
C H A P T E R 12 

Pushdown Automata 

G
rmnmars define context-free languages. We'd also like a computational formal
ism that is powerful enough to enable us to build an acceptor for every con
text-free language. In this chapter. we describe such a formalism. 

12.1 Definition of a (Nondeterministic} PDA 
A pushdown automaton. or PDA, is a finite state machine that has been augmented by 
a single stack. In a minute, we will present the formal definition of the PDA model that 
we will use. But, before we do that. one caveat to readers of other books is in order. 
11tere are several competing PDA definitions. from which we have chosen one to pres
ent here. All arc provably equivalent. in the sense that, for all i and j, if there exists a 
version; PDA that accepts some language L then there also exists a versioni PDA that 
accepts L. We'll return to this issue in Section 12.5, where we will mention a few of the 
other modds und sketch an equivalence proof. For now. simply beware of the fact that 
other definitions are also in widespread use. 

We will use the following definition: A pushdown automaton (or PDA) M is a sex
tuple (K, l:, r, ~. S, A). where: 

• K is a finite set of states. 

• :£ is the input alphabet, 

• r is the stack alphabet, 

• s e K is the start state, 

• A ~ K is the set of accepting states, and 

• ~ is the transition relation. It is a finite subset of: 

(K X (~U{e}) X r• ) X (K X r• ). 

stute input ore string of symbols state string of symbols 
to pop from to push on top 
top of stack nf ..... ,.., 
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A configuration of a PDA M is an element of K x I* x r•. It captures the three 
things that can make a difference to M's future behavior: 

• its current state, 

• the input that is still left to read. and 

• the contents of its stack. 

The initial configumtion of a PDA M. on input w. is (s. ·w. e). 
We will use the following notational convention for describing M's stack as a string: 

The top of the stack is to the left of the string. So: 

1::1 Q will be written as cab 

If a sequence c,c,. . •. c, of characters is pushed onto the stack. th~y will be pushed 
rightmost first, so if the value of the stack before the push was s. the value after the 
push will be c1c2 ••• c,,s. 

Analogously to what we did for FSMs, we define the relation yields-in-one-srep. 
written I·M· Yields-in-one-step relates configuration1 to configuration2 iff M can move 
from con.figuration 1 to configuration2 in one step. Let c be any clement of l: U {e}, let 
y11 y2 and 'Y be any elements of r•, and let w be any element of~·. Then: 

Note two things about what a transition ((q1• c, y 1), (q2• y2)) says about how M ma· 
nipulates its stack; 

• M may only take the transition if the string 'Yt matches the current top of the stack. 
If it does. and the transition is taken. then M pops y 1 and then pushes y2• M cannot 
"peek" at the top of its stack without popping off the values that it examines. 

• If 'Yt = e, then M must match e against the top of the stack. But e matches every· 
where. So letting y1 be e is equivalent to saying .. without hoth~ring to check the 
current value of the stack." It is not equivalent to saying. "if the stack is empty." In 
our definition, there is no way to say that directly. although we will see that we can 
create a way by letting M. before it does anything else. push a special marker onto 
the stack. Then, whenever that marker is on the top of the stack. the stack is other
wise empty. 

The relation yields, written 1-M•, is the reflexive. transitive closure: of 1-M· So config. 
uration c, yields configuration c2 iff: 
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A computatioa by M is a finite sequence of configurations Co. C1 • ••• • Cn for some 
n 2 0 such that: 

• C0 is an initial configuration. 
• C, is of the form (q, e, y), for some state q e K and some string 'Y in r•. and 

• Coi-M C1I-M C2I-M · • . 1-M Cn. 

Note that we have defined the behavior of a PDA M by a transition relation fl., not 
a transition function. Thus we allow nondeterminism. If M is in some configuration 
(qlt s, 'Y). it is possible that: 

• fl. contains exactly one transition that matches. In that case, M makes the specified 
move. 

• fl. contains more than one transition that matches. In that case, M chooses one of 
them. Each choice defines one computation that M may perform. 

• fl. contains no transition that matches. In that case, the computation that led to that 
configuration halts. 

