
Turing Machines
and Linear Bounded
Automata

In the early 1930s. mathematicians were trying to define effective computation.
Alan Turing in 1936. Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel
in 1965 gave various models using the concept of Turing machines, JL-calculus,
combinatory logic, post-systems and p-recursive functions. It is interesting to
note that these were formulated much before the electro-mechanicaVelectronic
computers were devised. Although these formalisms, describing effective
computations. are dissimilar, they tum to be equivalent.

Among these formalisms, the Turing's formulation is accepted as a model
of algorithm or computation. The Church-Turing thesis states that any
algorithmic procedure that can be carried out by human beings/computer can be
carried out by a Turing machine. It has been universally accepted by computer
scientists that the Turing machine provides an ideal theoretical model of a
computer.

Turing machines are useful in several ways. As an automaton, the Turing
machine is the most general model. It accepts type-O languages. It can also be
used for computing functions. It turns out to be a mathematical model of partial
recursive functions. Turing machines are also used for determining the un
decidability of certain languages and measuring the space and time complexity
of problems. These are the topics of discussion in this chapter and some of the
subsequent chapters.

For fonnalizing computability, Turing assumed that, while computing,
a person writes symbols on a one-dimensional paper (instead of a two
d;rnensional paper as is usually done) which can be viewed as a tape divided
into cells.

One scans the cells one at a time and usually performs one of the three
simple operations, namely (i) writing a new symbol in the cell being currently

277

278 l;! Theory of Computer Science

scanned, (ii) moving to the cell left of the present celL and (iii) moving to the
cell light of the present cell. With these observations in mind, Turing proposed
his 'computing machine.'

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W
(read/write) head. It has one tape which is divided into a number of cells. The
block diagram of the basic model for the Turing machine is given in Fig. 9.1.

RIW head

Finite control

Tape divided into cells
and of infinite length

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite
state automaton are effected by the R!W head which can examine one cell at
a time. In one move, the machine examines the present symbol under the
R!W head on the tape and the present state of an automaton to determine

(i) a new symbol to be written on the tape in the cell under the RAY head,
(ii) a motion of the RAY head along the tape: either the head moves one

cell left (L). or one cell right (R),
(iii) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:

DefInition 9.1 A Turing machine M is a 7-tuple, namely (Q, :E, r, 8, qo. b, F),
where

1. Q is a finite nonempty set of states.
') r is a finite nonempty set of tape symbols,
3. b E r is the blank.
4. :E is a nonempty set of input symbols and is a subset of rand b E :E.
5. 8 is the transition function mapping (q, x) onto (qt, y, D) where D

denotes the direction of movement of R!W head: D =L or R according
as the movement is to the left or right.

6. qo E Q is the initial state, and
7. F r;;;; Q is the set of final states.

Chapter 9: Turing Machines and Linear Bounded Automata ~ 279

Notes: (1) The acceptability of a string is decided by the reachability from the
initial state to some final state. So the final states are also called the accepting
states.

(2) (5 may not be defined for some elements of Q x r.

9.2 REPRESENTATION OF TURING MACHINES
We can describe a Turing machine employing (i) instantaneous descriptions
using move-relations. (ii) transition table. and (iii) transition diagram (transition
graph).

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

.Snapshots' of a Turing machine in action can be used to describe a Turing
machine. These give 'instantaneous descriptions' of a Turing machine. We have
defined instantaneous descriptions of a pda in terms of the cUITent state. the
input string to be processed, and the topmost symbol of the pushdown store.
But the input string to be processed is not sufficient to be defined as the ill of
a Turing machine, for the R1\V head can move to the left as well. So an ill of a
Turing machine is defined in terms of the entire input string and the current
state.

Defmition 9.2 An ill of a Turing machine M is a string af3y, where f3 is the
present state of M, the entire input string is split as (Xl, the first symbol of y is
the current symbol (l under the RJW head and y has all the subsequent symbols
of the input string, and the string ex is the substring of the input string formed
by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous
descliption.

~~ .LI_b----,--I_84----,FGJ;J 821 82~ bib I ~?

djIWhead

State
q3

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the RJW head is al' The present state is Q3' So al

is written to the right of Q3' The nonblank symbols to the left of al form the
string a4(lj(l2(lja2L72, which is written to the left of Q3' The sequence of nonblank
symbols to the right of (ll is (14(12. Thus the ill is as given in Fig. 9.3.

280 J;;i, Theory of Computer Science

Left sequence

I 8482 •

Right sequence

Present Symbol under
state RIW head

Fig. 9.3 Representation of 10.

Notes: (1) For constructing the ID, we simply insert the current state in the
input string to the left of the symbol under the RIW head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

Moves in a TM
As in the case of pushdown automata, 8(q, x) induces a change in ID of the
Turing machine. We call this change in ID a move.

Suppose 8(q, Xj) =(P, y, L). The input string to be processed is X1X2 ... Xn,

and the present symbol under the RIW head is Xi' So the ID before processing
Xi is

After processing Xi, the resulting ID is

This change of ID is represented by

If i = 1, the resulting ID is p Y X2 X3 ••. XI/'

If 8(q, xJ = (p, y, R), then the change of ID is represented by

Xj X2'" 'Yi-1q xi'" .In r- X j X2'" Xi-lypXi+l'" x"

If i = 11, the resulting ID is XjX2 ... Xn-l Y P b.
We can denote an ill by Ij for some j. Ij r- 1k defines a relation among IDs.

So the symbol f2- denotes the reflexive-transitive closure of the relation r-'
In particular, Ij f2- Ij . Also, if I] f2- In' then we can split this as II r- 12 r
Io r- ... r- I" for some IDs, 12, ... , 1,,-1'

Note: The description of moves by IDs is very much useful to represent the
processing of input strings.

