
C H A P T E R 14 

Algorithms and Decision Procedures 
for Context-Free Languages 

M
any questions that w~ could cmswcr when asked ubuut regular languages 
are unanswerable for context-free ones. But a few im.portant q~l!stions can 
be answered and we have already presented a usl'lul collcctmn of algo­

rithms that can operate on context-free grammars and PDAs. We'll present a few 
more here. 

14.1 The Decidable Questions 
Fortunately. the most important questions (i.e .• the ones that must he answerable if 
context-free grammars are to he of any practical use) arc c..lccidahlc. 

14.1.1 Membership 
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We begin with the most fundamental question. "Given a language /_ and a string ·w. is 10 
in L T' Fortunately this question can be answered for every context-free language. By 
Theorem 12.1. for every context-free language L.thcrc exists a PDA M such that Mac~ 
cepts L. But we must be careful. As we showed in Section l2.4.l,DAs arc not guaranteed 
to halt. So the mere existence of a PDA th;tt accepts L llocs not guarantee the existence 
of a procedure that decides it (i.e .. alway~ halts and st~ys Y'-=S or nu appropriately). 

It turns out that there are two alternative approaches to solving this problem? both 
of which work: 

• Use a grammar: Using facts about every derivation that is prodw:cd hy a grammar 
in Chomsky normal form, we can construct an al!tonthm that explores a rinite num­
ber of derivation paths and rinds ~lnc that derives a particular string w iff such a 
path exists. 
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• Usc.: a PDA: While not all PO As halt. it is possible. for any context-free language L, 
to craft a PDA M that is guaranteed to halt on all inputs and that accepts all strings 
in L and rejects all strings that are not in L. 

Using a Grammar to Decide 
We begin by considering the first alternative. We show a straightforward algorithm for 
deciding whether a string w is in a language L: 

clecitlcCFLusingGrammar(L: CFL, -w: string)= 

1. If Lis specified as a PDA. use PDAtoCFG. presented in the proof of Theorem 
12.2, to construct a grammar G such that L (G) = L (M). 

2. If Lis specified as a grammar G, simply use G. 

3. If w = e then if Sa is nullable (as defined in the description of removeEp.~ in 
Section 11.7.4) then accept, otherwise reject. 

4. If uJ :F e then: 

4.1. From G. construct G' such that L (G') = L (G)- {e} and G' is in 
Chomsky normal form. 

4.2. If G derives to, it does so in 2 • hoi - 1 steps. Try all derivations in G of 
that number of steps. If one of them derives w, accept. Otherwise reject. 

The running time of decideCFLusingGrammar can be analyzed as follows: We as­
sume that the time required to build G' is constant. since it does not depend on 1c. Let 
,, = In, I. Let g be the search-branching factor of G '.defined to be the maximum num­
ber of rules that share a left-hand side. Then the number of derivations of length 2n - 1 
is bounded by g 21' - I, and it takes at most 2n - 1 steps to check each one. So the worst­
case running time of decideCFLusingGrammar is O(n2"). ln Section 15.3.1, we will 
present techniques that are substantially more efficient. We will describe the CKY algo­
rithm. which. given a grammar G in Chomsky normal form. decides the membership 
question for G in time that is O(n3

). We will then describe an algorithm that can decide 
the question in time that is linear in n if the grammar that is provided meets certain 
requirements. 

THEOREM 14.1 Decidability of Context-Free Languages 
----------------

Theorem: Given a context-free language L (represented as either a context-free 
grammar or a PDA) and a string w, there exists a decision procedure that an­
swers the question, ••Js 'We L?" 

Proof: The following algorithm, decicleCFL. uses dec:ideCFLusingGrammar to 
answer the question: 

decideCFL(L: CFL, w: string)= 

l_ 1. If tlecideCFLusingGrammar( L. 10) accepts, return True else return False. 
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Using a PDA to Decide • 
It is also possible to solve the membership problem using PDAs. We take a two-step 
approach. We first show that. for every context-free language /..it is possible to build a 
PDA that accepts L - { £ ~ and that has no £-transitions. Then we show that every 
PDA with no e-transitions is guaranteed to halt. 

THEOREM 14.2 Elimination of £-Transitions - ----- ---
Theorem: Given any context-free grammar G = (V. I , R. S). there exists a PDA 

M such that L (M) = L (G) - {e~ and M contains no transitions of the form 
({q1, e, a), (q2, /3)). In other words, every transition reads exactly one input 
character. 