Let C be a computation of M on input we I •. Then we will say that: 

• Cis an accepting computation iff C = (s, w, e)l-M* (q. e, e), for some q eA. Note 
the strength of this requirement: A computation accepts only if it runs out of input 
when it is in an accepting state and the stack is empty. 

• Cis a njecling computation iff C = (s, w, e )I-M* ( q, w', a), where Cis not an ac
cepting computation and where M has no moves that it can make from (q, w'. a). A 
computation can reject only if the criteria for accepting have not been met and 
there are no further moves (including following e-transitions) that can be taken. 

Let w be a string that is an element of I •. Then we will say that: 

• M accepts w iff at least one of its computations accepts. 

• M "jects w iff all of its computations reject. 

The languagt accepted by M, denoted L(M), is the set of all strings accepted by M. 
Note that it is possible that, on input w. M neither accepts nor rejects. 

In all the examples that follow, we will draw a transition ((q., c, 'Yt), (q2, y2)) as an 
arc from q1 to q2. labeled c I'Y1I'Y2· So such a transition should be read to say, "If c 
matches the input and 'Yt matches the top of the stack, the transition from q1 to q2 can 
be taken, in which case c should be removed from the input, 'Yt should be popped from 
the stack, and "Y2 should be pushed onto it." If c = e, then the transition can be taken 
without consuming any input. H 'Yl = e. the transition can be taken without checking 
the stack or popping anything. If 'Y2 = B, nothing is pushed onto the stack when the 
transition is taken. As we did with FSMs, we will use a double circle to indicate accept
ing states. 

Even very simple PDAs may be able to accept languages that cannot be accepted by 
any FSM. The power of such machines comes from the ability of the stack to count. 
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EXAMPLE 12.1 The Balanced Parentheses Language 

Consider again Bal = {we {), (} • : the parentheses are halanced} . The follow
ing one-state PDA M accepts Bal. M uses its stack to count the number of left 
parentheses that have not yet been matched. We show M graphically and then as 
a sextuple: 

\A()c,e~< 
)1(/e~-

M = (K, I , f, A, .'i, A), where; 

K = {s}, 

l: = {(, )}, 

r = {(}, 

A= {s}, and 

A = {((s, (. e), (s, (}), 

((s, ), ( ), (s. e))}. 

(the states) 

(the input alphabet) 

(the stack alphabet) 

(the accepting state) 

If M sees a(, it pushes it onto the stack (regardless of what was already there). 
If it sees a ) and there is a ( that can be popped off the stack. M docs so. If it sees 
a ) and there is no ( to pop, M halts without accepting. If. after consuming its en
tire input string, M's stack is empty, M accepts. If the stack is not empty, M rejects.. 

PDAs.like FSMs, can use their states to rememhcr facts ••hnut the structure of the 
string that has been read so far. We sec this in the next example. 

EXAMPLE 12.2 A "B" 
Consider again A"B" = { anb": n 2: 0}. The following PDA M accepts A"B". M 
uses its states to guarantee that it only accepts strings that belong to a*b*. It uses 
its stack to count a's so that it can compare them to the b's. We show M graphically: 
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Writing it out, we have M = (K, ~. f, d,s,A), where: 

K = {s,f}, (the states) 

~ = {a. b)}, (the input alphabet) 

r = {a}. (the stack alphabet) 

A = {s,f}, and (the accepting states) 

d = { ((s, a, e). (s, a)), 

((s. b. a), (f,e)), 

(if, b, a}. (f, e))}. 

Remember that M only accepts if, when it has consumed its entire input string, 
it is in an accepting state ami its stack is empty. So, for example, M will reject aaa, 
even though it will be in states, an accepting state, when it runs out of input. The 
stack at that point will contain aaa. 

EXAMPLE 12.3 Wc'i'f' 

Let WcWR = {wcwR: we {a.b}*}. The following PDA M accepts WcWR: 

C/e/ e 

M moves from state s, in which it is recording w. to state f, in which it is check
ing for wR, when it sees the character c. Since every string in WcWR must contain 
the middle c, state s is not an accepting state. 

