to the
construction of D,

raccept if D does not accept (D)
== ~lreject if D accepts (0)

This means D accepts (D) if D does not accept (D), which is a
contradiction. Hence ATM is undecidable.

The Turing machine U used in the proof of Theorem 10.5 is called the
universal Turing machine. U is called universal since it is simulating any other
TUling machine.

10.5 HALTING PROBLEM OF TURING MACHINE

In this section \ve introduce the reduction technique. This technique is used to
prove the undecidability of halting problem of Turing machine.

We say that problem A is reducible to problem B if a solution to problem
B can be used to solve problem A.

For example, if A is the problem. of finding some root of x4
- 3xc + 2 = 0

and B is the problem of finding some root of XC - 2 = 0, then A is reducible
to B. As XC - 2 is a factor of x-+ - 3xc + 2. a root of XC - 2 = 0 is also a root
of x4

- 3.\-" + :2 = O.

Chapter 10: Decidability and Recursively Enumerable Languages ~ 315

Note: If A is reducible to Band B is decidable then A is decidable. If A is
reducible to B and A is undecidable. then B is undecidable.

Theorem 10.6 HALTrM = {(M, w) IThe Turing machine M halts on input
11'} is undecidable.

Proof We assume that HALTTM is decidable, and get a contradiction. Let M j

be the TM such that T(MI) = HALTrM and let M I halt eventually on aU
(M, w). We construct a TM M2 as follows:

1. For M2, (M, w) is an input.
2. The TM M I acts on (M, w).

3. If M I rejects (M, w) then M 2 rejects (M, ,v).
4. If MI accepts (M, w), simulate the TM M on the input string w until

M halts.
5. If M has accepted w, M2 accepts (M, w); otherwise M 2 rejects (M, w).

When MI accepts (M, iV) (in step 4), the Turing machine M halts on w.

In this case either an accepting state q or a state q' such that D(q', a) is
undefined tiU some symbol a in w is reached. In the first case (the first
alternative of step 5) M2 accepts (M. w). In the second case (the second
alternative of step 5) M2 rejects (M, w).

It follows from the definition of M 2 that M 2 halts eventually.

Also, T(M2) = {(M, vv) IThe Turing machine accepts w}

= ATM

This is a contradiction since An.1 is undecidable.

10.6 THE POST CORRESPONDENCE PROBLEM

The Post Correspondence Problem (PCP) was first introduced by Emil Post
in 1946. Later, the problem was found to have many applications in the theory
of formal languages. The problem over an alphabet 2: belongs to a class of
yes/no problems and is stated as foUows: Consider the two lists x =(Xl' .. Xn),

Y = (YI ... Yn) of nonempty strings over an alphabet 2: = {O, 1}. The PCP
is to determine whether or not there exist i lo ..•, im, where 1 S ii S n, such
that

Note: The indices ij ' s need not be distinct and m may be greater than n.
Also, if there exists a solution to PCP, there exist infinitely many solutions.

EXAMPLE 10.1

Does the PCP with two lists x = (b, bab3, ba) and v = (b3
, ba, a) have a

solution?

316 !!O! Theory ofComputer Science

Solution

We have to determine whether or not there exists a sequence of substrings of
x such that the string formed by this sequence and the string formed by the
sequence of corresponding substrings of yare identical. The required sequence
is given by i1 = 2, i2 = 1, i3 = 1, i4 = 3, i.e. (2, 1, 1,3), and m = 4. The
corresponding strings are

=

Thus the PCP has a solution.

EXAMPLE 10.2

Y2 Yl Yl Y3

Prove that PCP with two lists x = (01, 1, 1), Y = (012
, 10, 11) has no solution.

Solution

For each substring Xi E X and Yi E)', we have IXi I < IYi I for all i. Hence
the string generated by a sequence of substrings of X is shorter than the string
generated by the sequence of corresponding substrings of y. Therefore, the PCP
has no solution.

Note: If the first substring used in PCP is always Xl and Yb then the PCP
is known as the Modified Post Correspondence Problem.

EXAMPLE 10.3

Explain how a Post Correspondence Problem can be treated as a game of
dominoes.

Solution

The PCP may be thought of as a game of dominoes in the following way: Let
each domino contain some Xi in the upper-half, and the corresponding
substring of Y in the lower-half. A typical domino is shown as

o upper-half

~ lower-half

The PCP is equivalent to placing the dominoes one after another as a
sequence (of course repetitions are allowed). To win the game, the same string
should appear in the upper-half and in the lower-half. So winning the game
is equivalent to a solution of the PCP.