9.2.2 REPRESENTATION BY TRANSITION TABLE

We give the definition of 8 in the form of a table called the transition table. If
8(q, a) = (y, a. (3). we write a(3yunder the a-column and in the q-row. So if

Chapter 9: Turing Machines and Linear Bounded Automata Q 281

we get exf3y in the table, it means that ex is written in the current cell, f3 gives
the movement of the head (L or R) and y denotes the new state into which the
Turing machine enters.

Consider, for example, a Turing machine with five states qj, ..., qs, where
ql is the initial state and qs is the (only) final state. The tape symbols are 0. 1
and b. The transition table given in Table 9.1 describes 8.

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol

b 0

-'7q1 1Lq2 ORq1

q2 bRq3 OLq2 1Lq2

q3 bRq4 bRq5

q4 ORq5 ORQ4 1RQ4

® OLQ2

As in Chapter 3. the initial state is marked with ~ and the final state
witho.

EXAMPLE 9.2

Consider the TM description given m Table 9.1. Draw the computation
sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and
the current state. If the string in the tape is al(l2 G;(l;+l ... alii and the TM
in state q is to read aj+ 1, then we write a 1a2 G; q (l;+ 1 ••• all/'

For the input string OOb, we get the following sequence:

qt OOb r- Oqt Ob r- OOq,b r- Oq201 r- q2001

r- q2bOOl r- bq3001 r- bbq401 r- bboq41 r- bbo1q4b

r- bbOlOqs r- bb01q200 r- bbOq2100 r- bbq20100

r- bq2bOlOO r- bbq30100 r- bbbq4100 r- bbb j q400

r- bbblOq40 r- bbblOOq4b r- bbblOOOqsb

r- bbb100q200 r- bbb lOq2000 r- bbb 1q20000

r-bbbq210000 r- bbq2b10000 r- bbbq310000 r- bbbbqsOOOO

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing
machines. The states are represented by veltices. Directed edges are used to

282 J;t Theory of Computer Science

represent transition of states. The labels are triples of the form (0::, [3, y), where
0::. [3. E rand y E {L R}. When there is a directed edge from q i to qj with label
(0::, [3. y), it means that

D(qi' 0::) = (qj, [3. y)

During the processing of an input string, suppose the Turing machine enters
qi and the RJW head scans the (present) symbol 0::. As a result the symbol [3
is written in the cell under the RJW head. The RJW head moves to the left: or
to the right depending on y, and the new state is CJj.

Every edge in the transition system can be represented by as-tuple (qi' 0::,

[3, y, qj)' So each Turing machine can be described by the sequence of 5-tuples
representing all the directed edges. The initial state is indicated by ~ and any
final state is marked with o.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain
the computation sequence of M for processing the input string 0011.

(b, b, R)

(y, y, R) (y, y, L) (y,y, R)

(x, x, R)
(0,0, L)

Fig. 9.4 Transition system for M.

Solution

t
bxOllb

The initial tape input is bOOllb. Let us assume that M is in state qj and the
RJW head scans 0 (the first 0). We can represent this as in Fig. 9.5. The figure
can be represented by

t
bOOllb
qj

From Fig. 9.4 we see that there is a directed edge from qj to q2 with the label
(0. x, R). So the current symbol 0 is replaced by x and the head moves right.
The new state is q2' Thus. we get

Chapter 9: Turing Machines and Linear Bounded Automata ~ 283

The change brought about by processing the symbol 0 can be represented as

-t J-
bOOllb (O.x.R) > bxOllb
qj q2

~b
Rrw head

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

J- J- J-
bOOllb (O.x.R! bxOllb (O.O.RI bxOllb) ~

ql q2 q2

J- J- J-
(l.,\'.LI) bxOylb (O.O.L)) bxOylb (x.x.R) bxOvlb)

qo, q4 ql

J-
IO.x.R) 'b b
--~) xxvI

q2

J-
(\'.\'.R)
,.) bxxylb

q2

J-
(1.\'.L)

,) bxxyyb
qj

(".\,LI J- (x ..t.R) b J, (".".R) J,
" >bxxyyb) xxyyb ") bxxyyb

qo, qs qs

(\,. ,.R) J, (b.b.R) J,
") bxxyyb) bxxyybb

qs q6

9.3 LANGUAGE ACCEPTABILITY BY TURING
MACHINES

I F't us consider the Turing machine M = (Q. '2:, 1. (5, qo, b. F). A string w in
'2:* is said to be accepted by M if qoVl' r- (XIP(X2 for some P E F and (x], (X:c

E r*.
M does not accept VI' if the machine M either halts in a nonaccepting state

or does not halt.

284 g Theory of Computer Science

It may be noted that though there are other equivalent definitions of
acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transltlOn table given III

Table 9.2. Describe the processing of (a) OIL (b) 0011, (c) 001 using IDs.
Which of the above stlings are accepted by M?

TABLE 9.2 Transition Table for Example 9.4

Present state
o

xRq2

ORQ2

OLQ4

OLQ4

Tape symbol

x y b

Solution

(a) qjOll f- xq:11 f- q3xy1 f- xqsy1 f- x-.vqs1

As a(qs. 1) is not defined, M halts; so the input string 011 is not accepted.

(b) qjOOll f- xq:011 f- xOq:11 f- xq30y1 f- q~\:Oyl f- xqjOyl.

f-xxq:y1 f- xX)·q:1 f- xxq3YY f- xq3'W y' f- xxqsYy

f- x.x;yqsY· f- xxyyqsb f- xxY.Vbq6

M halts. As q6 is an accepting state, the input string 0011 is accepted by M.

(c) Cf j OOl f- xq:01 f- xOq:1 f- .vq30y f- q4xOy

f- xqlOy f- x.\:q:y f- xxyq:

M halts. As q: is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.

(i) The fundamental objective in scanning a symbol by the RJW head is
to 'kno,," \'ihat to do in the future. The machine must remember the
past symbols scanned. The Turing machine can remember this by
going to the next unique state.

(ii) The number of states must be minimized. This can be achieved by
changing the states only when there is a change in the written symbol
or when there is a change in the movement of the RJW head. We shall
explain the design by a simple example.

