

In the early 1930 s . mathematicians were trying to define effective computation. Alan Turing in 1936. Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel in 1965 gave various models using the concept of Turing machines, λ-calculus, combinatory logic, post-systems and μ-recursive functions. It is interesting to note that these were formulated much before the electro-mechanical/electronic computers were devised. Although these formalisms, describing effective computations, are dissimilar, they turn to be equivalent.

Among these formalisms, the Turing's formulation is accepted as a model of algorithm or computation. The Church-Turing thesis states that any algorithmic procedure that can be carried out by human beings/computer can be carried out by a Turing machine. It has been universally accepted by computer scientists that the Turing machine provides an ideal theoretical model of a computer.

Turing machines are useful in several ways. As an automaton, the Turing machine is the most general model. It accepts type-0 languages. It can also be used for computing functions. It turns out to be a mathematical model of partial recursive functions. Turing machines are also used for determining the undecidability of certain languages and measuring the space and time complexity of problems. These are the topics of discussion in this chapter and some of the subsequent chapters.

For formalizing computability, Turing assumed that, while computing, a person writes symbols on a one-dimensional paper (instead of a twodimensional paper as is usually done) which can be viewed as a tape divided into cells.

One scans the cells one at a time and usually performs one of the three simple operations, namely (i) writing a new symbol in the cell being currently
scanned, (ii) moving to the cell left of the present cell. and (iii) moving to the cell right of the present cell. With these observations in mind, Turing proposed his 'computing machine.'

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W (read/write) head. It has one tape which is divided into a number of cells. The block diagram of the basic model for the Turing machine is given in Fig. 9.1.

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite state automaton are effected by the R/W head which can examine one cell at a time. In one move, the machine examines the present symbol under the R/W head on the tape and the present state of an automaton to determine
(i) a new symbol to be written on the tape in the cell under the R/W head,
(ii) a motion of the R/W head along the tape: either the head moves one cell left (L). or one cell right (R),
(iii) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:
Definition 9.1 A Turing machine M is a 7-tuple, namely ($\left.Q, \Sigma, \Gamma, \delta, q_{0} . b, F\right)$, where

1. Q is a finite nonempty set of states,
2. Γ is a finite nonempty set of tape symbols,
3. $b \in \Gamma$ is the blank,
4. Σ is a nonempty set of input symbols and is a subset of Γ and $b \notin \Sigma$,
5. δ is the transition function mapping (q, x) onto $\left(q^{\prime}, y, D\right)$ where D denotes the direction of movement of R / W head: $D=L$ or R according as the movement is to the left or right.
6. $q_{0} \in Q$ is the initial state, and
7. $F \subseteq Q$ is the set of final states.

Notes: (1) The acceptability of a string is decided by the reachability from the initial state to some final state. So the final states are also called the accepting states.
(2) δ may not be defined for some elements of $Q \times \Gamma$.

9.2 REPRESENTATION OF TURING MACHINES

We can describe a Turing machine employing (i) instantaneous descriptions using move-relations, (ii) transition table, and (iii) transition diagram (transition graph).

9.2.1 Representation by Instantaneous Descriptions

'Snapshots' of a Turing machine in action can be used to describe a Turing machine. These give 'instantaneous descriptions' of a Turing machine. We have defined instantaneous descriptions of a pda in terms of the current state, the input string to be processed, and the topmost symbol of the pushdown store. But the input string to be processed is not sufficient to be defined as the ID of a Turing machine, for the R/W head can move to the left as well. So an ID of a Turing machine is defined in terms of the entire input string and the current state.

Definition 9.2 An ID of a Turing machine M is a string $a \beta \gamma$, where β is the present state of M, the entire input string is split as $\alpha \gamma$, the first symbol of γ is the current symbol a under the R/W head and γ has all the subsequent symbols of the input string, and the string α is the substring of the input string formed by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous description.

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the R / W head is a_{1}. The present state is q_{3}. So a_{1} is written to the right of q_{3}. The nonblank symbols to the left of a_{1} form the string $a_{4} a_{1} a_{2} a_{1} a_{2} a_{2}$, which is written to the left of q_{3}. The sequence of nonblank symbols to the right of a_{1} is $a_{4} a_{2}$. Thus the D is as given in Fig. 9.3.

Fig. 9.3 Representation of ID.
Notes: (1) For constructing the ID, we simply insert the current state in the input string to the left of the symbol under the R/W head.
(2) We observe that the blank symbol may occur as part of the left or right substring.

Moves in a TM

As in the case of pushdown automata, $\delta(q, x)$ induces a change in ID of the Turing machine. We call this change in ID a move.

Suppose $\delta\left(q, x_{i}\right)=(p, y, L)$. The input string to be processed is $x_{1} x_{2} \ldots x_{n}$, and the present symbol under the R / W head is x_{i}. So the ID before processing x_{i} is

$$
x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n}
$$

After processing x_{i}, the resulting ID is

$$
x_{1} \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_{n}
$$

This change of ID is represented by

$$
x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{i} \ldots x_{i-2} p x_{i-1} y x_{i+1} \ldots x_{n}
$$

If $i=1$, the resulting D is $p y x_{2} x_{3} \ldots x_{n}$.
If $\delta\left(q, x_{i}\right)=(p, y, R)$, then the change of ID is represented by

$$
x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} y p x_{i+1} \ldots x_{n}
$$

If $i=n$, the resulting ID is $x_{1} x_{2} \ldots x_{n-1}$ y $p b$.
We can denote an ID by I_{j} for some $j . I_{j} \models I_{k}$ defines a relation among IDs. So the symbol \vdash^{*} denotes the reflexive-transitive closure of the relation \vdash. In particular, $I_{j} \vdash^{*} I_{j}$. Also, if $I_{1} \vdash^{*} I_{n}$, then we can split this as $I_{1} \vdash I_{2} \vdash$ $I_{3} \vdash \ldots \vdash I_{n}$ for some $\operatorname{Ds}, I_{2}, \ldots, I_{n-1}$.

Note: The description of moves by IDs is very much useful to represent the processing of input strings.

9.2.2 Representation by Transition Table

We give the definition of δ in the form of a table called the transition table. If $\delta(q, a)=(\gamma, \alpha . \beta)$, we write $\alpha \beta \gamma$ under the α-column and in the q-row. So if
we get $\alpha \beta \gamma$ in the table, it means that α is written in the current cell, β gives the movement of the head (L or R) and γ denotes the new state into which the Turing machine enters.

Consider, for example, a Turing machine with five states q_{1}, \ldots, q_{5}, where q_{1} is the initial state and q_{5} is the (only) final state. The tape symbols are 0,1 and b. The transition table given in Table 9.1 describes δ.

TABLE 9.1 Transition Table of a Turing Machine

Present state	Tape symbol		
	b	0	1
$\rightarrow q_{1}$	$1 L q_{2}$	$0 R q_{1}$	
q_{2}	$b R q_{3}$	$0 L q_{2}$	$1 L q_{2}$
q_{3}		$b R q_{4}$	$b R q_{5}$
q_{4}	$0 R q_{5}$	$0 R q_{4}$	$1 R q_{4}$
q_{5}	$0 L q_{2}$		

As in Chapter 3, the initial state is marked with \rightarrow and the final state with 0 .

EXAMPLE 9.2

Consider the TM description given in Table 9.1. Draw the computation sequence of the input string 00 .

