Turing Machines
“and Linear Bounded
_ Automata

In the early 1930s. mathematicians were trying to define effective computation.
Alan Turing in 1936, Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel
in 1965 gave various models using the concept of Turing machines, A-calculus,
combinatory logic, post-systems and y-recursive functions. It is interesting to
note that these were formulated much before the electro-mechanical/electronic
computers were devised. Although these formalisms, describing effective
computations, are dissimilar, they turn to be equivalent.

Among these formalisms, the Turing’s formulation is accepted as a model
of algorithm or computation. The Church-Turing thesis states that any
algorithmic procedure that can be carried out by human beings/computer can be
carried out by a Turing machine. It has been universally accepted by computer
scientists that the Turing machine provides an ideal theoretical model of a
computer.

Turing machines are useful in several ways. As an automaton, the Turing
machine is the most general model. It accepts type-0 languages. It can also be
used for computing functions. It turns out to be a mathematical model of partial
recursive functions. Turing machines are also used for determining the un-
decidability of certain languages and measuring the space and time complexity
of problems. These are the topics of discussion in this chapter and some of the
subsequent chapters.

For formalizing computability, Turing assumed that, while computing,
a person writes symbols on a one-dimensional paper (instead of a two-
dimensional paper as is usually done) which can be viewed as a tape divided
into cells.

One scans the cells one at a time and usually performs one of the three
simple operations, namely (i) writing a new symbol in the cell being currently

277

278 B Theory of Computer Science

scanned, (i1) moving to the cell left of the present cell. and (iii) moving to the
cell right of the present cell. With these observations in mind, Turing proposed
his "computing machine.’

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W
(read/write) head. It has one tape which is divided into a number of cells. The
block diagram of the basic model for the Turing machine is given in Fig. 9.1.

R/W head Tape divided into cells
and of infinite length

Finite control

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite
state automaton are effected by the R/W head which can examine one cell at
a time. In one move, the machine examines the present symbol under the
R/W head on the tape and the present state of an automaton to determine

(1) anew symbol to be written on the tape in the cell under the R/W head,
(i1) a motion of the R/W head along the tape: either the head moves one
cell left (L). or one cell right (R),
(ii1) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:
Definition 9.1 A Turing machine M is a 7-tuple, namely (Q, X, T", 6, gy. b. F),
where

Q is a finite nonempty set of states,
I" is a finite nonempty set of tape symbols,

[

3. b e I is the blank,

4. X is a nonempty set of input symbols and is a subset of ' and b ¢ X.

5. 6 is the transition function mapping (g, x) onto (¢, v, D) where D
denotes the direction of movement of R/W head: D = L or R according
as the movement is to the left or right.

6. qg € 1s the initial state, and

0
7. F ¢ Q is the set of final states.

Chapter 9: Turing Machines and Linear Bounded Automata 2 279

Notes: (1) The acceptability of a string is decided by the reachability from the
initial state to some final state. So the final states are also called the accepting
states.

(2) & may not be defined for some elements of @ x T'.

9.2 REPRESENTATION OF TURING MACHINES

We can describe a Turing machine employing (i) instantaneous descriptions
using move-relations, (ii) transition table. and (iii) transition diagram (fransition
graph).

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

‘Snapshots” of a Turing machine in action can be used to describe a Turing
machine. These give ‘instantaneous descriptions’ of a Turing machine. We have
defined instantaneous descriptions of a pda in terms of the current state. the
input string to be processed, and the topmost symbol of the pushdown store.
But the input string to be processed is not sufficient to be defined as the D of
a Turing machine, for the R/W head can move to the left as well. So an ID of a
Turing machine is defined in terms of the entire input string and the current
state.

Definition 9.2 An ID of a Turing machine M is a string afy. where [is the
present state of M, the entire input string is split as ¢y the first symbol of yis
the current symbol @ under the R/W head and y has all the subsequent symbols
of the input string, and the string o is the substring of the input string formed
by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous
description.

g b |aslai|alajla|ay|ajias|ax b|b ?

R/W head

State
a3

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the R/W head is a,. The present state is g3. So a
is written to the right of g;. The nonblank symbols to the left of «; form the
string ayaa,a,a-a-, which is written to the left of ¢;. The sequence of nonblank
symbols to the right of a, is asa-. Thus the ID is as given in Fig. 9.3.

280 &2 Theory of Computer Science

a4a4a,8,8,8y
Left sequence / \Rght sequence
Present Symbol under
state R/W head

Fig. 9.3 Representation of ID.

Notes: (1) For constructing the ID, we simply insert the current state in the
input string to the left of the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

Moves in a T™M

As in the case of pushdown automata, d(g, x) induces a change in ID of the
Turing machine. We call this change in ID a move.

Suppose 8(g, x;) = {(p, v, L). The input string to be processed is xx> . . . X,
and the present symbol under the R/W head is x;. So the ID before processing
X; 1S

After processing x;, the resulting ID is
XUoeo X2 PXadXey o0 Xy
This change of ID is represented by
XiXa oo XM (]Xi e .\'n "-— Xi .. x,--: pr_l yxl-H [N x,,
If i = 1, the resulting ID is py %2 %5 . .. X,
If 8(g. x;) = {p, y. R), then the change of ID is represented by
XI.\'Z . ,\'[‘_1([.\‘I' e Xy l—— XiXa oL x,;lypxiﬂ PR x,,
If i = n, the resulting ID is xix> ... x,_; v p b.
We can denote an ID by /; for some j. /; |— 1, defines a relation among IDs.
So the symbol = denotes the reflexive-transitive closure of the relation |—.
In particular, [; = [;. Also, if I} = [, then we can split this as /) |— I, |—
Lit— ... =1, for some IDs, I, ..., I,;.