Chapter 9: Turing Machines and Linear Bounded Automata g 285

EXAMPLE 9.5

Design a TUling machine to recognize all stlings consisting of an even number
of 1's.

Solution

The construction is made by defining moves in the following manner:
(a) ql is the initial state. M enters the state q2 on scanning 1 and writes b.
(b) If M is in state q2 and scans 1, it enters q, and writes b.
(c) q] is the only accepting state.

So M accepts a stJing if it exhausts all the input symbols and finally is in
state qj. Symbolically,

M = ({qj, q2}, {I. b}, {l, b}, 8, q, b. {qd)

\"here 8 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state

Let us obtain the computation sequence of 11. Thus, q j ll f- bq21 f- bbql'
As ql is an accepting state. 11 is accepted. qllil f- bq2 11 f- bbq]l f- bbbq2'
Af halts and as q2 is not an accepting state, III is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over {I. b} which can compute a concatenation
function over L = {I}. If a pair of words (Wj. 11'2) is the input. the output has
to be W(H'2'

Solution

Let us assume that the two words ,Vj and W2 are written initially on the input
tape separated by the symbol b. For example, if 11'] = 11, W2 = 111. then the
input and output tapes are as shown in Fig. 9.6.

G]1!1=
Fig. 9.6 Input and output tapes.

We observe that the main task is to remove the symbol b. This can be done
in the following manner:

(a) The separating symbol b is found and replaced by 1.

286 ~ Theory of Computer Science

(b) The rightmost 1 is found and replaced by a blank b.
(c) The RJW head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11 h111

qo11b111 f- 1qo1b111 f- 11qob111 f- 111q1 111

f- 1111q1 11 f- 11111q1 1 f- 111111q1 b f- 11111q21b

f- 1111 q31 bb f- 111 q311 bb f- 11 q3111 bb f- 1q31111 bb

f- q311111bb f- q3b11111bb f- bqf11111bb

From the above computation sequence for the input string 11b11 L we can
construct the transition table given in Table 9.5.

For the input string Ibl, the computation sequence is given as

qolblI-lqobl 1- llql 1 1- 11lq j b r- 11q2b r- 1q3 1bb

r- q3 11bb r- q3b Ilbb r- bqfl1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbof

b

---'fqo 1Rqo 1Rq1

q1 1Rq1 bLq2

q2 bLq3

q3 1Lq3 bRqf

@

EXAMPLE 9.7

Design a TM that accepts

{O"I"ln 2: l}.

Solution

We require the following moves:

(a) If the leftmost symbol in the given input string IV is 0, replace it by x
and move right till we encounter a leftmost 1 in).i'. Change it to y and
move backwards.

(b) Repeat (a) with the leftmost O. If we move back and forth and no 0 or
1 remains. move to a final state.

(c) For strings not in the form 0"1", the resulting state has to be nonfinal.

where

Chapter 9: Turing Machines and Linear Bounded Automata I!O! 287

Keeping these ideas in our mind, we construct a TM M as follows:

M = (Q, L, r, 0, qo, b, F)

Q = {qo, qj, q2' q3' qt)

F = {qt}

L = {O, I}

r = {O, 1, x, y, b}

The transition diagram is given in Fig. 9.7. M accepts {011 111
1n ;:::: I}. The moves

for 0011 and 010 are given below just to familiarize the moves of M to the
reader.

(0,0, R)

(y, y, R)

(x, x, R)

(y,y, R)

(y, Y, L)

(0,0, L)

Transition diagram for Example 9.7.

+rt:::\ (b, b, R) f0.,
(y, Y, R) ~f-----------I'~

Fig. 9.7

qo0011 r- xq j 011j- xOq j 11 1- xq20yl

r- q2xOy1 1- xqoOy1 1- xxqjy1 1- xxyq j l

r- xxq2..1')' r- xChJ:YY r- xxqoYy r- x·\yq3Y

r- :'oyyq3 = xxyyq3b r- xxyybq.<,b

Hence 0011 is accepted by M.

qoOlO r- xq j lO r- q2·rvO r- xqayO r- xyq30

As 0(Q3' 0) is not defined, M halts. So 010 is not accepted by M.

·-EXAMPLE 9.8

Design a Turing machine M to recognize the language

{1"2"3"ln ;:::: I}.

288 g Theory of Computer Science

Solution

Before designing the required Turing machine M, let us evolve a procedure for
processing the input stJing 112233. After processing, we require the ID to be
of the form bbbbbbq;. The processing is done by using five steps:

Step 1 qj is the initial state. The RJW head scans the leftmost 1, replaces 1
by b, and moves to the right. M enters q2'

Step 2 On scanning the leftmost 2, the RJW head replaces 2 by b and moves
to the right. M enters q3'

Step 3 On scanning the leftmost 3. the RJW head replaces 3 by b, and moves
to the right. M enters q4'

Step 4 After scanning the rightmost 3, the RJW heads moves to the left until
it finds the leftmost 1. As a result. the leftmost 1. 2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until alll's, 2's and 3's are replaced by blanks.
The change of IDs due to processing of 112233 is given as

q j 112233 1- bq212233 1- blq22233 1- blbq3233 1- blb2q333

r- blb2bq..j31- blb2qsb3 1- b1bqs2b3 1- b1qsb2b3 1- bqs1b2b3

r- q6b1b2b31- bq]lb2b31- bbq2b2b3 1- bbbq22b3

r- bbbbq3b3 1- bbbbbq33 1- bbbbbbq..jb r- bbbbbq;bb

Thus.

q\112233 ~ q7bbbbbb

As q7 is an accepting state, the input string 112233 is accepted.
Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol

2 3 b

-'>q., bRq2

q2 1Rq2 bRq3

q3 2Rq3 bRq4

q4 3Lqs

qs 1Lqa 2Lqs

qs 1Lqs

(~

bRq1

bRq2

bRq3

bLq7

bLQs

bRQ1

It can be seen from the table that strings other than those of the form 0"1"2"
are not accepted. It is advisable to compute the computation sequence for
strings like 1223, 1123. 1233 and then see that these strings are rejected by M.