Solution

We describe the computation sequence in terms of the contents of the tape and the current state. If the string in the tape is $a_{1} a_{2} \ldots a_{j} a_{j+1} \ldots a_{m}$ and the TM in state q is to read a_{j+1}, then we write $a_{1} a_{2} \ldots a_{j} q a_{j+1} \ldots a_{m}$.

For the input string $00 b$, we get the following sequence:

$$
\begin{aligned}
& \quad q_{1} 00 b \vdash 0 q_{1} 0 b \vdash 00 q_{1} b \vdash 0 q_{2} 01 \vdash q_{2} 001 \\
& \vdash q_{2} b 001 \vdash b q_{3} 001 \vdash b b q_{4} 01 \vdash b b_{0} q^{4} \vdash b b_{0} 1 q_{4} b \\
& \vdash b b 010 q_{5} \vdash b b 01 q_{2} 00 \vdash b b 0 q_{2} 100 \vdash b b q_{2} 0100 \\
& \vdash b q_{2} b 0100 \vdash b b q_{3} 0100 \vdash b b b q_{4} 100 \vdash b b b_{1} q_{4} 00 \\
& \vdash b b b 10 q_{4} 0 \vdash b b b 100 q_{4} b \vdash b b b 1000 q_{5} b \\
& \vdash b b b 100 q_{2} 00 \vdash b b b 10 q_{2} 000 \vdash b b b 1 q_{2} 0000 \\
& \vdash b b b q_{2} 10000 \vdash b b q_{2} b 10000 \vdash b b b q_{3} 10000 \vdash b b b b q_{5} 0000
\end{aligned}
$$

9.2.3 Representation by Transition Diagram

We can use the transition systems introduced in Chapter 3 to represent Turing machines. The states are represented by vertices. Directed edges are used to
represent transition of states. The labels are triples of the form (α, β, γ), where $\alpha, \beta . \in \Gamma$ and $\gamma \in\{L, R\}$. When there is a directed edge from q_{i} to q_{j} with label ($\alpha, \beta, \gamma)$, it means that

$$
\delta\left(q_{i}, \alpha\right)=\left(q_{j}, \beta, \gamma\right)
$$

During the processing of an input string, suppose the Turing machine enters q_{i} and the R/W head scans the (present) symbol α. As a result, the symbol β is written in the cell under the R/W head. The R/W head moves to the left or to the right, depending on γ, and the new state is q_{j}.

Every edge in the transition system can be represented by a 5 -tuple (q_{i}, α, β, γ, q_{j}). So each Turing machine can be described by the sequence of 5 -tuples representing all the directed edges. The initial state is indicated by \rightarrow and any final state is marked with 0 .

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain the computation sequence of M for processing the input string 0011.

Fig. 9.4 Transition system for M.

Solution

The initial tape input is $b 0011 b$. Let us assume that M is in state q_{1} and the R/W head scans 0 (the first 0). We can represent this as in Fig. 9.5. The figure can be represented by

$$
\stackrel{\downarrow}{b 0011 b} \underset{q_{1}}{ }
$$

From Fig. 9.4 we see that there is a directed edge from q_{1} to q_{2} with the label $(0, x, R)$. So the current symbol 0 is replaced by x and the head moves right. The new state is q_{2}. Thus. we get

$$
\underset{\substack{\downarrow \\ q_{2} \\ q_{2}}}{ }
$$

The change brought about by processing the symbol 0 can be represented as

Fig. 9.5 TM processing 0011.
The entire computation sequence reads as follows:

9.3 LANGUAGE ACCEPTABILITY BY TURING MACHINES

Let us consider the Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, b, F\right)$. A string w in Σ^{*} is said to be accepted by M if $q_{0} w: F^{*} \alpha_{1} p \alpha_{2}$ for some $p \in F$ and α_{1}, α_{2} $\in \Gamma^{*}$.
M does not accept w if the machine M either halts in a nonaccepting state or does not halt.

It may be noted that though there are other equivalent definitions of acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transition table given in Table 9.2. Describe the processing of (a) 011, (b) 0011, (c) 001 using IDs. Which of the above strings are accepted by M ?

TABLE 9.2 Transition Table for Example 9.4

Present state	Tape symbol				
	0	1	x	y	b
$\rightarrow q_{1}$	$x R q_{2}$				$b R q_{5}$
q_{2}	$0 R q_{2}$	$y L q_{3}$		$y R q_{2}$	
q_{3}	$0 L q_{4}$		$x R q_{5}$	$y L q_{3}$	
q_{4}	$0 L q_{4}$		$x R q_{1}$		
q_{5}				$y x R q_{5}$	$b R q_{6}$
$\left(q_{6}\right.$					

Solution

(a) $q_{1} 011 \vdash x q_{2} 11 \vdash q_{3} x y 1 \vdash x q_{5} y 1 \vdash x q_{5} 1$

As $\delta\left(q_{5}, 1\right)$ is not defined, M halts; so the input string 011 is not accepted.
(b) $q_{1} 0011 \vdash x q_{2} 011 \vdash x 0 q_{2} 11 \vdash x q_{3} 0 y 1 \vdash q_{4} x 0 y 1 \vdash x q_{1} 0 y 1$.

$$
\begin{aligned}
& \vdash x x q_{2} y 1 \vdash x x y q_{2} 1 \vdash x x q_{3} y y \vdash x q_{3} x y \vdash x q_{1} y y \\
& \vdash x x q_{5} y \vdash x x y q_{5} b \vdash x y_{y} y q_{6}
\end{aligned}
$$

M halts. As q_{6} is an accepting state, the input string 0011 is accepted by M.
(c) $q_{1} 001 \vdash x q_{2} 01 \vdash x 0 q_{2} 1 \vdash x q_{3} 0 y \vdash q_{4} x 0 y$

$$
\vdash x q_{1} 0 y \vdash x x q_{2} y \vdash x x y q_{2}
$$

M halts. As q_{2} is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.
(i) The fundamental objective in scanning a symbol by the R/W head is to 'know' what to do in the future. The machine must remember the past symbols scanned. The Turing machine can remember this by going to the next unique state.
(ii) The number of states must be minimized. This can be achieved by changing the states only when there is a change in the written symbol or when there is a change in the movement of the R / W head. We shall explain the design by a simple example.

EXAMPLE 9.5

Design a Turing machine to recognize all strings consisting of an even number of l's.

Solution

The construction is made by defining moves in the following manner:
(a) q_{1} is the initial state. M enters the state q_{2} on scanning 1 and writes b.
(b) If M is in state q_{2} and scans 1 , it enters q, and writes b.
(c) q_{1} is the only accepting state.

So M accepts a string if it exhausts all the input symbols and finally is in state q_{1}. Symbolically,

$$
M=\left(\left\{q_{1}, q_{2}\right\},\{1, b\},\{1, b\}, \delta, q, b .\left\{q_{1}\right\}\right)
$$

where δ is defined by Table 9.3.
TABLE 9.3 Transition Table for Example 9.5

Present state	1
$\rightarrow\left(q_{i}\right.$	$b q_{2} R$
q_{2}	$b q_{1} R$

Let us obtain the computation sequence of 11 . Thus, $q_{1} 11 \vdash b q_{2} 1-b b q_{1}$. As q_{1} is an accepting state. 11 is accepted. $q_{1} 111 \vdash b q_{2} 11 \vdash b b q_{1} 1 \vdash b b b q_{2}$. M halts and as q_{2} is not an accepting state, 111 is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over $\{1, b\}$ which can compute a concatenation function over $\Sigma=\{1\}$. If a pair of words $\left(w_{1}, w_{2}\right)$ is the input, the output has to be $w_{1} w_{2}$.