The definition that we have chosen to use for a PDA is flexible: it allows several 
symbols to be pushed or popped from the stack in one move. This will turn out to be 
particularly useful when we attempt to build PDAs that correspond to practical gram
mars that contain rules like T--+ T * F (the multiplication rule that was part of the 
arithmetic expression grammar that we defined in Example 11.19). But we illustrate 
the use of this flexibility here on a simple case. 

EXAMPLE 12.4 A"B2" 

Let A"B2
" = { a"b211 

: n ~ 0}. The following PDA M accepts A"B2" by pushing two 
a's onto the stack for every a in the input string.11tt:n each b nnM ~ ~inoiP :a· 
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EXAMPLE 12.4 (Continued) 

12.2 Deterministic and Nondeterministic PDAs 
The definition of a PDA that we have presented allows nondctcrminism. It sometimes 
makes sense. however, to restrict our attention to deterministic PDAs. In this section 
we will define what we mean by a deterministic PDA. We also show some examples of 
the power of nondeterminism in PDAs. Unfortunately. in contrast to the situation with 
FSMs. and as we will prove in Theorem 13.13. there exist nondeterministic PDAs for 
which no equivalent deterministic PDA exists. 

12.2.1 Definition of a Deterministic PDA 
Define a PDA M to be deterministic iff there exists no configuration of M in which 
M has a choice of what to do next. For this to be true. two conditions must hold: 

1. liM contains no pairs of transitions that compete with each other. 

2. If q is an accepting state of M. then there is no transition ((q. e. e). (p. a)) for 
any p or a. In other words. M is never forced to choose between accepting and 
continuing. Any transitions out of an accepting state must either consume input 
(since, if there is remaining input, M does not have the option of accepting) or 
pop something from the stack (since. if the stack i5 not empty. M does not have 
the option of accepting). 

So far. all of the PDAs that we have built have been deterministic. So each machine 
followed only a single computational path. 

12.2.2 Exploiting Nondeterminism 
But a PDA may be designed to have multiple competing moves frum a single configu
ration. As with FSMs. the easiest way to envision the operation of a nondeterministic 
PDA M is as a tree. as shown in Figure 12.1. Each node in the tree corresponds to a 
configuration of M and each path from the root to a leaf node may correspond to one 
computation that M might perform. 

Notice that the statet the stack. and the remaining input can be different along dif
ferent paths. As a result, it will not be possible to simulate all paths in parallel. the way 
we did for NDFSMs. 
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q1• abab. e 

q1• bab.al 

q1• ab, ab# q3, ab, al 

FIGURE 12.1 Viewing nondeterminism as search through a space of computation 
paths. 

EXAMPLE 12.5 Even Length Palindromes 

Consider again Pal Even = { wwR : we {a, b} *}, the language of even-length 
palindromes of a's and b's. The following nondeterministic PDA M accepts 
Pal Even: 

e/e/e 

M is nondeterministic because it cannot know when it bas reached the middle 
of its input. Before each character is read, it has two choices: It can guess that it 
has not yet gotten to the middle. In that case, it stays in states, where it pushes 
each symbol it reads. Or it can guess that it has reached the middle. In that case, it 
takes the £-transition to state f, where it pops one symbol for each symbol that it 
reads. 

EXAMPLE 12.6 Equal Numbers of a's and b's 

Let L = {we {a, b}*: #i{w) = #b(w)}. Now we don't know the order in which 
the a's and b's will occur. They can be interleaved. So for example, any PDA to ac
cept L must accept aabbba. The only way to count the number of characters that 
have not yet found their mates is to use the stack. So the stack will sometimes 
count a's and sometimes count b's.lt will count whatever it has seen more of. The 
following simple PDA accepts L: 
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EXAMPLE 12.6 (Continued) 

a/ b/c 

This machine is highly nondet~rministic. Wh~nevcr it sees an a in the input, it 
can either push it (which is the right thing to do if it should be counting a's) or at
tempt to pop a b (which is the right thing to do if it should be counting b's). All the 
computations that make the wrong guess will fail to accept since they will not suc
ceed in clearing the stack. But if #i(w) = lb('w). there will be one computation 
that will accept. 