Note: The description of moves by IDs is very much useful to represent the
processing of input strings.

9.2.2 REPRESENTATION BY TRANSITION TABLE

We give the definition of & in the form of a table called the transition table. If
0(q, a) = (¥, a. B), we write offy under the o-column and in the g-row. So if

Chapter 9: Turing Machines and Linear Bounded Automata =2 281

we get affy in the table, it means that ¢ is written in the current cell, § gives
the movement of the head (L or R) and y denotes the new state into which the
Turing machine enters.

Consider, for example, a Turing machine with five states ¢, . . ., g5, where
g, 1s the initial state and g5 is the (only) final state. The tape symbols are 0. 1
and b. The transition table given in Table 9.1 describes o.

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol
b 0 1
G 1Lg, 0Rg,
G2 bRaq; 0Lg, 1Lg,
93 bRq, bRgs
Q4 0Rgs 0Rgq,4 1Rq,

OLqg,

As in Chapter 3, the initial state is marked with — and the final state
with ©.

EXAMPLE 9.2

Consider the TM description given in Table 9.1. Draw the computation
sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and
the current state. If the string in the tape is ajas . .. ¢;a;,; . . . a, and the TM
in state ¢ is to read aj,, then we write @1as ... 4G Qjzy - - - Gy,

For the input string 00b. we get the following sequence:
1006 |— 0g,0b |— 00g,b }— 0g:01 }— g,001
F— 26001 |— bq3001 |— bbqi01 }— bbygdl |— bbylqsb
t— bb010gs |— bb01¢,00 |— bb0g,100 |— bbg,0100
f— bq:b0100 }— bbq;0100 |— bbbg,100 |— bbb,q500
t— £bb10g,0 |— bbb100gsb +— bbb1000gsh
f— bbb100g,00 |— bbb10¢-000 |— bbb14g,0000
— bbbg-10000 |— bbg,b10000 |— bbbg;10000 |— bbbbgs0000

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing
machines. The states are represented by vertices. Directed edges are used to

282 E Theory of Computer Science

represent transition of states. The labels are triples of the form (o, B, 7), where
o. . e Tand ye {L. R}. When there is a directed edge from ¢; to g; with label
(¢, B. 7). it means that
' og;.) = (q. B. y)

During the processing of an input string, suppose the Turing machine enters
g; and the R/W head scans the (present) symbol a. As a result, the symbol
is written in the cell under the R/W head. The R/W head moves to the left or
to the right. depending on y and the new state is g;.

Every edge in the transition system can be represented by a 5-tuple (g;, 0.
B. 7. g;). So each Turing machine can be described by the sequence of 5-tuples
representing all the directed edges. The initial state is indicated by — and any
final state is marked with ©.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain
the computation sequence of M for processing the input string 0011.

(b, b, R)

Fig. 8.4 Transition system for M.

Solution

The initial tape input is b0011b. Let us assume that M is in state g, and the
R/W head scans O (the first 0). We can represent this as in Fig. 9.5. The figure
can be represented by '

\:
b0011b
q1
From Fig. 9.4 we see that there is a directed edge from ¢; to g, with the label
(0. x. R). So the current symbol 0 is replaced by x and the head moves right.
The new state is ¢-». Thus. we get

bx011b
qn

Chapter 9: Turing Machines and Linear Bounded Automata 2 283

The change brought about by processing the symbol 0 can be represented as

J
p0011h OR L prO11b

q1 q>
b 0 0 f1 1 b
R/W head
State
a4

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

i | 4 g
p0011p DR pro11b OB px011h
G q g2
d l ‘ L
(vl o bxOvlb (90D o bxOylb ("'""'R), bx0vib
73 94 4
0.rR (v.R Loy v.L) ‘
(0.x.R) bravlb YOLR) bxvlb s pxyyb
g2 qz 93
(ryL TR (x.v.R)
SN bxxyvb BESLN bxxyyb IERIEN bxxyvb
q3 qs qs
(v.v.R) (bb.R 4
qs s

9.3 LANGUAGE ACCEPTABILITY BY TURING
MACHINES

L~t us consider the Turing machine M = (Q, Z. T, 4. gy, b, F). A string w in
Z* is said to be accepted by M if gow |~ oypos for some p € F and o, o
e T'*

M does not accept w if the machine M either halts in a nonaccepting state
or does not halt.

284 E Theory of Computer Science

It may be noted that though there are other equivalent definitions of
acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transition table given in
Table 9.2. Describe the processing of (a) 011, (b) 0011, (¢) 001 using IDs.
Which of the above strings are accepted by M?

TABLE 9.2 Transition Table for Example 9.4

Present state Tape symbol
0 1 x y b
— G xRq, bRgs
G2 O0Rg, yLgs yRq,
s 0Lg4 xRgs yLa;
Q4 OLg. xRq;
Js yxRqs bRge
@
Solution

(@) 011 = xq211 = gyl = xgsyl = xvgsl
As 0(gs. 1) is not defined. M halts; so the input string 011 is not accepted.
(®) ¢,0011 }— xg:011 |— x0g,11 }— xg:0v1 |— qsx0y1 |— xq,0v1.
F-xxgavl b= xxyqel = xxqayy = xqaxvy = xxgsyy
F—xxygsy = xxvvgsb |— xxyvbgg
M halts. As g, is an accepting state, the input string 0011 is accepted by M.
(¢) 1001 }— x¢:01 |— x0ga1 |— xq30v |— gsx0y
F— xq, 0y |— xxgayv |— xxyq»

M halts. As g, is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.

(1) The fundamental objective in scanning a symbol by the R/W head is
to "know’ what to do in the future. The machine must remember the
past symbols scanned. The Turing machine can remember this by
going to the next unique state.