Chapter 9: Turing Machines and Linear Bounded Automata j;J, 289

9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function 8 was described as a
partial function (function 8: Q x r ~ Q x r x {L. R} is not defined for all
(q, x» by spelling out the current state, the input symbol, the resulting state, the
tape symbol replacing the input symbol and the movement of R/W head to the
left or right. We can call this a formal description of a TM. Just as we have the
machine language and higher level languages for a computer. we can have a
higher level of description, called the implementation description. In this case
we describe the movement of the head, the symbol stored etc. in English. For
example, a single instruction like 'move to right till the end of the input string'
requires several moves. A single instruction in the implementation description
is equivalent to several moves of a standard TM (Hereafter a standard TM
refers to the TM defined in Definition 9.1). At a higher level we can give
instructions in English language even without specifying the state or transition
function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give
implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the
construction of TMs easier. The Turing machine defined in Section 9.1 is called
the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 8(q, a) as (q', y, D) where D =L or R.
So the head moves to the left or right after reading an input symbol. Suppose,
we want to include the option that the head can continue to be in the same cell
for some input symbol. Then we define 8(q, a) as (q', y, 5). This means that
the TM, on reading the input symbol a, changes the state to q' and writes y in
the current cell in place of a and continues to remain in the same cell. In terms
of IDs,

wqax r- 'wq'yX

Of course, this move can be simulated by the standard TM with two moves.
namely

H'qCV: r- vryq"x r- wq'yx

That is, 8(q, a) = (q', y, 5) is replaced by 8(q, a) = (q", y, R) and 8(q", X) =
(q. y, L) for any tape symbol X.

Thus in this model 8(q. a) = (q', y, D) where D =L. R or S.

290);l Theory of Computer Science

9.6.2 STORAGE IN THE STATE

Weare using a state, whether it is of a FA or pda or TM, to 'remember' things.
We can use a state to store a symbol as well. So the state becomes a pair
(q, a) where q is the state (in the usual sense) and a is the tape symbol stored
in (q, a). So the new set of states becomes Q x r.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1* + 1 0*.

Solution
We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states, qa, qj.
The tape symbols are 0, 1 and b. So the TM, having the 'storage facility in
state'. is

M = ({qa, qd x {O. L b}, {O, I}, {O, 1, b}, 0, [cIa, b], {[Cf], bJ})

We desClibe 0 by its implementation description.
L In the initial state, M is in qa and has b in its data portion. On seeing

the first symbol of the input sting w, M moves right, enters the state
Cft and the first symbol. say a, it has seen.

2. M is now in [q], a). (i) If its next symbol is b, M enters [cIt- b), an
accepting state. (ii) If the next symbol is a, M halts without reaching

the final state (i.e. 0 is not defined). (iii) If the next symbol is a
(a =°if a = 1 and a = 1 if a =0), M moves right without changing
state.

3. Step 2 is repeated until M reaches [qj, b) or halts (0 is not defined for
an input symbol in vv).

9.6.3 MULTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track
TM. a single tape is assumed to be divided into several tracks. Now the tape
alphabet is required to consist of k-tuples of tape symbols, k being the number
of tracks. Hence the only difference between the standard TM and the TM with
multiple tracks is the set of tape symbols. In the case of the standard Turing
machine, tape symbols are elements of r; in the case of TM with multiple track,
it is r k

. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has
to be done repeatedly. We can implement this facility for TMs as well.

Chapter 9: Turing Machines and Linear Bounded Automata ~ 291

First a TM program for the subroutine is written. This will have an initial
state and a 'return' state. After reaching the return state. there is a temporary
halt. For using a subroutine, new states are introduced. When there is a need
for calling the subroutine, moves are effected to enter the initial state for the
subroutine (when the return state of the subroutine is reached) and to return to
the main program of TM.

We use this concept to design a TM for perfonning multiplication of two
positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m, 11). m. 11 being given, the positive integers are represented by
0111 10". M starts with 0111 10" in its tape. At the end of the computation,
O"ill(mn in unary representation) sUlTounded by b's is obtained as the ouput

The major steps in the construction are as follows:

1. OIl! 1011 1 is placed on the tape (the output will be written after the
rightmost 1).

2. The leftmost °is erased.
3. A block of 11 O's is copied onto the right end.
4. Steps 2 and 3 are repeated 111 times and 101"10""1 is obtained on the

tape.
5. The prefix 101/11 of 101/110/11

" is erased. leaving the product mn as the
output.

For every 0 in Olil. 0" is added onto the right end. This requires repetition
of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is qj and the final state is qs. (5

is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COpy

State Tape symbol

° 2 b

q22R q41L

q20R q21R q30L

q30L q3 1L q1 2R

Qs1R Q40L

The Turing machine M has the initial state qo. The initial ill for M is
CfoO

Ill 10"1. On seeing 0. the following moves take place (q6 is a state of M).
CfrP"101I 1 t- bq601ll-1101I1~ bOIll

-
1
q6 1O"1 t- bOIll

-
11q j O"1. qj is the initial state

292 ~ Theory of Computer Science

of COPY. The TM Ail performs the subroutine COPY. The following moves
take place for M 1: q101711- 2q=:017-11 P- 20n-11q3b f- 20n-1q31O P- 2q j O"-llO.
After exhausting O·s. q1 encounters 1. M 1 moves to state q4' All 2's are
converted back to 0' sand M 1 halts in qs. The TM M picks up the computation
by starting from qs. The qo and q6 are the states of M. Additional states are
created to check whether each °in 011I gives rise to 011I at the end of the
rightmost 1 in the input string. Once this is over, M erases 10"1 and finds 0"111
in the input tape.