Solution

Let us assume that the two words w_{1} and w_{2} are written initially on the input tape separated by the symbol b. For example, if $w_{1}=11, w_{2}=111$, then the input and output tapes are as shown in Fig. 9.6.

b	1	1	b	1	1	1	b

b	1	1	1	1	1	b	b

Fig. 9.6 Input and output tapes.
We observe that the main task is to remove the symbol b. This can be done in the following manner:
(a) The separating symbol b is found and replaced by 1 .
(b) The rightmost 1 is found and replaced by a blank b.
(c) The R/W head returns to the starting position.

A computation is illustrated in Table 9.4.
TABLE 9.4 Computation for 11 bl 11

$$
\begin{aligned}
& q_{0} 11 b 111 \vdash 1 q_{0} 1 b 111-11 q_{0} b 111-111 q_{1} 111 \\
& \vdash-1111 q_{1} 11-11111 q_{1} 1 \vdash 111111 q_{1} b \vdash 1111 q_{2} 1 b \\
& \vdash 1111 q_{3} 1 b b \vdash 111 q_{3} 11 b b \vdash 11 q_{3} 111 b b \vdash 1 q_{3} 1111 b b \\
& \vdash q_{3} 11111 b b \vdash q_{3} b 11111 b b \vdash b q_{f} 11111 b b
\end{aligned}
$$

From the above computation sequence for the input string $11 b 111$, we can construct the transition table given in Table 9.5.

For the input string $1 b 1$, the computation sequence is given as

$$
\begin{gathered}
q_{0} 1 b 1 \vdash 1 q_{0} b 1-11 q_{1} 1-111 q_{1} b \vdash 11 q_{2} b \vdash-1 q_{3} 1 b b \\
\vdash-q_{3} 11 b b \vdash q_{3} b 11 b b \vdash b q_{f} 11 b b
\end{gathered}
$$

TABLE 9.5 Transition Table for Example 9.6

Present state	Tape symbol	
1	$1 R q_{0}$	b
q_{0}	$1 R q_{1}$	$b L q_{2}$
q_{1}	$b L q_{3}$	-
q_{2}	$1 L q_{3}$	$b R q_{f}$
q_{3}	-	-

EXAMPLE 9.7

Design a TM that accepts

$$
\left\{0^{\prime \prime} 1^{\prime n} \mid n \geq 1\right\}
$$

Solution

We require the following moves:
(a) If the leftmost symbol in the given input string w is 0 , replace it by x and move right till we encounter a leftmost 1 in w. Change it to y and move backwards.
(b) Repeat (a) with the leftmost 0 . If we move back and forth and no 0 or 1 remains. move to a final state.
(c) For strings not in the form $0^{n} 1^{n}$, the resulting state has to be nonfinal.

Keeping these ideas in our mind, we construct a TM M as follows:
where

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, b, F\right)
$$

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{f}\right) \\
& F=\left\{q_{f}\right\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0,1, x, y, b\}
\end{aligned}
$$

The transition diagram is given in Fig. 9.7. M accepts $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. The moves for 0011 and 010 are given below just to familiarize the moves of M to the reader.

Fig. 9.7 Transition diagram for Example 9.7.

$$
\begin{aligned}
q_{0} 0011 & \vdash x q_{1} 011-x 0 q_{1} 11-x q_{2} 0 y 1 \\
& \vdash q_{2} x 0 y 1-x q_{0} 0 y 1-x x q_{1} y 1-x x y q_{1} 1 \\
& \vdash x x q_{2} y y \vdash x q_{2} x y y \vdash x x q_{0} y y \vdash x y q_{3} y \\
& \vdash x x y q_{3}=x x y q_{3} b \vdash x x y b q_{4} b
\end{aligned}
$$

Hence 0011 is accepted by M.

$$
q_{0} 010 \vdash x q_{1} 10 \vdash q_{2} x y 0 \vdash x q_{0} y 0 \vdash x y q_{3} 0
$$

As $\delta\left(q_{3} .0\right)$ is not defined, M halts. So 010 is not accepted by M.

EXAMPLE 9.8

Design a Turing machine M to recognize the language

$$
\left\{1^{n} 2^{n} 3^{n} \mid n \geq 1\right\}
$$

Solution

Before designing the required Turing machine M, let us evolve a procedure for processing the input string 112233. After processing, we require the ID to be of the form $b b b b b b q_{7}$. The processing is done by using five steps:

Step $1 \quad q_{1}$ is the initial state. The R/W head scans the leftmost 1 , replaces 1 by b, and moves to the right. M enters q_{2}.

Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves to the right. M enters q_{3}.
Step 3 On scanning the leftmost 3, the R/W head replaces 3 by b, and moves to the right. M enters q_{4}.
Step 4 After scanning the rightmost 3, the R/W heads moves to the left until it finds the leftmost 1 . As a result. the leftmost 1,2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until all 1's, 2's and 3's are replaced by blanks. The change of IDs due to processing of 112233 is given as

$$
\begin{gathered}
q_{1} 112233-b q_{2} 12233-b 1 q_{2} 2233-b 1 b q_{3} 233-b 1 b 2 q_{3} 33 \\
\vdash-b 1 b 2 b q_{+} 3-b 1 b_{2} q_{5} b 3-b 1 b q_{5} 2 b 3-b 1 q_{5} b 2 b 3-b q_{5} 1 b 2 b 3 \\
\vdash q_{6} b 1 b 2 b 3-b q_{1} 1 b 2 b 3-b b q_{2} b 2 b 3-b b b q_{2} 2 b 3 \\
\vdash b b b b q_{3} b 3-b b b b b q_{3} 3-b b b b b b q_{4} b-b b b b b q_{7} b b
\end{gathered}
$$

Thus,

$$
q_{1} 112233 \vdash^{*} q_{7} b b b b b b
$$

As q_{7} is an accepting state, the input string 112233 is accepted.
Now we can construct the transition table for M. It is given in Table 9.6.
TABLE 9.6 Transition Table for Example 9.7

Present state	Input tape symbol			
	1	2	3	b
$\rightarrow q_{1}$	$b R q_{2}$			$b R q_{1}$
q_{2}	$1 R q_{2}$	$b R q_{3}$	$b R q_{2}$	
q_{3}		$2 R q_{3}$	$b R q_{4}$	$b R q_{3}$
q_{4}			$3 L q_{5}$	$b L q_{7}$
q_{5}	$1 L q_{5}$	$2 L q_{5}$		$b L q_{5}$
q_{6}			$b R q_{1}$	
q_{7}				

It can be seen from the table that strings other than those of the form $0^{n} 1^{n} 2^{n}$ are not accepted. It is advisable to compute the computation sequence for strings like $1223,1123,1233$ and then see that these strings are rejected by M.

9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function δ was described as a partial function (function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is not defined for all (q, x)) by spelling out the current state, the input symbol, the resulting state, the tape symbol replacing the input symbol and the movement of R/W head to the left or right. We can call this a formal description of a TM. Just as we have the machine language and higher level languages for a computer, we can have a higher level of description, called the implementation description. In this case we describe the movement of the head, the symbol stored etc. in English. For example, a single instruction like 'move to right till the end of the input string' requires several moves. A single instruction in the implementation description is equivalent to several moves of a standard TM (Hereafter a standard TM refers to the TM defined in Definition 9.1). At a higher level we can give instructions in English language even without specifying the state or transition function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the construction of TMs easier. The Turing machine defined in Section 9.1 is called the standard Turing machine.