(i1) The number of states must be minimized. This can be achieved by
changing the states only when there is a change in the written symbol
or when there is a change in the movement of the R/W head. We shall
explain the design by a simple example.

Chapter 9: Turing Machines and Linear Bounded Automata = 285

EXAMPLE 9.5

Design a Turing machine to recognize all strings consisting of an even number
of I's.

Solution

The construction is made by defining moves in the following manner:
(a) g, is the initial state. M enters the state ¢, on scanning 1 and writes b.
(b) If M is in state g, and scans |, it enters ¢, and writes b.
(c) q; is the only accepting state.

So M accepts a string if it exhausts all the input symbols and finally is in
state ¢;. Symbolically,

M = ({Q1 (12}: {1' b} {1? b}- 5& Qs b {QI})
where 0 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state 1
—) bQQR
o)} bChR

Let us obtain the computation sequence of 11. Thus, ¢,11 |~ bg~1 }|— bbg,.
As gy is an accepting state. 11 is accepted. ¢;111 | bg211 |— bbg,1 |— bbbg,.
M halts and as ¢- is not an accepting state. 111 is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over {1. &} which can compute a concatenation
function over X = {1}. If a pair of words (wy, w») is the mput. the output has
to be Winwa.

Solution

Let us assume that the two words w; and w, are written initially on the input
tape separated by the symbol b. For example, if w; = 11, w- = 111, then the
input and output tapes are as shown in Fig. 9.6.

golrfrfelnfofrifes gefrfrfiofrfe]os

Fig. 9.6 Input and output tapes.

We observe that the main task is to remove the symbol b. This can be done
in the following manner:

(a) The separating symbol & is found and replaced by 1.

286 & Theory of Computer Science

(b) The rightmost 1 is found and replaced by a blank b.
{¢c) The R/W head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11b£111

Go11b111 = 1go1b111 = 11geh111 = 111g4111

— 11g 1 = 11111g1 — 111111g:b — 11111g.1b
— 1111g31bb — 111gs11bb — 11gs111bb |— 1g51111bb
— gs11111bb — gsb11111bb — bg,11111bb

From the above computation sequence for the input string 115111, we can
construct the transition table given in Table 9.5.
For the input string 151, the computation sequence is given as

Golbl |— 1gobl |— 11q;1 |— 111g,b | 11g:b |— 1¢;31bb
b= q311bb |— q3b11bb }— bg L 1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbol
1 b
0o 1Ry 1Rg;
G 1Rg, bLg,
G bLgs —
92 1Lg; bRg:
— —

EXAMPLE 9.7

Design a TM that accepts
{0"1"|n 2 1}.

Solution
We require the following moves:

(a) If the leftmost symbol in the given input string w is 0, replace it by x
and move right till we encounter a leftmost 1 in w. Change it to y and
move backwards.

(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or
1 remains. move to a final state.

(c) For strings not in the form 01" the resulting state has to be nonfinal.

Chapter 9: Turing Machines and Linear Bounded Automata 2 287

Keeping these ideas in our mind, we construct a TM M as follows:

M=(0, %1, 8 gy b, F)

where
0= {90 1> 92, g3 qp
F= {C]f}
Z=1{0.1}

I'=1{0, 1, x. v, b}

The transition diagram is given in Fig. 9.7. M accepts {0"1"|n 2 1}. The moves
for 0011 and 010 are given below just to familiarize the moves of M to the
reader.

Fig. 9.7 Transition diagram for Example 9.7.

qo0011 |— xq,011 |— x0g; 11 |— xq;0y1
= q2x0y1 |— xqo0y1 |— xxqiyl |— xxyg) 1
= xxgayy b= xgaxyy f— xxqoyy f— xxyqsy
= xxvygs = xxyvgab |— xxyybgub
Hence 0011 is accepted by M.
40010 |— x¢,10 }— g>xy0 = xgoy0 = xygs0
As 0(gs. 0) is not defined, M halts. So 010 is not accepted by M.

--EXAMPLE 9.8

Design a Turing machine M to recognize the language
{172"3"|n 2 1}.

288 = Theory of Computer Science

Solution

Before designing the required Turing machine M, let us evolve a procedure for
processing the input string 112233, After processing, we require the ID to be
of the form bbbbbbg-. The processing is done by using five steps:

Step 1 g, is the initial state. The R/W head scans the leftmost 1, replaces 1
by b, and moves to the right. M enters g-.

Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves
to the right. M enters gs.

Step 3 On scanning the leftmost 3, the R/W head replaces 3 by b, and moves
to the right. M enters g,.

Step 4 After scanning the rightmost 3, the R/W heads moves to the left until
it finds the leftmost 1. As a result. the leftmost 1, 2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until all I's, 2°s and 3’s are replaced by blanks.
The change of 1Ds due to processing of 112233 is given as

112233 |— bq-12233 |— blg22233 |— b1bqs233 | — b1b2¢333
— b1b2bq 3 |— blbagsh3 |— Dlbgs2b3 |— blqsb2b3 |— bqs1b2b3
F— qeb1b2b3 |— bq 15253 |— bbq-b2b3 |— bbbg,2b3
p— bbbbg:b3 |- bbbbbqs3 |— bbbbbbqb |— bbbbbgbb
Thus.
q1112233 = g:bbbbbb

As g- is an accepting state. the input string 112233 is accepted.
Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol
| 2 3 b

—§s bRq, bRq,
gz 1Rq; bRg; bRg,
Gs 2Raq, bRy bRa,
Q. 3Lgs bLg;
gs 1Lgs 2Lgs bLgs
9s 1Lgs bRa;
@
®

It can be seen from the table that strings other than those of the form 0"12"
are not accepted. It is advisable to compute the computation sequence for
strings like 1223, 1123, 1233 and then see that these strings are rejected by M.