I

Chapter 10: Decidability and Recursively Enumerable Languages Q 317

We state the following theorem by Emil Post without proof.

Theorem 10.7 The PCP over 2: for 12:1 ;::: 2 is unsolvable.

It is possible to reduce the PCP to many classes of two outputs
(yes/no) problems in formal language theory. The following results can be
proved by the reduction technique applied to PCP.

1. If L 1 and L2 are any two context-free languages (type 2) over an
alphabet 2: and 12:1 ;::: 2, there is no algorithm to determine whether or
not
(a) L] (l L2 = 0,
(b) L 1 (l L2 is a context-free language,
(c) L] k L2, and
(d) L1 = L2•

2. If G is a context-sensitive grammar (type 1), there is no algorithm to
determine whether or not
(a) L(G) = 0,
(b) L(G) is infinite, and
(c) Xo E L(G) for a fixed string Xcr

3. If G is a type 0 grammar, there is no algorithm to determine whether
or not any string x E 2:* is in L(G).

10.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 10.4

If L is a recursive language over 2:, show that I (I is defined as 2:* - L) is
also recursive.

Solution

As L is recursive, there is a Turing machine M that halts and T(M) =L. We
have to construct a TM M 1, such that T(M1) = [and M 1 eventually halts.

M] is obtained by modifying M as follows:

1. Accepting states of M are made nonaccepting states of MI'
2. Let M 1 have a new state qf After reaching qfi M] does not move in

further transitions.
3. If q is a nonaccepting state of M and 6(q, x) is not defined, add a

transition from q to qf for lvh

As M halts, M 1 also halts. (If M reaches an accepting state on w, then M]
d.~es not accept wand halts and conversely.)

Also M] accepts w if and only if M does not accept w. So I is recursive.

318);;,] Theory ofComputer Science

EXAMPLE 10.5

If Land L are both recursively enumerable. show that Land L are recursive.

Solution

Let M 1 and M 2 be two TMs such that L =T(M1) and L =T(M2). We construct
a new two-tape TM M that simulates M] on one tape and M 2 on the otheL

If the input string w of M is in L, then M1 accepts wand we declare that
M accepts w. If w E [, then M2 accepts wand we declare that M halts without
accepting. Thus in both cases, M eventually halts. By the construction of M
it is clear that T(lvl) = T(M]) = L Hence L is recursive. We can show that
[is recursive, either by applying Example lOA or by interchanging the roles
of M) and M 2 in defining acceptance by M.

EXAMPLE 10.6

Show that ATM is not recursively enumerable.

Solution

We have already seen that Anv! is recursively enumerable (by Theorem 10.5).
If it TIY! were also recursively enumerable, then ATM is recursive (by
Example 10.5). This ~ a contradiction since ATM is not recursive by
Theorem 10.5. Hence A TM is not recursively enumerable,

EXAMPLE 10.7

Show that the union of two recursively enumerable languages is recursively
enumerable and the union of two recursive languages is recursive.

Solution

Let L 1 and L2 be two recursive languages and M 1, M 2 be the corresponding
TMs that halt. We design a Th1 M as a two-tape TM as follows:

1. w is an input string to M.
2. M copies ,von its second tape.
3. M simulates M) on the first tape. If w is accepted by M10 then M

accepts ,v.
4. M simulates /'112 on the second tape. If w is accepted by M2, then M

accepts w.

M always halts for any input w.
Tnus LJ U L2 = T(M) and hence L J U L2 is recursive.
If L) and L2 are recursively enumerable. then the same conclusion gives

a proof for L) U L2 to be recursively enumerable. As M 1 and M 2 need not
halt, M need not halt.

Chapter 10: Decidability and Recursively Enumerable Languages Q 319

SELF-TEST

1. What is the difference between a recursive language and a recursively
enumerable language?

2. The DFA M is given by

M = ({Cia, % Q2, Ci3}, to, 1}, 0, qo, {Qo})

where {) is defined by the transition Table 10.1.

TABLE 10.1 Transition Table for Self-Test 2

State 0

-,>@ q2 q1
q1 q3 qo
q2 qo q3
q3 q1 q2

Answer the following:
(a) Is (A1, 001101) in AuA?
(b) Is (M, 01010101) in ADL;.?
(c) Does M E ADFA?
(d) Find w such that (lvI, w) E ADFA .