9.6.1 Turing Machine with Stationary Head

In the definition of a TM we defined $\delta(q, a)$ as $\left(q^{\prime}, y, D\right)$ where $D=L$ or R. So the head moves to the left or right after reading an input symbol. Suppose, we want to include the option that the head can continue to be in the same cell for some input symbol. Then we define $\delta(q, a)$ as $\left(q^{\prime}, y, S\right)$. This means that the TM, on reading the input symbol a, changes the state to q^{\prime} and writes y in the current cell in place of a and continues to remain in the same cell. In terms of IDs,

$$
w q a x \vdash w q^{\prime} y x
$$

Of course, this move can be simulated by the standard TM with two moves, namely

$$
w q a x \vdash w y q^{\prime \prime} x \vdash w q^{\prime} y x
$$

That is, $\delta(q, a)=\left(q^{\prime}, y, S\right)$ is replaced by $\delta(q, a)=\left(q^{\prime \prime}, y, R\right)$ and $\delta\left(q^{\prime \prime}, X\right)=$ (q, y, L) for any tape symbol X.

Thus in this model $\delta(q, a)=\left(q^{\prime}, y, D\right)$ where $D=L, R$ or S.

9.6.2 Storace in the State

We are using a state, whether it is of a FA or pda or TM, to 'remember' things. We can use a state to store a symbol as well. So the state becomes a pair (q, a) where q is the state (in the usual sense) and a is the tape symbol stored in (q, a). So the new set of states becomes $Q \times \Gamma$.

EXAMPLE 9.9

Construct a TM that accepts the language $01^{*}+10^{*}$.

Solution

We have to construct a TM that remembers the first symbol and checks that it does not appear afterwards in the input string. So we require two states, q_{0}, q_{1}. The tape symbols are 0,1 and b. So the TM, having the 'storage facility in state . is

$$
M=\left(\left\{q_{0}, q_{1}\right\} \times\{0.1, b\},\{0,1\},\{0,1, b\}, \delta,\left[q_{0}, b\right],\left\{\left[q_{1}, b\right]\right\}\right)
$$

We describe δ by its implementation description.

1. In the initial state, M is in q_{0} and has b in its data portion. On seeing the first symbol of the input sting w, M moves right, enters the state q_{1} and the first symbol, say a, it has seen.
2. M is now in $\left[q_{1}, a\right]$. (i) If its next symbol is b, M enters $\left[q_{1}, b\right]$, an accepting state. (ii) If the next symbol is a, M halts without reaching the final state (i.e. δ is not defined). (iii) If the next symbol is \bar{a} ($\bar{a}=0$ if $a=1$ and $\bar{a}=1$ if $a=0$). M moves right without changing state.
3. Step 2 is repeated until M reaches $\left[q_{1}, b\right]$ or halts (δ is not defined for an input symbol in w).

9.6.3 Multiple Track Turing Machine

In the case of TM defined earlier, a single tape was used. In a multiple track TM. a single tape is assumed to be divided into several tracks. Now the tape alphabet is required to consist of k-tuples of tape symbols, k being the number of tracks. Hence the only difference between the standard TM and the TM with multiple tracks is the set of tape symbols. In the case of the standard Turing machine, tape symbols are elements of Γ; in the case of TM with multiple track, it is Γ^{k}. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has to be done repeatedly. We can implement this facility for TMs as well.

First, a TM program for the subroutine is written. This will have an initial state and a 'return' state. After reaching the return state, there is a temporary halt. For using a subroutine, new states are introduced. When there is a need for calling the subroutine, moves are effected to enter the initial state for the subroutine (when the return state of the subroutine is reached) and to return to the main program of TM.

We use this concept to design a TM for performing multiplication of two positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m, n), m, n being given, the positive integers are represented by $0^{m} 10^{n}$. M starts with $0^{m} 10^{n}$ in its tape. At the end of the computation, $0^{m n}(\mathrm{mn}$ in unary representation) surrounded by b 's is obtained as the ouput.

The major steps in the construction are as follows:

1. $0^{\prime \prime 1} 10^{n} 1$ is placed on the tape (the output will be written after the rightmost 1).
2. The leftmost 0 is erased.
3. A block of $n 0$'s is copied onto the right end.
4. Steps 2 and 3 are repeated m times and $10^{n 1} 10^{m n}$ is obtained on the tape.
5. The prefix $10^{m 1} 1$ of $10^{\prime \prime} 10^{m m}$ is erased. leaving the product $m n$ as the output.
For every 0 in $0^{m} \cdot 0^{n}$ is added onto the right end. This requires repetition of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is q_{1} and the final state is $q_{5} . \delta$ is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COPY

State	Tape symbol			
	0	1	2	b
q_{1}	$q_{2} 2 R$	$q_{4} 1 L$	-	-
q_{2}	$q_{2} O R$	$q_{2} 1 R$	-	$q_{3} O L$
q_{3}	$q_{3} O L$	$q_{3} 1 L$	$q_{1} 2 R$	-
q_{4}	-	$q_{5} 1 R$	$q_{4} O L$	-
q_{5}	-	-	-	-

The Turing machine M has the initial state q_{0}. The initial ID for M is $q_{0} 0^{\prime \prime} 10^{n} 1$. On seeing 0 , the following moves take place (q_{6} is a state of M). $q_{0} 0^{n} 10^{n} 1 \vdash b q_{6} 0^{m-1} 10^{n} 1 \vdash^{*} b 0^{m-1} q_{6} 10^{n} 1 \vdash b 0^{n-1} 1 q_{1} 0^{n} 1 . q_{1}$ is the initial state
of COPY. The TM M_{1} performs the subroutine COPY. The following moves take place for $M_{1}: q_{1} 0^{n} 1 \downharpoonright 2 q_{2} 0^{n-1} 1 \nLeftarrow 20^{n-1} 1 q_{3} b \vdash 20^{n-1} q_{3} 10 \vdash^{*} 2 q_{1} 0^{n-1} 10$. After exhausting 0 's. q_{1} encounters 1. M_{1} moves to state q_{4}. All 2 's are converted back to 0 's and M_{1} halts in q_{5}. The TM M picks up the computation by starting from q_{5}. The q_{0} and q_{6} are the states of M. Additional states are created to check whether each 0 in 0^{n} gives rise to 0^{m} at the end of the rightmost 1 in the input string. Once this is over, M erases $10^{n} 1$ and finds $0^{n m}$ in the input tape.
M can be defined by

$$
M=\left(\left\{q_{0}, q_{1}, \ldots, q_{12}\right\},\{0,1\},\{0,1,2, b\}, \delta, q_{0}, b,\left\{q_{12}\right\}\right)
$$

where δ is defined by Table 9.8 .
TABLE 9.8 Transition Table for Example 9.10

	0	1	2	b
q_{0}	$q_{8} b R$	-	-	-
q_{6}	$q_{5} 0 R$	$q_{1} 1 R$	-	-
q_{5}	$q_{7} 0 L$	-	-	-
q_{7}	-	$q_{8} 1 L$	-	-
q_{8}	$q_{9} 0 L$	-	-	$q_{10} b R$
q_{9}	$q_{9} O L$	-	-	$q_{0} b R$
q_{10}	-	$q_{11} b R$	-	-
q_{11}	$q_{11} b R$	$q_{12} b R$	-	-

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. $\delta(q, a)$ is either a single triple (p, y, D), where $D=R$ or L, or is not defined. We introduce two new models of TM:
(i) a TM with more than one tape
(ii) a TM where $\delta(q, a)=\left\{\left(p_{1}, y_{1}, D_{1}\right),\left(p_{2}, y_{2}, D_{2}\right), \ldots,\left(p_{r}, y_{r}, D_{i}\right)\right\}$. The first model is called a multitape TM and the second a nondeterministic TM.