Chapter 9: Turing Machines and Linear Bounded Automata E 289

9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function ¢ was described as a
partial function (function 6: @ x T’ — Q x T' x {L. R} is not defined for all
(g. x)) by spelling out the current state, the input symbol, the resulting state. the
tape symbol replacing the input symbol and the movement of R/W head to the
left or right. We can call this a formal description of a TM. Just as we have the
machine language and higher level languages for a computer, we can have a
higher level of description, called the implementation description. In this case
we describe the movement of the head, the symbol stored ete. in English. For
example, a single instruction like ‘move to right till the end of the input string’
requires several moves. A single instruction in the implementation description
is equivalent to several moves of a standard TM (Hereafter a standard T™M
refers to the TM defined in Definition 9.1). At a higher level we can give
instructions in English language even without specifying the state or transition
function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give
implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the
construction of TMs easier. The Turing machine defined in Section 9.1 is called
the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 6(q. a) as (¢’, y, D) where D = L or R.
So the head moves to the left or right after reading an input symbol. Suppose,
we want to include the option that the head can continue to be in the same cell
for some input symbol. Then we define d(g, a) as (¢’, y. S). This means that
the TM, on reading the input symbol a, changes the state to ¢" and writes y in
the current cell in place of @ and continues to remain in the same cell. In terms
of IDs,
wgax |— wq'yx

Of course, this move can be simulated by the standard TM with two moves,

namely
wgax = wyq'x = wq'yx

That is, 8{q, @) = (¢, v. S) is replaced by 8(g. @) = (¢”, v, R) and 6(q¢”. X) =
(¢ . v. L) for any tape symbol X.

Thus in this model 8(g. a) = (¢, v, D) where D = L, R or §.

290 2 Theory of Computer Science

9.6.2 STORAGE IN THE STATE

We are using a state, whether it is of a FA or pda or TM, to ‘remember’ things.
We can use a state to store a symbol as well. So the state becomes a pair
(g, @) where g is the state (in the usual sense) and a is the tape symbol stored
in {g. a). So the new set of states becomes Q X T.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1% + 1 0%,

Solution

We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states, go. ¢1.
The tape symbols are 0, 1 and b. So the TM. having the ‘storage facility in
state”. is

M = ({qo. q1} x {0. L. b}, {0, 1}, {0, 1, b}. 6. lgo. DI {lg1. D1}

We describe 0 by its implementation description.

1. In the initial state, M is in g, and has b in its data portion. On seeing
the first symbol of the input sting w, M moves right, enters the state
¢, and the first symbol, say «, it has seen.

. M is now in gy, a]. (1) If its next symbol is b, M enters {g;. b], an
accepting state. (i1) If the next symbol is a. M halts without reaching

[\

the final state (i.e. § is not defined). (iii) If the next symbol is @
(a =0ifa=1and @ =1 if ¢ = 0), M moves right without changing
state.

3. Step 2 is repeated until M reaches [¢;. b] or halts (& is not defined for
an input symbol in w).

9.6.3 MULTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track
TM. a single tape is assumed to be divided into several tracks. Now the tape
alphabet is required to consist of i-tuples of tape symbols. k being the number
of tracks. Hence the only difference between the standard TM and the TM with
multiple tracks is the set of tape symbols. In the case of the standard Turing
machine, tape symbols are elements of I'; in the case of TM with multiple track,
it is I'*. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has
to be done repeatedly. We can implement this facility for TMs as well.

Chapter 9: Turing Machines and Linear Bounded Automata = 291

First, a TM program for the subroutine is written. This will have an initial
state and a ‘return’ state. After reaching the return state. there is a temporary
halt. For using a subroutine, new states are introduced. When there is a need
for calling the subroutine, moves are effected to enter the initial state for the
subroutine (when the return state of the subroutine is reached) and to return to
the main program of TM.

We use this concept to design a TM for performing multiplication of two
positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m. n), m. n being given, the positive integers are represented by

010", M starts with 0710" in its tape. At the end of the computation,

0™"(mn in unary representation) surrounded by b's is obtained as the ouput.
The major steps in the construction are as follows:

1. 0"10"1 is placed on the tape (the output will be written after the
rightmost 1).

2. The leftmost O is erased.

3. A block of 12 0's is copied onto the right end.

4. Steps 2 and 3 are repeated m times and 10™10™" is obtained on the
tape.

5. The pretix 10"1 of 10™10™" is erased. leaving the product mn as the
output.

For every 0 in 0™, 0" is added onto the right end. This requires repetition
of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is ¢; and the final state is gs. 0
is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COPY

State Tape symbol
0 1 2 b
qs G22R g41L — -
G2 q20R RIR - G:0L
gs q:0L gs1L G12R -
Qs — gs1R q40L —
s - — — -

The Turing machine M has the initial state gy The initial ID for M is
qs0"10"1. On seeing 0. the following moves take place (g, is a state of M).
Gu0""10"1 = bg0" ' 10" 0™ gel0"L - b0 1g,0"1. gy is the initial state

292 2 Theory of Computer Science

of COPY. The TM M, performs the subroutine COPY. The following moves
take place for M;: q,0"1 |— 2¢:0""'1 |- 20"'1g:b |—20""g310 |- 24,0"'10.
After exhausting 0's. ¢, encounters 1. M, moves to state g,. All 2’s are
converted back to 0’s and M| halts in gs. The TM M picks up the computation
by starting from ¢s. The g, and ¢, are the states of M. Additional states are
created to check whether each 0 in 0 gives rise to 0”7 -at the end of the
rightmost 1 in the input string. Once this is over, M erases 101 and finds O™
in the input tape.
M can be defined by