M can be defined by

M = ({qo. qj, qd· {O. I}, {O, 1,2, b}, 8, qo, b. {qd)

where 8 is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

° 2

qo q6bR

q6 q60R q, 1R

q5 q70L

q7 qs1L

qs qgOL

qg qgOL

q,0 q" bR

q,1 q" bR q,2bR

b

q1QbR

qobR

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, a) is either a
single triple (p, y, D), where D = R or L, or is not defined. We introduce two
new models of TM:

(i) a TM with more than one tape
(ii) a TM where 8(q. a) = {(PJo YJ, D j), (P=:, Y=:. D 2), •••• (p,., Yn Dr)}' The

first model is called a multi tape TM and the second a nondeterministic
TM.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states. an initial state qo. a subset F of Q
called the set of final states. a set P of tape symbols. a new symbol b. not in
P called the blank symbol. (We assume that :2: ~ rand b EO :2:.)

Chapter 9: Turing Machines and Linear Bounded Automata ,g 293

There are k tapes. each divided into cells. The first tape holds the input
string w. Initially. all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input
w. All the other heads can be placed at any cell initially.

(5 is a partial function from Q x rk into Q x r k x {L, R, S}k. We use
implementation description to define (5. Figure 9.8 represents a multitape TM.
A move depends on the current state and k tape symbols under k tape heads.

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.

(iii) Each tape head moves to the left or right or remains stationary. The
heads move independently: some move to the left, some to the right
and the remaining heads do not move.

The initial ill has the initial state Cfo, the input string }v in the first tape
(input tape), empty strings of b's in the remaining k - 1 tapes. An accepting ill
has a final state. some strings in each of the k tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by
some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a k-tape TM M. We simulate M
with a single-tape TM with 2k tracks. The second. fourth, ... , (2k)th tracks hold
the contents of the k-tapes. The first. third, ... , (2k - l)th tracks hold a head
marker (a symbol say X) to indicate the position of the respective tape head.
We give an 'implementation description' of the simulation of M with a single
tape TM MI' We give it for the case k =2. The construction can be extended
to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A 2 and B5

are the current symbols to be scanned and so the headmarker X is above the two
symbols.

-" --------- ---------

294 x;;I Theory of Computer Science

I Finite I
control

/
X \
A 2 t

X

81 8 2 8 3 8 4 8 5

Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and
fourth tracks of MI' The headmarkers of the first and third tracks are at the cells
containing the first symbol.

To simulate a move of fill. the 2k-track TM M1 has to visit the two
headmarkers and store the scanned symbols in its control. Keeping track of the
headmarkers visited and those to be visited is achieved by keeping a count and
storing it in the finite control of MI' Note that the finite control of M1 has also
the infoffilation about the states of M and its moves. After visiting both head
markers. M1 knows the tape symbols being scanned by the two heads of M.

Now /'111 revisits each of the headmarkers:

(il It changes the tape symbol in the cOlTesponding track of M1 based
on the information regarding the move of M corresponding to the state
(of M) and the tape symbol in the corresponding tape M.

(ii) It moves the headmarkers to the left or right.
(iii) M1 changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M) is ready
to implement its next move based on the revised positions of its headmarkers
and the changed state available in its control.

M) accepts a string \t' if the new state of M, as recorded in its control at
the end of the processing of H'. is a final state of M.

Definition 9.3 Let M be a T~I and tV an input string. The running time of M
on input w. is the number of steps that A! takes before halting. If M does not
halt on an input string w, then the running time of M on 'v is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested
in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM 1''11 is the function T(n), n being the
input size, where T(n) is defined as the maximum of the running time of Mover
all inputs w of size n.

Theorem 9.2 If fv1) is the single-tape TA! simulating multitape TM M, then
the time taken by lli![to simulate n moves of M is O(n~).

Chapter 9: Turing Machines and Linear Bounded Automata J;\ 295

Proof Let AI be a k-tape TM. After 11 moves of M, the head markers of M]
will be separated by 211 cells or less. (At the worst. one tape movement can be
to the left by 11 cells and another can be to the right by II cells. In this case the
tape headmarkers are separated by 211 cells. In the other cases, the 'gap'
between them is less). To simulate a move of M, the TM M] must visit all the
k headmarkers. If M starts with the leftmost headmarker, M I will go through all
the headmarkers by moving right by at most 211 cells. To simulate the change
in each tape. M] has to move left by at most 271 cells; to simulate changes in
k tapes, it requires at most two moves in the reverse direction for each tape.

Thus the total number of moves by M 1 for simulating one move of M is
atmost 411 + 2k. (211 moves to light for locating all headmarkers, 211 + 2k moves
to the left for simulating the change in the content of k tapes.) So the number
of moves of M] for simulating n moves of M is 11(411 + 2k). As the constant k
is independent of 11, the time taken by M] is O(n:;).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as
deterministic TM). 8(q). a) was defined (for some elements of Q x n as an
element of Q x r x {L R}. Now we extend the definition of 8. In a
nondetemlinistic TM. 8(ql, a) is defined as a subset of Q x r x {L R}.

Defmition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, L r. 8, qo.
b. F) where

1. Q is a finite nonempty set of states
2. r is a finite nonempty set of tape symbols
3. b E r is called the blank symbol
4. L is a nonempty subset of 1. called the set of input symbols. We

assume that bEL.
5. qo is the initial state
6. F r;;;; Q is the set of final states
7. 8 is a partial function from Q x r into the power set of Q x r x

{L. R}.
1Vote: If q E Q and x E rand 8(q. x) = {(ql. :\'), D 1). (q:;, .\':;, D:;),

(q",)'11' Dill) then the NTM can chose anyone of the actions defined by
(qi')'i, DJ for i = 1. 2..... 11.

We can also express this in terms of f- relation. If 8(q. x) = {(qi,)ii, DJI
i =1. 2.... , 11} then the ID zq.nv can change to anyone of the 11 IDs specified
by the l1-element set 8(q. x).

Suppose 8(q, x) = {(q], .\'1, L). (q:;, ":;. R). (Q3, \'3, L)}. Then

or

or

296 ~ Theory of Computer Science

So on reading the input symbol, the NTM M whose cun-ent ID is 2]2: ...