9.7.1 Multitape Turing Machines

A multitape TM has a finite set Q of states, an initial state q_{0}, a subset F of Q called the set of final states. a set P of tape symbols, a new symbol b, not in P called the blank symbol. (We assume that $\Sigma \subseteq \Gamma$ and $b \notin \Sigma$.)

There are k tapes, each divided into cells. The first tape holds the input string w. Initially, all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input w. All the other heads can be placed at any cell initially.
δ is a partial function from $Q \times \Gamma^{k}$ into $Q \times \Gamma^{k} \times\{L, R, S\}^{k}$. We use implementation description to define δ. Figure 9.8 represents a multitape TM. A move depends on the current state and k tape symbols under k tape heads.

Fig. 9.8 Multitape Turing machine.
In a typical move:
(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.
(iii) Each tape head moves to the left or right or remains stationary. The heads move independently: some move to the left, some to the right and the remaining heads do not move.

The initial ID has the initial state q_{0}, the input string w in the first tape (input tape), empty strings of b 's in the remaining $k-1$ tapes. An accepting ID has a final state, some strings in each of the k tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by some single-tape TM (that is, the standard TM).
Proof Suppose a language L is accepted by a k-tape TM M. We simulate M with a single-tape TM with $2 k$ tracks. The second. fourth, ..., (2k)th tracks hold the contents of the k-tapes. The first. third, ..., $(2 k-1)$ th tracks hold a head marker (a symbol say X) to indicate the position of the respective tape head. We give an "implementation description' of the simulation of M with a singletape TM M_{1}. We give it for the case $k=2$. The construction can be extended to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A_{2} and B_{5} are the current symbols to be scanned and so the headmarker X is above the two symbols.

Fig. 9.9 Simulation of multitape TM.
Initially the contents of tapes 1 and 2 of M are stored in the second and fourth tracks of M_{1}. The headmarkers of the first and third tracks are at the cells containing the first symbol.

To simulate a move of M, the $2 k$-track TM M_{1} has to visit the two headmarkers and store the scanned symbols in its control. Keeping track of the headmarkers visited and those to be visited is achieved by keeping a count and storing it in the finite control of M_{1}. Note that the finite control of M_{1} has also the information about the states of M and its moves. After visiting both head markers, M_{1} knows the tape symbols being scanned by the two heads of M.

Now M_{1} revisits each of the headmarkers:
(i) It changes the tape symbol in the corresponding track of M_{1} based on the information regarding the move of M corresponding to the state (of M) and the tape symbol in the corresponding tape M.
(ii) It moves the headmarkers to the left or right.
(iii) M_{1} changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M_{1} is ready to implement its next move based on the revised positions of its headmarkers and the changed state available in its control.
M_{1} accepts a string w if the new state of M, as recorded in its control at the end of the processing of ω, is a final state of M.

Definition 9.3 Let M be a TM and w an input string. The running time of M on input w, is the number of steps that M takes before halting. If M does not halt on an input string w, then the running time of M on w is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested in computing the running time, only when the TM halts.
Definition 9.4 The time complexity of TM M is the function $T(n), n$ being the input size, where $T(n)$ is defined as the maximum of the running time of M over all inputs w of size n.
Theorem 9.2 If M_{1} is the single-tape $T M$ simulating multitape TM M, then the time taken by M_{1} to simulate n moves of M is $O\left(n^{2}\right)$.

Proof Let M be a k-tape TM. After n moves of M, the head markers of M_{1} will be separated by $2 n$ cells or less. (At the worst. one tape movement can be to the left by n cells and another can be to the right by n cells. In this case the tape headmarkers are separated by $2 n$ cells. In the other cases, the 'gap' between them is less). To simulate a move of M, the TM M_{1} must visit all the k headmarkers. If M starts with the leftmost headmarker, M_{1} will go through all the headmarkers by moving right by at most $2 n$ cells. To simulate the change in each tape. M_{1} has to move left by at most $2 n$ cells; to simulate changes in k tapes, it requires at most two moves in the reverse direction for each tape.

Thus the total number of moves by M_{1} for simulating one move of M is atmost $4 n+2 k$. ($2 n$ moves to right for locating all headmarkers, $2 n+2 k$ moves to the left for simulating the change in the content of k tapes.) So the number of moves of M_{1} for simulating n moves of M is $n(4 n+2 k)$. As the constant k is independent of n, the time taken by M_{1} is $O\left(n^{2}\right)$.

9.7.2 Nondeterministic Turing Machines

In the case of standard Turing machines (hereafter we refer to this machine as deterministic TM). $\delta\left(q_{1}, a\right)$ was defined (for some elements of $Q \times \Gamma$) as an element of $Q \times \Gamma \times\{L, R\}$. Now we extend the definition of δ. In a nondeterministic TM. $\delta\left(q_{1}, a\right)$ is defined as a subset of $Q \times \Gamma \times\{L, R\}$.

Definition 9.5 A nondeterministic Turing machine is a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_{0}$, b, F) where

1. Q is a finite nonempty set of states
2. Γ is a finite nonempty set of tape symbols
3. $b \in \Gamma$ is called the blank symbol
4. Σ is a nonempty subset of Γ. called the set of input symbols. We assume that $b \notin \Sigma$.
5. q_{0} is the initial state
6. $F \subseteq Q$ is the set of fimal states
7. δ is a partial function from $Q \times \Gamma$ into the power set of $Q \times \Gamma \times$ $\{L, R\}$.
Note: If $q \in Q$ and $x \in \Gamma$ and $\delta(q, x)=\left\{\left(q_{1}, y_{1}, D_{1}\right) .\left(q_{2}, y_{2}, D_{2}\right) \ldots\right.$, $\left.\left(q_{n}, y_{n} . D_{n}\right)\right\}$ then the NTM can chose any one of the actions defined by $\left(q_{i}, y_{i}, D_{i}\right)$ for $i=1,2, \ldots n$.

We can also express this in terms of - relation. If $\delta(q . x)=\left\{\left(q_{i}, y_{i}, D_{i}\right)\right\}$ $i=1,2 \ldots, n\}$ then the D zqxw can change to any one of the $n \mathrm{D}$ specified by the n-element set $\delta(q, x)$.

Suppose $\delta(q, x)=\left\{\left(q_{1}, y_{1}, L\right),\left(q_{2}, y_{2}, R\right) .\left(q_{3}, y_{3}, L\right)\right\}$. Then

$$
\begin{aligned}
& z_{1} z_{2} \ldots z_{k} q x_{k+1} \ldots z_{n} \vdash z_{z_{2}} \ldots z_{k-1} q_{1} z_{k} y_{1} z_{k+1} \ldots z_{n} \\
& z_{1} z_{2} \ldots z_{k} q x_{k+1} \ldots z_{n} \vdash z_{z_{2}} \ldots z_{k} z_{2} q_{2} z_{k+1} \ldots z_{n} \\
& z_{1} z_{2} \ldots z_{k} q x_{k+1} \ldots z_{n} \vdash z_{z_{2}} \ldots z_{k-1} q_{3} z_{k} y_{3} z_{k+1} \ldots z_{n l} .
\end{aligned}
$$

or
or

So on reading the input symbol, the NTM M whose current ID is $z_{1} z_{2} \ldots$ $z_{k} q x z_{k+1} \ldots \bar{z}_{n}$ can change to any one of the three IDs given earlier.
Remark When $\delta(q, x)=\left\{\left(q_{i}, y_{i}, D_{i}\right) \mid i=1,2, \ldots, n\right\}$ then NTM chooses any one of the n triples totally (that is, it cannot take a state from one triple, another tape symbol from a second triple and a third $D(L$ or $R)$ from a third triple, etc.