M= ({(/0 d1s -+ o Q13}~ {O 1} {O 1’ 27 b} 5= qdo» b7 {qu})
where § is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

0 1 2 b

Go qsbR - - -
Qs Gs0R G1R - —
gs g-0L - - -
gz - as1L — -
s gs0L — — GiobR
ds q50L — - GobR

10 - q1bR - -
oo gubR G12bR — -

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, @) is either a
single triple (p. v, D). where D = R or L, or is not defined. We introduce two
new models of TM:
(1) a TM with more than one tape
(i) a TM where 8(q. a@) = {(pi. ¥1, D). (P2, v2. Do), .. o (psy ¥, D3}, The
first model is called a multitape TM and the second a nondeterministic
™.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states, an initial state gg, a subset F of O
called the set of final states. a set P of tape symbols, a new symbol b, not in
P called the blank symbol. (We assume that Z c T"and b ¢ X.)

Chapter 9: Turing Machines and Linear Bounded Automata B 293

There are k tapes. each divided into cells. The first tape holds the input
string w. Initially, all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input
w. All the other heads can be placed at any cell initially.

0 is a partial function from Q X ™ into 0 x T x {L, R. S}*. We use
implementation description to define 0. Figure 9.8 represents a multitape TM.
A move depends on the current state and & tape symbols under k tape heads.

Finite
control

N\

HEEED N
|

e

{

JEEEEEE

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.
(ii1) Each tape head moves to the left or right or remains stationary. The
heads move independently: some move to the left, some to the right
and the remaining heads do not move.

The initial ID has the initial state gg. the input string w in the first tape
(input tape). empty strings of b's in the remaining & — 1 tapes. An accepting ID
has a final state. some strings in each of the & tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by
some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a i-tape TM M. We simulate M
with a single-tape TM with 2k tracks. The second. fourth, (2k)th tracks hold
the contents of the k-tapes. The first. third, (2k — D)th tracks hold a head
marker (a symbol say X) to indicate the position of the respective tape head.
We give an "implementation description’ of the simulation of M with a single-
tape TM M. We give it for the case & = 2. The construction can be extended
to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A, and Bs
are the current symbols to be scanned and so the headmarker X is above the two
symbols.

294 HE Theory of Computer Science

Finite
control

By| By| B3| B4} B3

Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and
fourth tracks of M,. The headmarkers of the first and third tracks are at the cells
containing the first symbol.

To simulate a move of M. the 2k-track TM M, has to visit the two
headmarkers and store the scanned symbols in its control. Keeping track of the
headmarkers visited and those to be visited is achieved by keeping a count and
storing it in the finite control of M;. Note that the finite control of M, has also
the information about the states of M and its moves. After visiting both head
markers. M, knows the tape symbols being scanned by the two heads of M.

Now M, revisits each of the headmarkers:

(1) It changes the tape symbol in the corresponding track of M based
on the information regarding the move of M corresponding to the state
(of M) and the tape symbol in the corresponding tape M.
(i1) It moves the headmarkers to the left or right.
(iii) M, changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M, is ready
to implement its next move based on the revised positions of its headmarkers
and the changed state available in its control.

M, accepts a string w if the new state of M. as recorded in its control at
the end of the processing of w. is a final state of M.

Definition 9.3 Let M be a TM and w an input string. The running time of M
on input w. is the number of steps that M takes before halting. If M does not
halt on an input string w, then the running time of M on w is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested
in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM M is the function 7(n), n being the
input size, where T(n) 1s defined as the maximum of the running time of M over
all inputs w of size n.

Theorem 9.2 If M, is the single-tape TM simulating multitape TM M, then
the time taken by M, to simulate n moves of M is O(n").

Chapter 9: Turing Machines and Linear Bounded Automata B 295

Proof Tet M be a k-tape TM. After n moves of M, the head markers of M,
will be separated by 2n cells or less. (At the worst. one tape movement can be
-to the left by » cells and another can be to the right by n cells. In this case the
tape headmarkers are separated by 2n cells. In the other cases, the ‘gap’
- between them is less). To simulate a move of M, the TM M, must visit all the
k headmarkers. If M starts with the leftmost headmarker. M| will go through all
the headmarkers by moving right by at most 2n cells. To simulate the change
in each tape. M, has to move left by at most 2r cells; to simulate changes in
k tapes, it requires at most two moves in the reverse direction for each tape.
Thus the total number of moves by M, for simulating one move of M is
atmost 4n + 2k. (2n moves to right for locating all headmarkers, 2n + 2k moves
to the left for simulating the change in the content of k tapes.) So the number
of moves of M, for simulating » moves of M is n{d4n + 2k). As the constant k
is independent of n, the time taken by M; is OGr°).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as
deterministic TM). 6(g,;. a) was defined (for some elements of O X I') as an
element of 0 x I’ x {L, R}. Now we extend the definition of 8 In a
nondeterministic TM. 8(gy. «) is defined as a subset of O x ' x {L, R}.

Definition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, Z. T, 6, qo.
b, F) where
Q is a finite nonempty set of states
I' 1s a finite nonempty set ot tape symbols
b e T is called the blank symbol
Z is a nonempty subset of T'. called the set of input symbols. We
assume that b ¢ Z.
gp is the initial state
F < Q is the set of final states

7. 6 is a partial function from Q x T into the power set of O x T’ x

{L. R}.

Note: If g e Qand x € T and 6(q. x) = {(g,, v, D). (gs ¥y», Ds). ...,
(G ¥ D)} then the NTM can chose any one of the actions defined by
(g v, Dy fori=12.....n

We can also express this in terms of |— relation. If 6(q. x) = {(g;. ;. D))
i=1.2.... n} then the ID zgxw can change to any one of the n IDs specified
by the n-element set 6(q. x).