Proof: The proof is by a construction that begins by converting G to Greibacb nor· 
mal form. Recall that. in any grammar in Greihach normal form. all rules are of 
the form X-+ a A. where a e I and A e ( V - ~ )*. Now consider again the algo­
rithm cfgtoPDAtopdown, which builds. from any context-free grammar G,a PDA 
M that, on input w. simulates G deriving 1l', starting from S. M = ( {p. q h I, 
V, ~.p. {qD, where~ contains: 

t. The start-up transition ((p, e, e), (q. S)). which pushes the start symbol onto 
the stack and goes to state q. 

z. For each rule X-+ s1.\'2 •• • s, in R. the transition ((q. e. X). (q. s1s2 • •• s11)), which 
replaces X by SJSz ••• S11• If n = 0 (i.e., the right-hand sidl! of the rule is e), then 
the transition ((q, e, X), (tJ, e)). 

3. For each character c E" I. the transition ((q. c, r). (q. e)). which compares an 
expected character from the stack against the next input character and contin· 
ues if they match. 

The start-up transition. plus an the transitic.ms generated in step 2, are 
s-transitions. But now suppose that G is in Grcihach normal form. If G contains 
the rule X-+ cs2 . .. s, (where c e I and s2 through s, arc clements of V·~), it is 
not necessary to push c onto the stack. only to pop it with a rule from step 3.ln· 
stead, we collapse the push and the pop into a single transition. So we create a 
transition that can be taken only if the next input character is c. In that case. the 
string s2 • • • s11 is pushed onto the stack. 

Now we need only find a way to get rid of the start-up transition. whose job is 
to push S onto the stack so that the derivation process can begin. Since G is in 
Greibach normal form, any rules with Son the left-hand side must have the form 
S-+ csz .• . s11• So instead of reading no input and just pushing S, M will skip push· 
ing S and instead, if the first input character is , .• read it and push the string 
s2 .. • 5n· 

Since terminal symbols are no longer pushed onto the stack. we no longer 
need the transitions created in step 3 of the original algorithm. 



14.1 The Decidable Questions 317 

So M = ({p,q}, l:, V, l1,p, {q}), where ll contains: 

1. The start-up transitions: For each rule S - cs2 .•. s,., the transition {(p, c, s), 
(q, s2 ••• .s,.)). 

2. For each rule X- cs2 ••• s,. (where c e l: and s2 through sn are elements of 
V- I),thetransition((q, c,X), (q.s2 . .. s,.)). 

The following algorithm builds the required PDA: 

cfgtoPDAnoeps( G: context-free grammar) = 
1. Convert G to Greibach normal form, producing G'. 
2. From G' build the PDA M described above. 

THEOREM 14.3 Halting Behavior of PDAs Without e-Transitions 

Theorem: Let M be a PDA that contains no transitions of the form 
((q1, e, s1) , (q2, s2)). i.e., no e-transitions. Consider the operation of M on input 
we I*. M must halt and either accept or reject w. Let n = lwl. We make three 
additional claims: 

a. Each individual computation of M must halt within n steps. 

b. The total number of computations pursued by M must be less than or equal to b", 
where b is the maximum number of competing transitions from any state in M. 

c. The total number of steps that will be executed by all computations of M is 
bounded by nb". 

Proof: 

a. Since each computation of M must consume one character of w at each step 
and M will halt when it runs out of input, each computation must halt within 
n steps. 

b. M may split into at most b branches at each step in a computation. The num­
ber of steps in a computation is less than or equal ton. So the total number of 
computations must be less than or equal to b". 

c. Since the maximum number of computations is b" and the maximum length 
of each is n, the maximum number of steps that can be executed before all 
computations of M halt is nb". 

So a second way to answer the question, "Given a context-free language L and a 
string w, is w in L ?" is to execute the following algorithm: 

decideCFLusingPDA(L: CFL. w: string) = 
1. If Lis specified as a PDA, use PDAtoCFG, as presented in the proof of Theo­

rem 12.2, to construct a grammar G such that L (G) = L (M ). 
l. If Lis specified as a grammar G. simply use G. 
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3. If w = e then if Sc is nullablc (as defined in the description of removt.Eps in 
Section 11 .7.4) then accept. otherwise reject. 

4. If tll -:F e then: 

4.1. From G. construct G' such that L (G') = L (G)- {~}and G' is in 
Grcibach normal form. 

4.2. From G' construct, using tfgwPDAnm'P-"· the alg.orithm described in 
the proof of Theorem 14.2, a PDA M' such that L (M') = L (G') and 
M' has no e-transitions. 