Definition $9.6 w \in \Sigma^{*}$ is accepted by a nondeterministic TM M if $q_{0} w ⺊^{*}$ $x q_{f}$ for some final state q_{f}.

The set of all strings accepted by M is denoted by $T(M)$.
Note: As in the case of NDFA, an ID of the form $x q y$ (for some $q \notin F$) may be reached as the result of applying the input string w. But w is accepted by M as long as there is some sequence of moves leading to an $I D$ with an accepting state. It does not matter that there are other sequences of moves leading to an ID with a nonfinal state or TM halts without processing the entire input string.
Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M_{1} such that $T(M)=T\left(M_{1}\right)$.
Proof We construct M_{1} as a multitape TM. Each symbol in the input string leads to a change in ID. M_{1} should be able to reach all IDs and stop when an ID containing a final state is reached. So the first tape is used to store IDs of M as a sequence and also the state of M. These IDs are separated by the symbol * (included as a tape symbol). The current ID is known by marking an x along with the ID-separator * (The symbol * marked with x is a new tape symbol.) All IDs to the left of the current one have been explored already and so can be ignored subsequently. Note that the current $I D$ is decided by the current input symbol of w.

Figure 9.10 illustrates the deterministic TM M_{1}.

Fig. 9.10 The deterministic TM simulating M.
To process the current ID, M_{1} performs the following steps.

1. M_{1} examines the state and the scanned symbol of the current ID. Using the knowledge of moves of M stored in the finite control of M_{1}, M_{1} checks whether the state in the current ID is an accepting state of M. In this case M_{1} accepts and stops simulating M.
2. If the state q say in the current ID xqay is not an accepting state of M_{\mid} and $\delta(q, a)$ has k triples, M_{1} copies the ID $x q a y$ in the second tape and makes k copies of this ID at the end of the sequence of IDs in tape 2 .
3. M_{1} modifies these $k \mathrm{Ds}$ in tape 2 according to the k choices given by $\delta(q, a)$.
4. M_{1} returns to the marked current ID. erases the mark x and marks the next ID-separator * with x (to the $*$ which is to the left of the next D to be processed). Then M_{1} goes back to step 1 .
M_{1} stops when an accepting state of M is reached in step 1 .
Now M_{1} accepts an input string w only when it is able to find that M has entered an accepting state, after a finite number of moves. This is clear from the simulated sequence of moves of M_{1} (ending in step 1)

We have to prove that M_{1} will eventually reach an accepting D (that is, an ID having an accepting state of M) if M enters an accepting ID after n moves. Note each move of M is simulated by several moves of M_{1}.

Let m be the maximum number of choices that M has for various (q, a) 's. (It is possible to find m since we have only finite number of pairs in $Q \times \Gamma$.) So for each initial ID of M, there are at most m IDs that M can reach after one move, at most $m^{2} \mathrm{ID}$ shat M can reach after two moves. and so on. So corresponding to n moves of M, there are at most $1+m+m^{2}+\cdots+m^{n}$ moves of M_{1}. Hence the number of ID to be explored by M_{1} is at most $n m^{n}$.

We assume that M_{1} explores these IDs . These D s have a tree structure having the initial ID as its root. We can apply breadth-first search of the nodes of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2 , and so on.) If M reaches an accepting \mathbb{D} after n moves. then M_{1} has to search atmost $n m^{n}$ IDs before reaching an accepting ID. So, if M accepts w, then M_{1} also accepts w (eventually). Hence $T(M)=T\left(M_{1}\right)$.

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is accepted by the model, and (b) the infinite storage is restricted in size but not in accessibility to the storage in comparison with the Turing machine model. It is called the linear bounded automaton (LBA) because a linear function is used to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and develop the relation between the linear bounded automata and context-sensitive languages. It should be noted that the study of context-sensitive languages is important from practical point of view because many compiler languages lie between context-sensitive and context-free languages.

A linear bounded automaton is a nondeterministic Turing machine which has a single tape whose length is not infinite but bounded by a linear function
of the length of the input string. The models can be described formally by the following set format:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, b, \not \subset \$, F\right)
$$

All the symbols have the same meaning as in the basic model of Turing machines with the difference that the input alphabet Σ contains two special symbols $\mathbb{\$}$ and $\$. \mathbb{T}$ is called the left-end marker which is entered in the leftmost cell of the input tape and prevents the R/W head from getting off the left end of the tape. $\$$ is called the right-end marker which is entered in the rightmost cell of the input tape and prevents the R / W head from getting off the right end of the tape. Both the endmarkers should not appear on any other cell within the input tape, and the R/W head should not print any other symbol over both the endmarkers.

Let us consider the input string w with $|w|=n-2$. The input string w can be recognized by an LBA if it can also be recognized by a Turing machine using no more than $k n$ cells of input tape, where k is a constant specified in the description of LBA. The value of k does not depend on the input string but is purely a property of the machine. Whenever we process any string in LBA, we shall assume that the input string is enclosed within the endmarkers \mathbb{Q} and $\$$. The above model of LBA can be represented by the block diagram of Fig. 9.11. There are two tapes: one is called the input tape, and the other, working tape. On the input tape the head never prints and never moves to the left. On the working tape the head can modify the contents in any way, without any restriction.

Fig. 9.11 Model of linear bounded automaton.
In the case of LBA, an ID is denoted by (q, w, k), where $q \in Q, w \in \Gamma$ and k is some integer between 1 and n. The transition of Ds is similar except
that k changes to $k-1$ if the R / W head moves to the left and to $k+1$ if the head moves to the right.

The language accepted by LBA is defined as the set

$$
\left\{w \in(\Sigma-\{\Phi, \$\}) *\left(q_{0}, \not \subset w \$, 1\right) \mid(q, \alpha, i)\right.
$$

for some $q \in F$ and for some integer i between 1 and $n\}$.
Note: As a null string can be represented either by the absence of input string or by a completely blank tape, an LBA may accept the null string.

9.8.1 Relation Between LBA and Context-sensitive Languages

The set of strings accepted by nondeterministic LBA is the set of strings generated by the context-sensitive grammars, excluding the null strings. Now we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by a given Turing machine M. The productions are constructed in two steps. In step 1 we construct productions which transform the string $\left[q_{1} \Phi w \$\right]$ into the string $\left[q_{2} b\right]$, where q_{1} is the initial state, q_{2} is an accepting state, \mathbb{q} is the leftendmarker, and $\$$ is the right-endmarker. The grammar obtained by applying step 1 is called the transformational grammar. In step 2 we obtain inverse production rules by reversing the productions of the transformational grammar to get the required type 0 grammar G. The construction is in such a way that w is accepted by M if and only if w is in $L(G)$.