Suppose 6(q. x) = {(g1. ¥1. L), (g2 ¥2. R). (g3 ¥3. L)}. Then

:l:.pJ!\)H

IS

N B A S BRI B LA N A B SR B
or

B N R A S S e R L V1 O B
or

o Y A e T R S LRV T 1t LY FE R

296 E Theory of Computer Science

So on reading the input symbol, the NTM M whose current ID is 7,2 . . .
24X - - - I, can change to any one of the three IDs given earlier.

Remark When 6(¢q. x) = {(g;. v, D;)|i = 1.2... .. n} then NTM chooses any
one of the n triples totally (that is. it cannot take a state from one triple, another
tape symbol from a second triple and a third D(L or R) from a third triple, etc.

Definition 9.6 1w € X* is accepted by a nondeterministic TM M if gow |-
xgp for some final state gy
The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the form xgv (for some ¢ ¢ F) may
be reached as the result of applying the input string w. But w is accepted by M
as long as there is some sequence of moves leading to an ID with an accepting
state. It does not matter that there are other sequences of moves leading to an
ID with a nonfinal state or TM halts without processing the entire input string.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M|
such that T(M) = T(M,).

Proaf We construct M, as a multitape TM. Each symbol in the input string
leads to a change in ID. M, should be able to reach all IDs and stop when an
ID containing a final state is reached. So the first tape is used to store IDs of
M as a sequence and also the state of M. These IDs are separated by the symbol
% (included as a tape symbol). The current ID is known by marking an x along
with the ID-separator * (The symbol * marked with x is a new tape symbol.)
All IDs to the left of the current one have been explored already and so can be
ignored subsequently. Note that the current ID is decided by the current input
symbol of w.

Figure 9.10 illustrates the deterministic TM M.

Finite
control
RY
Tape 1
P (ID4 1Dy -1D5 1D, -1D5-1Dg~ ...

\

Fig. 9.10 The deterministic TM simulating M.

Tape 2

To process the current ID, M, performs the following steps.

1. M, examines the state and the scanned symbol of the current ID. Using
the knowledge of moves of M stored in the finite control of M. M,
checks whether the state in the current ID is an accepting state of M.
In this case M, accepts and stops simulating M.

Chapter 9: Turing Machines and Linear Bounded Automata B 297

2. If the state ¢ say in the current ID xgay is not an accepting state of M|
and 6(q. a) has k triples. M, copies the ID xgay in the second tape and
makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M, modifies these k IDs in tape 2 according to the k choices given by
o(g. a).

4. M, returns to the marked current ID. erases the mark x and marks the
next ID-separator * with x (to the * which is to the left of the next ID
to be processed). Then M, goes back to step 1.

M, stops when an accepting state of M is reached in step 1.

Now M, accepts an input string w only when it is able to find that M has
entered an accepting state, after a finite number of moves. This is clear from
the simulated sequence of moves of M, (ending in step 1)

We have to prove that M| will eventually reach an accepting ID (that is,
an ID having an accepting state of M) if M enters an accepting 1D after n
moves. Note each move of M is simulated by several moves of M.

Let m be the maximum number of choices that M has for various (g, a)’s.
(It is possible to find m since we have only finite number of pairs in Q X I'))
So for each initial ID of M, there are at most m IDs that M can reach after one
move, at most m~ IDs that M can reach after two moves. and so on. So
corresponding to # moves of M. there are at most 1 +m + m~ + - - - + m" Moves
of M;. Hence the number of IDs to be explored by M, is at most nm”.

We assume that M, explores these IDs. These IDs have a tree structure
having the initial ID as its root. We can apply breadth-first search of the nodes
of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,
and so on.) If M reaches an accepting ID after » moves. then M| has to search
atmost nm” IDs before reaching an accepting ID. So, if M accepts w, then M,
also accepts w (eventually). Hence T(M) = T(M)).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is
accepted by the model. and (b) the infinite storage is restricted in size but not
in accessibility to the storage in comparison with the Turing machine model. It
is called the linear bounded automaton (LBA) because a linear function is used
to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-sensitive
languages. It should be noted that the study of context-sensitive languages is
important from practical point of view because many compiler languages lie
between context-sensitive and context-tree languages.

A linear bounded automaton is a nondeterministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear function

298 & Theory of Computer Science

of the length of the input string. The models can be described formally by the
following set format:

M:(Q~ z-, r‘ 5~, q“' b9¢$~F)

All the symbols have the same meaning as in the basic model of Turing
machines with the difference that the input alphabet X contains two special
symbols € and $. is called the left-end marker which is entered in the left-
most cell of the input tape and prevents the R/W head from getting off the left
end of the tape. $ is called the right-end marker which is entered in the right-
most cell of the input tape and prevents the R/W head from getting off the right
end of the tape. Both the endmarkers should not appear on any other cell within
the input tape, and the R/W head should not print any other symbol over both
the endmarkers.

Let us consider the input string w with |w| = n — 2. The input string w can
be recognized by an LBA if it can also be recognized by a Turing machine
using no more than kn cells of input tape, where k is a constant specified in the
description of LBA. The value of k does not depend on the input string but is
purely a property of the machine. Whenever we process any string in LBA, we
shall assume that the input string is enclosed within the endmarkers ¢ and $.
The above model of LBA can be represented by the block diagram of Fig. 9.11.
There are two tapes: one is called the input tape, and the other, working tape.
On the input tape the head never prints and never moves to the left. On the
working tape the head can modify the contents in any way, without any
restriction.