ZkqxZk+] ... 2/1 can change to anyone of the three IDs given earlier.

Remark When o(q, x) = {(qi' Yi, D i) Ii = 1. 2, n} then NTM chooses any
one of the n triples totally (that is, it cannot take a state from one triple, another
tape symbol from a second tliple and a third D(L or R) from a third triple, etc.

Definition 9.6 W E L* is accepted by a nondetenninistic TM M if qaw ~
xqfY for some final state qt.

The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the fonn xqy (for some q tt: F) may
be reached as the result of applying the input string w. But 'v is accepted by M
as long as there is some sequence of moves leading to an ID with an accepting
state. It does not matter that there are other sequences of moves leading to an
ID with a nonfinal state or TM halts without processing the entire input stling.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M j

such that T(M) = TUY!I)'

Proof We constmct M] as a multitape TM. Each symbol in the input string
leads to a change in ID. M] should be able to reach all IDs and stop when an
ID containing a final state is reached. So the first tape is used to store IDs of
M as a sequence and also the state of M. These IDs are separated by the symbol
* (induded as a tape symbol). The cun-ent ID is known by marking an x along
with the ID-separator * (The symbol * marked with x is a new tape symbol.)
All IDs to the left of the cun-ent one have been explored already and so can be
ignored subsequently. Note that the cun-ent ID is decided by the cun-ent input
symbol of w.

Figure 9.10 illustrates the deterministic TM M j •

Tape 1

Tape 2

x
101 * 102 * 103 * 104 * 105 * 106 * •.•

Fig. 9.10 The deterministic TM simulating M.

To process the current ID. M] perfOlIDs the follO\ving steps.

1. M j examines the state and the scanned symbol of the cun-ent ID. Using
the knowledge of moves of M stored in the finite control of Mjo M]
checks whether the state in the cun-ent ID is an accepting state of M.
In this case M I accepts and stops simulating M.

Chapter 9: Turing Machines and Linear Bounded Automata J;! 297

2. If the state q say in the current ID xqa), is not an accepting state of M 1

and O(q, a) has k triples, M 1 copies the ID xqay in the second tape and
makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M j modifies these k IDs in tape 2 according to the k choices given by
O(q, a).

4. M1 returns to the marked current ID. erases the mark x and marks the
next ID-separator * with x (to the * which is to the left of the next ID
to be processed). Then M j goes back to step 1.

M j stops when an accepting state of M is reached in step 1.
Now M 1 accepts an input string IV only when it is able to find that M has

entered an accepting state, after a finite number of moves. This is clear from
the simulated sequence of moves of M j (ending in step 1)

We have to prove that M j will eventually reach an accepting ID (that is,
an ID having an accepting state of M) if M enters an accepting ID after n
moves. Note each move of M is simulated by several moves of M j •

Let m be the maximum number of choices that M has for various (q, a)'s.

(It is possible to find m since we have only finite number of pairs in Q x r.)
So for each initial ID of M. there are at most m IDs that M can reach after one
move. at most m2 IDs that I'v! can reach after two moves. and so on. So
corresponding to n moves of M, there are at most 1 + m + m2 + ... + mil moves
of M 1• Hence the number of IDs to be explored by M 1 is at most nm".

We assume that M] explores these IDs. These IDs have a tree structure
having the initial ID as its root. We can apply breadth-first search of the nodes
of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,
and so on.) If At reaches an accepting ID after n moves. then M1 has to search
atmost nm/! IDs before reaching an accepting ID. So. if M accepts lV, then M 1

also accepts lV (eventually). Hence T(M) = T(M j).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is
accepted by the model. and (b) the infinite storage is restricted in size but not
in accessibility to the storage in comparison with the Turing machine model. It
is called the linear bounded automaton (LBA) because a linear function is used
to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-sensitive
languages. It should be noted that the study of context-sensitive languages is
important from practical point of view because many compiler languages lie
between context-sensitive and context-free languages.

A linear bounded automaton is a nondetelministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear function

298 g Theory of Computer Science

of the length of the input string. The models can be described formally by the
following set format:

M = (Q. L, r. 8, qo, b, ¢ $, F)

All the symbols have the same meaning as in the basic model of Turing
machines with the difference that the input alphabet L contains two special
symbols ¢ and $. ¢ is called the left-end marker which is entered in the left
most cell of the input tape and prevents the RIW head from getting off the left
end of the tape. $ is called the right-end marker which is entered in the right
most cell of the input tape and prevents the RIW head from getting off the right
end of the tape. Both the endmarkers should not appear on any other cell within
the input tape, and the RIW head should not print any other symbol over both
the endmarkers.

Let us consider the input string w with II-vi = 11 - 2. The input string w can
be recognized by an LBA if it can also be recognized by a Turing machine
using no more than kn cells of input tape, where k is a constant specified in the
description of LBA. The value of k does not depend on the input string but is
purely a property of the machine. Wbenever we process any string in LBA, we
shall assume that the input string is enclosed within the endmarkers ¢ and $.
The above model ofLBA can be represented by the block diagram of Fig. 9.11.
There are t\\lO tapes: one is called the input tape, and the other, working tape.
On the input tape the head never prints and never moves to the left. On the
working tape the head can modify the contents in any way, without any
restriction.

n cells

cells

IR head moving to the right only

Finite state
RJW lcontrol
head

kn

J
~
\

Working tape

Fig. 9.11 Model of linear bounded automaton.

Input
tape

In the case of LEA, an ID is denoted by (q, w. k), where q E O. w E r
and k is some integer between 1 and n. The transition of IDs is similar except

Chapter 9: Turing Machines and Linear Bounded Automata ~ 299

that k changes to k - 1 if the RIW head moves to the left and to k + 1 if the
head moves to the right.