3. What do you mean by saying that the halting problem of TM is
undecidable?

4. Describe ADFA, ACFG , AcsG, ATM , and HALTTlv1 '

5. Give one language from each of ;i rl, ;i ell, ot c,I'

6. Give a language

(a) which is in ;f csl but not in ;r: rl

(b) which is in ;f ell but not in J: c51

(c) which is in ;i ell but not in ;irl'

EXERCISES

10.1 Describe the Euclid's algorithm for finding the greatest common
divisor of two natural numbers.

10.2 Show that A NDFA = {(B, w) IB is an NDFA and B accepts w} IS

decidable.

10.3 Show that EDFA = {M IM is a DFA and T(M) = 0} is decidable.

10.4 Show that EQDFA = {(A, B) IA and Bare DFAs and T(A) = T(B)} IS

decidable

10.5 Show that ECFG is decidable (ECFG is defined in a way similar to that
of EDFA).

320 Q, Theory ofComputer Science

10.6 Give an example of a language that is not recursive but recursively
enumerable.

10.7 Do there exist languages that are not recursively enumerable?

10.8 Let L be a language over L. Show that only one of the following are
possible for Land r.
(a) Both Land r are recursive.
(b) Neither L nor r is recursive.
(c) L is recursively enumerable but L is not.
(d) r is recursively enumerable but L is not.

10.9 What is the difference between ATM and HALTTM?

10.10 Show that the set of all real numbers between 0 and 1 is uncountable.
(A set S is uncountable if S is infinite and there is no one-to-one
correspondence between S and the set of all natural numbers.)

10.11 Why should one study undecidability?

10.12 Prove that the recursiveness problem of type 0 grammar is unsolvable.

10.13 Prove that there exists a Turing machine M for which the halting
problem is unsolvable.

10.14 Show that there exists a Turing machine Mover {O, I} and a state qm
such that there is no algorithm to determine whether or not M will enter
the state ql11 when it begins with a given ill.

10.15 Prove that the problem of determining whether or not a TM over {O, 1}
will ever print the symbol 1, with a given tape configuration, is
unsolvable.

10.16 (a) Show that {x I x is a set and x ~ x} is not a set. (Note that this
seems to be well-defined. This is one version of Russell's paradox.)

(b) A village barber shaves those who do not shave themselves but no
others. Can he achieve his goal? For example, who is to shave the
barber? (This is a popular version of Russell's paradox.)

Hints: (a) Let S = {x I x be a set and x ~ x}. If S were a set, then S E S or
S ~ S. If S ~ S by the 'definition' of S, then S E S. On the other
hand, if S E S by the 'definition' of S, then S ~ S. Thus we can
neither assert that S ~ S nor S E S. (This is Russell's paradox.)
Therefore, S is not a set.

(b) Let S = {x Ix be a person and x does not shave himself}. Let b
denote the barber. Examine whether b E S. (The argument is
similar to that given for (a).) It will be instructive to read the proof
of HP of Turing machines and this example, in order to grasp the
similarity.

10.17 Comment on the following: "We have developed an algorithm so
complicated that no Turing machine can be constructed to execute the
algorithm no matter how much (tape) space and time is allowed."

Chapter 10: Decidability and Recursively Enumerable Languages g 321

10.18 Prove that PCP is solvable if Il: I = l.

10.19 Let x =(Xl' .. X,,) and Y =(YI ... y,,) be two lists of nonempty strings
over l: and Il: I 2: 2. (i) Is PCP solvable for n = I? (ii) Is PCP solvable
for n = 2?

10.20 Prove that the PCP with {(01, 011), (1, 10), (I,ll)} has no solution.
(Here, Xl = 01, X2 = 1, X3 = 1, YI = 011, 1'2 = 10, Y3 = 11.)

10.21 Show that the PCP with S = {(O, 10), (1 20, 03), (021, IOn has no
solution. [Hint: No pair has common nonempty initial substring.]

10.22 Does the PCP with X = (b3
, ab2

) and Y = (b3
, bab3

) have a solution?

10.23 Find at least three solutions to PCP defined by the dominoes:

1

10m

I
10

10.24 (a) Can you simulate a Turing machine on a general-purpose
computer? Explain.

(b) Can you simulate a general-purpose computer on a Turing
machine'? Explain.

	Binder1
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013