9.9.1 Construction of a Grammar Corresponding TO TM

For understanding the construction. we have to note that a transition of D corresponds to a production. We enclose IDs within brackets. So acceptance of w by M corresponds to the transformation of initial ID $\left[q_{1} \Phi w \$\right]$ into $\left[q_{2} b\right]$. Also, the 'length' of ID may change if the R/W head reaches the left-end or the right-end. i.e. when the left-hand side or the right-hand side bracket is reached. So we get productions corresponding to transition of IDs with (i) no change in length, and (ii) change in length. We assume that the transition table is given.
(D) The LBA productions are

$$
\begin{array}{ll}
\Phi q_{4} \$ \rightarrow q_{4} \$, & \Phi q_{4} \$ \rightarrow \$ q_{4} \\
\$ q_{4} \$ \rightarrow q_{4} \$, & \Phi q_{4} \rightarrow q_{4} \tag{9.12}\\
0 q_{4} \$ \rightarrow q_{4} \$, & \\
1 q_{4} \$ \rightarrow q_{4} \$ &
\end{array}
$$

Step 2 The productions of the generative grammar are obtained by reversing the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of 1 s.

Solution

We design a TM so that we have ww after copying $w \in\{1\}^{*}$. Define M by

$$
M=\left(\left\{q_{0} \cdot q_{1}, q_{2}, q_{3}\right\} \cdot\{1\},\{1 . b\}, \delta, q_{0}, b,\left\{q_{3}\right\}\right)
$$

where δ is defined by Table 9.11.
TABLE 9.11 Transition Table for Example 9.13

Fresent state	Tape symbol		
	1	b	a
q_{0}	$q_{0} a R$	$q_{1} b L$	-
q_{1}	$q_{1} 1 L$	$q_{3} b R$	$q_{2} 1 R$
q_{2}	$q_{2} 1 R$	$q_{1} 1 L$	-
q_{3}	-	-	-

The procedure is simple.
M replaces every 1 by the symbol a. Then M replaces the rightmost a by 1. It goes to the right end of the string and writes a 1 there. Thus M has added a 1 for the rightmost 1 in the input string w. This process can be repeated.
M reaches q_{1} after replacing all 1 's by a 's and reading the blank at the end of the input string. After replacing a by $1, M$ reaches $q_{2} . M$ reaches q_{3} at the end of the process and halts. If $w=1^{n}$. than we have $1^{2 n}$ at the end of the computation. A sample computation is given below.

$$
\begin{aligned}
& q_{0} 11 \vdash a q_{0} 1 \vdash a a q_{0} b \vdash a q_{1} a \\
& \vdash a 1 q_{2} b \vdash a q_{1} 11 \vdash q_{1} a 11 \\
& \vdash 1 q_{2} 11 \vdash 11 q_{2} 1 \vdash 111 q_{2} b \\
& \vdash 11 q_{2} 11 \vdash 1 q_{1} 111 \\
& \vdash q_{1} 1111 \vdash q_{1} b 1111 \vdash q_{2} 1111
\end{aligned}
$$

EXAMPLE 9.14

Construct a TM to accept the set L of all strings over $\{0,1\}$ ending with 010 .

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to recognize L. Figure 9.12 gives a DFA accepting L.

Fig. 9.12 DFA for Example 9.14.
Converting this DFA to a TM is simple. In a DFA M, the move is always to the right. So the TM's move will always be to the right. Also M reads the input symbol and changes state. So the TM M_{1} does the same; it reads an input symbol, does not change the symbol and changes state. At the end of the computation, the TM sees the first blank b and changes to its final state. The initial ID of M_{1} is $q_{0} w$. By defining $\delta\left(q_{0}, b\right)=\left(q_{1}, b, R\right), M_{1}$ reaches the initial state of $M . M_{1}$ can be described by Fig. 9.13.

Fig. 9.13 TM for Example 9.14.
Note: q_{5} is the unique final state of M_{1}. By comparing Figs. 9.12 and 9.13 it is easy to see that strings of L are accepted by M_{1}.

EXAMPLE 9.15

Design a TM that reads a string in $\{0,1\}^{*}$ and erases the rightmost symbol.

Solution

The required TM M is given by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} .\{0,1\},\{0,1, b\}, \delta, q_{0}, b,\left\{q_{4}\right\}\right)
$$

where δ is defined by

$$
\begin{array}{lll}
\delta\left(q_{0}, 0\right)=\left(q_{1}, 0, R\right) & \delta\left(q_{0}, 1\right)=\left(q_{1}, 1, R\right) & \left(\mathrm{R}_{1}\right) \\
\delta\left(q_{1}, 0\right)=\left(q_{1}, 0, R\right) & \delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right) & \left(\mathrm{R}_{2}\right) \\
\delta\left(q_{1}, b\right)=\left(q_{2}, b, L\right) & & \left(\mathrm{R}_{3}\right) \\
\delta\left(q_{2}, 0\right)=\left(q_{3}, b, L\right) & \delta\left(q_{2}, 1\right)=\left(q_{3}, b, L\right) & \left(\mathrm{R}_{4}\right) \\
\delta\left(q_{3}, 0\right)=\left(q_{3}, 0, L\right) & \delta\left(q_{3}, 1\right)=\left(q_{3}, 1, L\right) & \left(\mathrm{R}_{5}\right) \\
\delta\left(q_{3}, b\right)=\left(q_{4}, b, R\right) & & \left(\mathrm{R}_{6}\right) \tag{6}
\end{array}
$$

Let w be the input string. By $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{R}_{2}\right), M$ reads the entire input string w. At the end, M is in state q_{1}. On seeing the blank to the right of w, M reaches the state q_{2} and moves left. The rightmost string in w is erased (by $\left(\mathrm{R}_{4}\right)$) and the state becomes q_{3}. Afterwards M moves to the left until it reaches the leftend of w. On seeing the blank b to the right of w, M changes its state to q_{4}, which is the final state of M. From the construction it is clear that the rightmost symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$.

Solution

Let w be an input string in $\{0\}^{*}$. The TM accepting L functions as follows:

1. It writes b (blank symbol) on the leftmost 0 of the input string w. This is done to mark the left-end of w.
2. M reads the symbols of w from left to right and replaces the alternate 0 's with x 's.
3. If the tape contains a single 0 in step $2, M$ accepts w.
4. If the tape contains more than one 0 and the number of 0 's is odd in step $2, M$ rejects w.
5. M returns the head to the left-end of the tape (marked by blank b in step 1).
6. M goes to step 2.

Each iteration of step 2 reduces w to half its size. Also whether the number of 0 's seen is even or odd is known after step 2 . If that number is odd and greater than $1, w$ cannot be $0^{2 n}$ (step 4). In this case M rejects w. If the number of 0 s seen is 1 (step 3), M accepts w (In this case $0^{2^{n}}$ is reduced to 0 in successive stages of step 2).

We define M by

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{f}, q_{t}\right\},\{0\},\{0, x, b\}, \delta, q_{0}, b,\left\{q_{f}\right\}\right)
$$

where δ is defined by Table 9.12.

TABLE 9.12 Transition Table for Example 9.16

Present state	Tape symbol			
	0	b	$x R q_{t}$	
q_{0}	$b R q_{1}$	$b R q_{f}$	$x R q_{t}$	
q_{1}	$x R q_{2}$	$b R q_{4}$	$x R q_{1}$	
q_{2}	$0 R q_{3}$	$b R q_{6}$	$x R q_{2}$	
q_{3}	$x R q_{2}$	$b R q_{1}$	$x R q_{3}$	
q_{4}	$0 L q_{4}$	-	$x L q_{4}$	
q_{f}	-	-	-	
q_{i}	-	-		

From the construction, it is apparent that the states are used to know whether the number of 0 s read is odd or even.