“«—— ncells

gel | | | ’
/¢ L1] sl

R head moving to the right only

input
tape

Finite state
control

head

kn cells

i
\
Working tape
Fig. 9.11 Model of linear bounded automaton.

In the case of LBA, an ID is denoted by (q. w. k), where g€ Q. we T

and £ is some integer between 1 and #. The transition of IDs is similar except

Chapter 9: Turing Machines and Linear Bounded Automata 2B 299

that k£ changes to k — 1 if the R/W head moves to the left and to & + 1 if the
head moves to the right.
The language accepted by LBA is defined as the set

C(we @-1{E $Hge Gws. D = (g o)
for some ¢ € F and for some integer 7 between 1 and n}.

Note: As anull string can be represented either by the absence of input string
or by a completely blank tape. an LBA may accept the null string.

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE
LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings
generated by the context-sensitive grammars, excluding the null strings. Now
we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded
automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines
with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by
a given Turing machine M. The productions are constructed in two steps. In
step 1 we construct productions which transform the string [¢,§ w$] into the
string [g,b]. where ¢, is the initial state. ¢~ is an accepting state, €is the left-
endmarker. and $ is the right-endmarker. The grammar obtained by applying
step 1 is called the rransformational grammar. In step 2 we obtain inverse
production rules by reversing the productions of the transformational grammar
to get the required type 0 grammar G. The construction is in such a way that
w is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING
TO TM

For understanding the construction. we have to note that a transition of ID
corresponds to a production. We enclose IDs within brackets. So acceptance of
w by M corresponds to the transformation of initial ID [g, ¢ w $] into [g.:b].
Also, the "length” of ID may change if the R/W head reaches the left-end or the
right-end. i.e. when the left-hand side or the right-hand side bracket is reached.
So we get productions corresponding to transition of IDs with (i) no change in
length, and (i) change in length. We assume that the transition table is given.

Chapter 9: Turing Machines and Linear Bounded Automata = 303

(D) The LBA productions are

¢q:8 — q.8. g8 — Cgs

$9:3 = qu$. Cay — g4 (9.12)
0q.% — ¢.5.

1948 — q,8

Step 2 The productions of the generative grammar are obtained by reversing
the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of 1's.

Solution

We design a TM so that we have ww after copying w € {1}*. Define M by
M= ({QO' Gy 4o (13}- {l} {1‘ b}, 5~ qos bs {(13})

where & is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol
1 b a
ds GoaR q:bL -
g- gL G3bR 1R
op} 1R gL —
as —_ b —

The procedure is simple.

M replaces every 1 by the symbol a. Then M replaces the rightmost a by
1. It goes to the right end of the string and writes a I there. Thus M has added
a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches g; after replacing all 1's by a's and reading the blank at the end
of the input string. After replacing a by 1. M reaches ¢-. M reaches g5 at the
end of the process and halts. If w = 1. than we have 1" at the end of the
computation. A sample computation is given below.

Goll = aqol }— aaqeb t+— aq,a
b= alg:b |- aq1l |- gall
= lg-11 = 1lge1 | 111g:0
b= 11g-11 }— 1g,111
= q 1111 = q,p1111 |— g51111

304 B Theory of Computer Science

EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {0,1} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to
recognize L. Figure 9.12 gives a DFA accepting L.

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M, does the same; it reads an input
symbol. does not change the symbol and changes state. At the end of the
computation. the TM sees the first blank b and changes to its final state. The
initial ID of M, is ggw. By defining 0(qo. b) = (g1, b, R), M, reaches the initial
state of M. M, can be described by Fig. 9.13.

(0.0, R)

(1,1, R (0,0, R)

)
qu\(b, b R) ;q} (0.0.R)
_ 3

(b, b, R

(1,1, R)
1,1.R

Fig. 9.13 TM for Example 9.14.

Note: g5 is the unique final state of M. By comparing Figs. 9.12 and 9.13 it
is easy to see that strings of L are accepted by M;.

EXAMPLE 9.15

Design a TM that reads a string in {0. 1}* and erases the rightmost symbol.

Solution
The required TM M is given by

M = ({QO7 q1s 425 g3 C]4} {Os 1} {O 1> b} 5., qo- b, {(]4}>

Chapter 9: Turing Machines and Linear Bounded Automata = 305

where & is defined by

6(qp- 0) = (g1, 0. R) 0(go. 1) = (q1. 1, R Ry)
6(g,- 0)= (g1, 0, R) 8(g;-) =(q. L, R) Ry
&g, D)= (g2 b, L) (Ra)
6(qs, 0) = (g3, b. L) 0(qa 1) = (g3, b. L) (Ry)
6(gs. 0) = (¢, 0. L) 0(gs D) = (ga. 1. L) (Rs)
0(qs, b) = (g4, b, R) (Re)

Let w be the input string. By (R;) and (R,), M reads the entire input string
w. At the end, M is in state ¢,. On seeing the blank to the right of w. M reaches
the state g> and moves left. The rightmost string in w is erased (by (Ry)) and
the state becomes g;. Afterwards M moves to the left until it reaches the left-
end of w. On seeing the blank b to the right of w. M changes its state to gy,
which is the final state of M. From the construction it is clear that the rightmost
symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {0% | n > 0}.

Solution
Let w be an input string in {0}*. The TM accepting L functions as follows:

1. It writes b (blank symbol) on the leftmost O of the input string w. This

is done to mark the left-end of w.

M reads the symbols of w from left to right and replaces the alternate

0’s with x’s.

If the tape contains a single 0 in step 2. M accepts w.

4. If the tape contains more than one 0 and the number of 0’s is odd in
step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in
step 1).