The language accepted by LBA is defined as the set

{w E (l: - {¢, $})*I(qo, ¢,v$, 1) rc- (q, ex, i)

for some q E F and for some integer i between 1 and n},

Note: As a null string can be represented either by the absence of input string
or by a completely blank tape, an LBA may accept the null string,

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE

LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings
generated by the context-sensitive grammars, excluding the null strings, Now
we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded
automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines
with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by
a given Turing machine M. The productions are constructed in two steps. In
step 1 we construct productions which transform the string [ql¢ w$] into the
string [q2bJ, where qj is the initial state, q2 is an accepting state, ¢ is the left
endmarker. and $ is the right-endmarker. The grammar obtained by applying
step 1 is called the transfonnational grammar. In step 2 we obtain inverse
production rules by reversing the productions of the transformational grammar
to get the required type 0 grammar G. The construction is in such a way that
11' is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING

TO TM

For understanding the construction. we have to note that a transition of ID
corresponds to a production. We enclose IDs within brackets. So acceptance of
,\ by M corresponds to the transformation of initial ID [ql ¢ W $] into [q2b].
Also, the 'length' of ID may change if the RIW head reaches the left-end or the
right-end, i.e. when the left-hand side or the right-hand side bracket is reached.
So we get productions corresponding to transition of IDs with (i) no change in
length, and (ii) change in length, We assume that the transition table is given,

Chapter 9: Turing Machines and Linear Bounded Automata J;! 303

(9.12)

q: q4$ ---7 q:q4

q:q4 ---7 q4

(D) The LBA productions are

q:q.($ ---7 q4$,

$q4$ ---7 q4$,

Oq4$ ---7 q4$,

1q4$ ---7 q4$

Step 2 The productions of the generative grammar are obtained by reversing
the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of l·s.

Solution

\Ve design a TM so that we have ww after copying W E {I}*. Define M by

M = ({qa. CJI, CJ2' CJ3}' {l}. {L b}, 8. CJa, b, {q3})

where 8 is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol

b a

qo qoaR q,bL

q, q,1L q3bR q21R

q2 q21R q1 1L

q3

Tne procedure is simple.
M replaces every 1 by the symbol a. Then M replaces the lightmost a by

1. It goes to the light end of the string and writes a 1 there. Thus M has added
a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches CJI after replacing aU1's by a's and reading the blank at the end
of the input string. After replacing a by 1. M reaches q2' M reaches q3 at the
end of the process and halts. If H' = Iii. than we have 1211 at the end of the
computation. A sample computation is given below.

qa Il r- aqa 1 1-- aaqab r- aqja

r- a1qc.b r- aCJ I11 r- qIa11

r- 1qc.11 r- 11CJc. 1 r- 111qc.b

r- 11CJc. 11 r- 1qI111

r- qI111I r- q1b1111 r- q3 1111

304 ~ Theory of Computer Science

EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {O, I} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to

recognize L. Figure 9.12 gives a DFA accepting L.

° °

1

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M 1 does the same; it reads an input
symbol. does not change the symbol and changes state. At the end of the
computation. the TM sees the first blank b and changes to its final state. The
initial ill of M j is qoW. By defining 6(qo, b) =(qj, b, R), M j reaches the initial
state of M. M j can be described by Fig. 9.13.

(1.1.R) (0,0, R)
(0,0, R)

(1, 1, R)

(1,1,R)

Fig. 9.13 TM for Example 9.14.

Note: q) is the unique final state of M j • By comparing Figs. 9.12 and 9.13 it
is easy to see that strings of L are accepted by M j •

EXAMPLE 9.15

Design a TM that reads a string in {O, I}* and erases the rightmost symbol.

Solution

The required TM M is given by

M = ({qo, qj, q2, q3, q4}' {O, I}, {O. 1, b}, 6, qo. b, {q4})

Chapter 9: Turing Machines and Linear Bounded Automata ~ 305

where 8 is defined by

8(qo, 0) = (e/j, 0, R)

8(q], 0) = (qj, 0, R)

8(q], b) = (q2' b, L)

8(q2, 0) = (q3' b, L)

8(q3' 0) = (q3' 0, L)

8(q3' b) = (q4' b, R)

8(qo, 1) = (qj, 1, R)

8(qj' 1) = (ql' 1, R)

8(q2' 1) = (q3' b, L)

8(q3' 1) = (q3' 1, L)

(R])

(R2)

(R3)

(R4)

(Rs)

(~)

Let w be the input string, By (R]) and (R2), M reads the entire input string
w. At the end, M is in state qj' On seeing the blank to the right of w, M reaches
the state q2 and moves left. The rightmost string in w is erased (by (R4)) and
the state becomes q3' Afterwards M moves to the left until it reaches the left
end of w, On seeing the blank b to the right of w, M changes its state to q4'

which is the final state of M. From the construction it is clear that the rightmost
symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {02
1i I 11 2: O}.

Solution

Let ,v be an input string in {O} *. The TM accepting L functions as follows:

1. It wlites b (blank symbol) on the leftmost 0 of the input string w. This
is done to mark the left-end of w.

2. M reads the symbols of w from left to right and replaces the alternate
O's with x's.

3. If the tape contains a single 0 in step 2, M accepts w.

4. If the tape contains more than one 0 and the number of O's is odd in
step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in
step 1).

6. M goes to step 2.

Each iteration of step 2 reduces w to half its size. Also whether the number
of O's seen is even or odd is known after step 2. If that number is odd and
greater than 1, IV cannot be 02

1i

(step 4). In this case M rejects w. If the number
of 0' s seen is 1 (step 3), M accepts w (In this case 0211 is reduced to 0 in
successive stages of step 2).

We define M by

M = ({qo, qj, (f2, q3' q4' ql' ql}, {O}, {O, x, b}, 8, qo, b, {qiD

where 8 is defined by Table 9.12.