4.3. By Theorem 14.3, all paths of M' are guaranteed to halt within a 
finite number of steps. So run M' on w. Accept if M' accepts and 
reject otherwise. 

The running time of decitfeCFLusirrgPDA cun be analyzed us follows: We will take 
as a constant the time required to build M'. since that can he done llncc. It need not 
be repeated for each string that is to be analyzed. Given M', the time required to an· 
alyze a string ·w is then the time required to simulate all paths of M' on w. Let 
n = lwl. From Theorem 14.3, we know that the total number of steps that will be ex· 
ecuted by all paths of M is bounded by nb", where h is the maximum number of com­
peting transitions from any state in M'. But is that number of stc::ps required? If one 
state has a large number of competing transitions hut the others do not. then the av­
erage branching factor will be less than b, so fewer steps will he necessary. But if b is 
greater than 1. the number of steps still grows exponentially with n. The exact num­
ber of steps also depends on how the simulation is done. A stmightforward depth­
first search of the tree of possibilities will explore bn steps. which is less than nb" 
because it does not start each path over at the beginning. But it still requires time 
that is O(b"). In Section 15.2.3. we present an alternative approach to top-down pars­
ing that runs in time that is linear in tt if the grammar that is provided meets certain 
requirements. 

14.1.2 Emptiness and Finiteness 
While many interesting questions are not decidable for context-free languages. two 
others, in addition to membership are: emptiness and finih:ncss. 

THEOREM 14.4 Decidability of Emptiness and Finiteness 

Theorem: Given a context-free language L. there exists a decision procedure that 
answers each of the following questions: 

1. Given a context-free language L. is L = 0? 

l. Given a context-free language L. is L infinite? 

Since we have proven that there exists a grammar that generates L iff there 
exists a PDA that accepts it. these questions will have the same answers whether 
we ask them about grammars or about PDAs. 
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Proof: 

1. Let G = (V, ~. R, S) be a context-free grammar that generates L. 
L (G) = 0 iff S is unproductive (i.e., not able to generate any terminal 
strings). The following algorithm exploits the procedure removeunproductive, 
defined in Section 11.4. to remove all unproductive nonterminals from G. It 
answers the question, ''Given a context-free language L, is L = 0? .. 

decideCFLempty( G: context-free grammar) = 
1. Let G' = removeunproductive (G). 

2. If S is not present in G' then return True else return False. 

2. Let G = (V, ~. R, S) be a context-free grammar that generates L. We use an 
argument similar to the one that we used to prove the context-free Pumping 
Theorem. Let n be the number of nonterminals in G. Let b be the branching 
factor of G. The longest string that G can generate without creating a parse tree 
with repeated non terminals along some path is of length b". If G generates no 
strings of length greater than b", then L( G) is finite. If G generates even one 
string w of length greater than b", then. by the same argument we used to prove 
the Pumping Theorem, it generates an infinite number of strings since 
w = u vxyz.lvyl > o. and 'v'q 2:: 0 (u1flxyqz is in L). So we could try to test to 
see whether Lis infinite by invoking decideCFL(L, w) on all strings in ~·of 
length greater than b". If it returns Tme for any such string. then Lis infinite. If 
it returns False on all such strings, then Lis finite. 

But. assuming ~ is not empty, there is an infinite number of such strings. 
Fortunately. it is necessary to try only a finite number of them. Suppose that G 
generates even one string of length greater than b"+1 + b". Lett be the short­
est such string. By the Pumping Theorem, t = uvxy.z, lvyl > 0. and uxz (the 
result of pumping vy out once) e L. Note that lux.zl < I tl since some non­
empty vy was pumped out of 1 to create it. Since, by assumption, 1 is the shortest 
string in L of length greater than b"+1 + b", lux~ I must be less than or equal to 
b"+ 1 + b". But the Pumping Theorem also tells us that lvxyl s k (i.e., b"+1),. 

so no more than b"+ 1 strings could have been pumped out of 1. Thus we have 
that b" < luxzl s b"+ 1 + b". So, if L contains any strings of length greater 
than b", it must contain at least one string of length less than or equal to 
b"+1 + b". We can now define decideCFLinfinite to answer the question, 
"Given a context-free language L. is L infinite?": 

decideCFLinfinite( G: context-free grammar) = 

J. Lexicographically enumerate all strings in ~ • of length greater than 
b" and less than or equal to b"+1 + b". 

2. If, for any such string w, decideCFL(L, w) returns True then return 
True. Lis infinite. 

3. If, for all such strings w, decideCFL(L, w) returns False then return 
Ft~lse. L is not infinite. 