6. M goes to step 2.

[

(5]

Each iteration of step 2 reduces w to half its size. Also whether the number
of O's seen is even or odd is known after step 2. If that number is odd and
greater than 1, w cannot be 07 (step 4). In this case M rejects w. If the number
of 0's seen is 1 (step 3), M accepts w (In this case 0% is reduced to O in
successive stages of step 2).

We define M by

M = ({q0. q1- 42 43 G- g5 @:}s {0}, {0, x. b}, 6, qo. b {gs})
where 6 is defined by Table 9.12.

UL E—

306 B Theory of Computer Science

TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol
0 b X

9o bRa, bRa; xR,
G4 xRq, bRq; ¥Rg,

2 0Rgs bRq, xRqy
G *Rqy bR xRgs
e OLqgs4 bRg, xLgy
g: - - -
Qt - — -

From the construction, it is apparent that the states are used to know
whether the number of 0's read is odd or even.
We can see how M processes 0000.

¢,0000 }— bq;000 | bxq:00 |— bxq30 p— bxOxq,b
= bx0quxb |— bxqOxb bqx0xb |— qybx0xb
= bqx0xb |— bxq,0xb |— bxxqaxb bxxxq-b
— bxxqxb — bxquxxb }— bq soexb = qubxxxb
= bgoxxb = bxqxxb b= bxxqxb — bxxxqb
b= baxby;.

Hence M accepts w.

Also note that M always halts. If M reaches g5 the input string w 1s
accepted by M. If M reaches ¢, w is not accepted by M: in this case M halts
in the trap state.

EXAMPLE 9.17
Let M = ({go. q1, g-}. 10. 1}, {0. 1, b}. & go. {92}

where 0 is given by

0(qo- 0) = (g1, 1. B) (Rp
0(g1. 1) = (gp. 0, R) (R»)
0(qy. b) = (g». b, R) (Rj)
Find T(M).
Solution

Let w e T(M). As 8(go, 1) is not defined, w cannot start with 1. From (R;)
and (R»). we can conclude that M starts from ¢, and comes back to gq after
reaching 01.

So. qo(01)" = (10)"go. Also. qo0b |— 1gb |— 1bq2.

Chapter 9: Turing Machines and Linear Bounded Automata

jus|

=

307

So, (01)'0 € T(M). Also, (01)"0 is the ounly string that makes M move from
Go to g». Hence, T(M) = {{01Y'0 | n 2 O}.

SELF-TEST

Choose the correct answer te Questions 1-10:

1.

(=]

n

For the standard TM:

(ay 2 =T

b T'cX

) 2cl

(d) Z is a proper subset of T,

. In a standard TM. 6(q. a), g€ Q. a e T is

(a) defined for afl (q. @) € @ x T

(b} defined for some. not necessarily for all (¢, a) € O x T

(¢} defined for no element (¢. a) of @ x T
(d) a set of triples with more than one element.

If 8(g. x) = (p. v. L), then

(@) X1Xa oo X QX e Xy b XX XX W - Y,
(0) X XY Xy Xy L XN
iGN e Ny X XD XN
(d) xixoooxLgy X X XYY

(c) ¥x» ... x

If 8(g. x) = (p. v. R). then

x!?

(@) XpXa oo X gy - Xy e X e Xl P

(b) XX L Xgyy Ly, |>——— R AR I ¢ 22 SR I

(C) R G N I 17 A . i— LD o B IR 22 93 SVE TN
(d) XpXa o X gy Xy, i— XX o X VP -

If 8(g. x;) = (p. v. L). then

(@) g X, = pyxs X,

M) g ox, b= yprs L x,

(€) gvixa ... x, b pbxy ... x,

(d) goixy .o x =pbyy .y,

If 8(g. x,) = (p. v. R). then

(@) x; ... X00x, B pavods o,
() X1 Ly, P opyaxs L. X,
(€) ¥ . X%, = XX . xo0pb
(d) xp oo Xy, B oxxa L X 0pb
For the TM given in Example 9.6:

(@) golbll | bql1bbl

(b) galbll — bg,i1bbl

(©) gplbll |— 1gpblll

{(d) golbll |— g:b11bbl1

308

2 Theory of Computer Science

8.

For the TM given in Example 9.4
(a) 011 is accepted by M

(b) 001 is accepted by M

(c¢) 00 is accepted by M

(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:

10.

923

9.4

9.5

9.6

9.7
9.8

9.9

9.10
9.11

(a) 1 is accepted by M

{b) 11 is accepted by M

{¢) 111 is accepted by M
(dy 11111 is accepted by M

In a standard TM (Q. . I", &. qq, b. F) the blank symbol b is

(a)y imnx-T
by inT - X
Iz

(d) none of these

EXERCISES

1 Draw the transition diagram of the Turing machine given in Table 9.1.

Represent the transition function of the Turing machine given in
Example 9.2 as a set of quintuples.

Construct the computation sequence for the input 111 for the Turing
machine given in Example 9.5.

Construct the computation sequence for strings 1213, 2133, 312 for the
Turing machine given in Example 9.8.

Explain how a Turing machine can be considered as a computer of integer
functions (i.e. as one that can compute integer functions; we shall discuss
more about this in Chapter 11).

Design a Turing machine that converts a binary string into its equivalent
unary string.

Construct a Turing machine that enumerates {0"1"|n = 1}.

Construct a Turing machine that can accept the set of all even
palindromes over {0, 1}.

Construct a Turing machine that can accept the strings over {0, 1}
containing even number of 1's.

Design a Turing machine to recognize the language {a"'b"c™|n.m > 1}.
Design a Turing machine that can compute proper subtraction. i.e.

m = n. where m and n are positive integers. m = n is defined as m — n
ifm>nand 01if m < n.

	Binder1
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029