We can see how M processes 0000 .

$$
\begin{aligned}
q_{0} 0000 & \vdash b q_{1} 000 \vdash b x q_{2} 00 \vdash b x q_{3} 0 \vdash b x 0 x q_{2} b \\
& \vdash b x 0 q_{4} x b \vdash b x q_{4} 0 x b \vdash b q_{4} x 0 x b \vdash q_{4} b x 0 x b \\
& \vdash b q_{1} x 0 x b \vdash b x q_{1} 0 x b \vdash b x x q_{2} x b \vdash b x x q_{2} b \\
& \vdash b x x q_{4} x b \vdash b x q_{4} x x b \vdash b q_{4} x x x b \vdash q_{4} b x x x b \\
& \vdash b q_{1} x x x b \vdash b x q_{1} x x b \vdash b x x q_{1} x b \vdash b x x x q_{1} b \\
& \vdash b x x b q_{f} .
\end{aligned}
$$

Hence M accepts w.
Also note that M always halts. If M reaches q_{f}, the input string w is accepted by M. If M reaches q_{r}, w is not accepted by M; in this case M halts in the trap state.

EXAMPLE 9.17

Let $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\{0,1, b\}, \delta, q_{0},\left\{q_{2}\right\}\right)$
where δ is given by

$$
\begin{align*}
& \delta\left(q_{0}, 0\right)=\left(q_{1}, 1, R\right) \tag{1}\\
& \delta\left(q_{1}, 1\right)=\left(q_{0}, 0, R\right) \tag{2}\\
& \delta\left(q_{1}, b\right)=\left(q_{2}, b, R\right) \tag{3}
\end{align*}
$$

Find $T(M)$.

Solution

Let $w \in T(M)$. As $\delta\left(q_{0}, 1\right)$ is not defined, w cannot start with 1 . From $\left(\mathrm{R}_{l}\right)$ and (R_{2}), we can conclude that M starts from q_{0} and comes back to q_{0} after reaching 01.

So, $q_{0}(01)^{n} \vdash^{*}(10)^{n} q_{0}$. Also, $q_{0} 0 b \vdash 1 q_{1} b \vdash 1 b q_{2}$.

So, $(01)^{n} 0 \in T(M)$. Also, $(01)^{n} 0$ is the only string that makes M move from q_{0} to q_{2}. Hence, $T(M)=\left\{(01)^{n} 0 \mid n \geq 0\right\}$.

SELF-TEST

Choose the correct answer to Questions 1-10:

1. For the standard TM:
(a) $\Sigma=\Gamma$
(b) $\Gamma \subseteq \Sigma$
(c) $\Sigma \subseteq \Gamma$
(d) Σ is a proper subset of Γ.
2. In a standard TM, $\delta(q, a), q \in Q, a \in \Gamma$ is
(a) defined for all $(q, a) \in Q \times \Gamma$
(b) defined for some. not necessarily for all $(q, a) \in Q \times \Gamma$
(c) defined for no element (q. a) of $Q \times \Gamma$
(d) a set of triples with more than one element.
3. If $\delta\left(q, x_{i}\right)=(p, y, L)$, then
(a) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{i 1}-x_{1} x_{2} \ldots x_{i-2} p x_{i-1} p x_{i+1} \ldots x_{n}$
(b) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} y p x_{i+1} \ldots x_{n}$
(c) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} \ldots x_{i-2} p x_{i-2} x_{i-1} p x_{i+1} \ldots x_{n}$
(d) $x_{1} x_{2} \ldots x_{i-1} g x_{i} \ldots x_{n} \vdash x_{1} \ldots x_{i+1} p x_{i+2} \ldots x_{n}$
4. If $\delta\left(q, x_{i}\right)=(p, y, R)$, then
(a) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} p p x_{i+1} \ldots x_{n}$
(b) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n}-x_{1} x_{2} \ldots x_{i} p x_{i+1} \ldots x_{n}$
(c) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n}-x_{1} x_{2} \ldots x_{i-1} p x_{i} x_{i+1} \ldots x_{n}$
(d) $x_{1} x_{2} \ldots x_{i-1} q x_{i} \ldots x_{n} \vdash x_{1} x_{2} \ldots x_{i-1} y p x_{i+1} \ldots x_{n}$
5. If $\delta\left(q, x_{1}\right)=(p, y, L)$, then
(a) $q x_{1} x_{2} \ldots x_{n} \vdash p v x_{2} \ldots x_{n}$
(b) $q x_{1} x_{2} \ldots x_{n} \vdash y p x_{2} \ldots x_{n}$
(c) $q x_{1} x_{2} \ldots x_{n} \vdash p b x_{1} \ldots x_{n}$
(d) $q x_{1} x_{2} \ldots x_{n} \vdash p b x_{2} \ldots x_{n}$
6. If $\delta\left(q, x_{n}\right)=(p, y, R)$, then
(a) $x_{1} \ldots x_{n-1} q x_{n} \vdash p x_{2} x_{3} \ldots x_{n}$
(b) $x_{1} \ldots x_{n-1} q x_{n} \not p x_{2} x_{3} \ldots x_{n}$
(c) $x_{1} \ldots x_{n-1} q x_{n} \vdash x_{1} x_{2} \ldots x_{n-1}$ ypb
(d) $x_{1} \ldots x_{n-1} q x_{n} \vdash^{*} x_{1} x_{2} \ldots x_{n-1} y p b$
7. For the TM given in Example 9.6:
(a) $q_{0} 1 b 11 * b q_{f} 11 b b 1$
(b) $q_{0} 1 b 11 \leftarrow b q_{f} 11 b b 1$
(c) $q_{0} 1 b 11-1 q_{0} b 111$
(d) $q_{0} 1 b 11 \longmapsto q_{3} b 11 b b 1$
8. For the TM given in Example 9.4:
(a) 011 is accepted by M
(b) 001 is accepted by M
(c) 00 is accepted by M
(d) 0011 is accepted by M.
9. For the TM given in Example 9.5:
(a) 1 is accepted by M
(b) 11 is accepted by M
(c) 111 is accepted by M
(d) 11111 is accepted by M
10. In a standard $\mathrm{TM}\left(\mathrm{Q}, \Sigma, \Gamma, \delta . q_{0}, b, F\right)$ the blank symbol b is
(a) in $\Sigma-\Gamma$
(b) in $\Gamma-\Sigma$
(c) $\Gamma \cap \Sigma$
(d) none of these

EXERCISES

9.1 Draw the transition diagram of the Turing machine given in Table 9.1.
9.2 Represent the transition function of the Turing machine given in Example 9.2 as a set of quintuples.
9.3 Construct the computation sequence for the input $1 b 11$ for the Turing machine given in Example 9.5.
9.4 Construct the computation sequence for strings $1213,2133,312$ for the Turing machine given in Example 9.8.
9.5 Explain how a Turing machine can be considered as a computer of integer functions (i.e. as one that can compute integer functions; we shall discuss more about this in Chapter 11).
9.6 Design a Turing machine that converts a binary string into its equivalent unary string.
9.7 Construct a Turing machine that enumerates $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
9.8 Construct a Turing machine that can accept the set of all even palindromes over $\{0,1\}$.
9.9 Construct a Turing machine that can accept the strings over $\{0,1\}$ containing even number of 1 's.
9.10 Design a Turing machine to recognize the language $\left\{a^{n} b^{n} c^{m} \mid n, m \geq 1\right\}$.
9.11 Design a Turing machine that can compute proper subtraction, i.e. $m-n$. where m and n are positive integers. $m-n$ is defined as $m-n$ if $m>n$ and 0 if $m \leq n$.