306 J;I, Theory of Computer Science

TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol

0 b .r

qo bRq1 bRqt xRqt

q1 .rRq2 bRqf xRq1

q2 ORq3 bRq4 xRq2

q3 xRq2 bRq6 xRq3

q4 OLQ4 bRQ1 xLQ4

Qr

Qt

From the construction, it is apparent that the states are used to know
whether the number of O's read is odd or even.

We can see how M processes 0000.

qoOOOO ~ bCf1000 ~ bJ.(1200 ~ b.xxl30 ~ bX{)XCf2b

~ bxOq.+xb ~ bxq.+Oxb ~ bq4--r:Oxb ~ q4bxOxb

~ bq1xO.-r:b ~ bxq10xb ~ bx.-r:Cf2Xb ~ bxxxq2b

~ bxxq4xb ~ bxq.+xxb ~ bqJ,xxxb ~ qJ,bxxxb

~ bqlxxxb ~ bXqlxxb ~ bxxqjxb ~ bxxxqjb

~ bxxxbCfI'

Hence M accepts \i'.

Also note that M always halts. If M reaches qt, the input stling 11' is
accepted by M. If M reaches qr- }t' is not accepted by M; in this case M halts
in the trap state.

EXAMPLE 9.17

Let M = ({qo, qj, q2}. {O. I}. {O, 1, b}. 8, qo, {q2})

where 8 is given by

8(qo, 0) = (qj, 1, R)

8(qj, 1) = (qo- 0, R)

8(qj. b) = (q2' b, R)

(R j)

(R2)

(R3)

Find T(M),

Solution

Let 11' E T(M), As 8(qo, 1) is not defined, w cannot start with 1. From (Rd
and (R2), we can conclude that M starts from qo and comes back to Cfo after
reaching 01.

So. qo(OI)" f-2- (lO)"qo· Also, qoOb ~ lq]b ~ Ibq2'

Chapter 9: Turing Machines and Linear Bounded Automata J;! 307

So, (On"O E T(M). Also, (OltO is the only string that makes M move from
qo to Cf~· Hence, T(M) = {(Olto In;:: O}.

SELF-TEST

Choose the correct answer to Questions 1-10:

1. For the standard TM:
(a) L =r
(b) r <;:;;; L
(c) L <;:;;; r
(d) L is a proper subset of r.

2. In a standard TM. D(q. a), q E Q, a E r is
(a) defined for all (q. a) E Q x r
(b) defined for some. not necessarily for all (q, a) E Q x r
(c) defined for no element (q. a) of Q >< r
(d) a set of triples with more than one element.

3. If D(q. .\J = (p. Y. I), then
(a) XlX~ Xi-lqxi x" ~ XIX2 xi_~pxi_l.vxi+len
(b) XIX~ xi_lqxi x" ~ Xl.Y2 'Yi-lYi'JXi+I ... x"

(c) XIX~ xi_IqXi XI) ~ XI ·'(i-3P.Yi-~Xi-1YXi+l ... XII

(d) XIX~ xi-lqxi XII ~ XI Xi+J1T\'Xi+~ ... Xn

4. If D(q. X;) = (p. y. R). then
(a) XIX~ 'Yi-lqxi Xii ~ XIX~ Xi-lypXi+l x"

(b) X1X~ xi-lqxi Xli ~ X)X2 XiPXi+l .1'1/

(e) X,X2 xi-lq'Yi X" ~ X)'Y2 Xi-1PXiXi+l x"
(d) X!X~ Xi-1CfXi X1/ ~ .1'1"2 Xi-lypXi+J X1/

5. If D(q. Xl) = (p, y. I). then
(a) qXlx~ Xii ~ p.vX~ Xli

(b) q.YIX~ X" ~ yp.Y~ Xli

(e) qXJX~ X" ~ pbx] XI1

(d) qx(r~ X" ~ pbx~ x"

6. If D(q. x l1) = (v. Y. R). then
(a) Xl ... x n_lqx" ~ PYX2J:3 Xn

(b) x • ... X1/-1q·\, p:- PYX~X3 XII

(c) Xl x n_lqxl1 ~ XIX~ X"_l)pb

(d) Xl X"_lqx,, p:- XIX~ xn_lypb

7. For the TM given in Example 9.6:
(a) qolbll p:- bqj llbbl
(b) qn lbll i- bqrllbhl
(c) Cj(Jlbll ~ lqoblll
(d) Cjolbll ~ (j3bllbbl

308 g Theory of Computer Science

8. For the TM given in Example 9.4:
(a) 011 is accepted by M
(b) 001 is accepted by M
(c) 00 is accepted by M
(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:
(a) 1 is accepted by M
(b) 11 is accepted by M
(c) 111 is accepted by M
Cd) 11111 is accepted by M

10. In a standard TM (Q. 2:. r, 8. qQ, b. F) the blank symbol b is
(a) in 2: - r
(b) in r - 2:
(c) r Ii 2:
(d) none of these

EXERCISES

9.1 Draw the transition diagram of the Turing machine given in Table 9.1.

9.2 Represent the transition function of the Turing machine given in
Example 9.2 as a set of quintuples.

9.3 Construct the computation sequence for the input 1b11 for the Turing
machine given in Example 9.5.

9.4 Construct the computation sequence for stlings 1213, 2133. 312 for the
Turing machine given in Example 9.8.

9.5 Explain how a Turing machine can be considered as a computer of integer
functions (i.e. as one that can compute integer functions; we shall discuss
more about this in Chapter 11).

9.6 Design a Turing machine that converts a binary stling into its equivalent
unary string.

9.7 Construct a Turing machine that enumerates {Oil 111 1/1 2': I}.

9.8 Construct a Turing machine that can accept the set of all even
palindromes over {O, I}.

9.9 Construct a Turing machine that can accept the strings over {O, I}
containing even number of l's.

9.10 Design a Turing machine to recognize the language {a''Y'cll1 In. m 2': I}.

9.11 Design a Turing machine that can compute proper subtraction. i.e.
111 -'- II, where m and n are positive integers. m -'- n is defined as m - n
if In > J7 and 0 if m ::; /1.

	Binder1
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029