EXAMPLE 12.7 The a Region and the b Region are Different 

Let L = { a111b" : m :F n: m. tt > 0}. We want to build a PDA M to accept L. It is 
hard to build a machine that looks for something negative, like ¢ . But we can 
break L into two sublanguages: {a"'b" : 0 < m < 11l and i•l'"b" : 0 < 11 < m}. 
Either there are more a's or more b's. M must accept any string that is in either of 
those sublanguages. So M is: 

b/a/E 

b/t:/ e 

As long as M sees a's, it stays in state 1 and pushes each a onto the stack. When 
it sees the first b, it goes to state 2.1t will accept nothing hut b's from th:u point on. 
So far, its behavior has been deterministic. But. from state 2. it mu!-.t make choices. 
Each time it sees another band there is an a on the stack. it should consume the b 
and pop the a and stay in state 2. But, in order to accept. it must eventually either 
read at least one b that does not have a matching a or fXlp an a that docs not have 
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a matching b. It should do the former (and go to state 4) if there is a bin the input 
stream when the stack is empty. But we have no way to specify that a move can be 
taken only if the stack is empty. It should do the latter (and go to state 3) if there is 
an a on the stack but the input stream is empty. But we have no way to specify that 
the input stream is empty. 

As a result, in most of its moves in state 2, M will have a choice of three paths 
to take. All but the correct one will die out without accepting. But a good deal of 
computational effort will be wasted first. 

In the next section. we present techniques for reducing nondeterminism caused by 
the two problems we've just presented: 

• A transition that should be taken only if the stack is empty. and 

• A transition that should be taken only if the input stream is empty. 

But first we present one additional example of the power of nondeterminism. 

EXAMPLE 12.8 ..,A"B"Cn 

Let's first consider A"B"Cn = { a"b"c" : n ~ 0}. If we try to think about building 
a PDA to accept A"B"C", we immediately run into trouble. We can use the stack 
to count a's and then compare them to the b's. But then the stack will be empty 
and it won't be possible to compare the c's. We can try to think of something 
clever to get around this problem, but we will fail. We'll prove in Chapter 13 that 
no PDA exists to accept this language. 

But now let L = •A"B"C". There is a PDA that accepts L. L = L1 U L2, where: 

• L1 = { UJ e {a, b, c }*:the letters are out of order}. 

• L2 = { a;bic'~ : i, j, k ;::: 0 and (i '# j or j :-1= k)} (in other words. not equal num
bers of a's, b's. and c 's). 

A simple FSM can accept L 1• So we focus on L2• It turns out to be easier to 
check for a mismatch in the number of a's, b's. and c's than to check for a match 
because, to detect a mismatch, it is sufficient to find one thing wrong. It is not nec
essary to compare everything. So a string w is in L'! iff eitlrer (or both) the a's and 
b's don't match or the b's and c 's don't match. We can build PDAs, such as the one 
we built in Example 12.7. to check each of those conditions. So we can build a 
straightforward PDA for L. It first guesses which condition to check for. Then 
submachines do the checking. We sketch a PDA for L here and leave the details 
as an exercise: 
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EXAMPlE 12.1 (Continued) 

A f1)A ·~ ~··- ..... , h III.CIMt 'I.., .Ckd-c-"*'"' ..... 
"'utdn 

A f1)A -...c ,.., ,_.,. t .......... I ! • t~; .. ,.,d• ._ ..-~ _ _...~ 

ol ... ....., ~ " .. ......_. ... ""' ..... ~· ~ c. • 

A J1)A ~ tlw .-e • t ~ 11 •""• ... dt• Ill ww~ ... ••-.-..~ 
., •• .., ·~ ' '-"'·' ..,_ illlllllll! ...... ~ ... ' ..... ( .. 

·fh,, la't clample L' "gntft..:.ant f•tt t•u rc.a .. "" 

• It tllu.,uatc' the p••c:r of nnnJctc1nunnm 

• h pru~ .. ~ that the ""'"' uf lilntcwaan iaCICrp4a~ t., I"U-\' " ~IC , '-"<Iii ~'t ~~ 
plc:ment. We ' ll h._\c nwrc tu '-"') ~huul thai an 'c<hnn I \" 

An tmportant f:-.""1 ah..ut the cunlc\l ·h« lanr;u...«"' .n ~unu ... a "'the rr~ '-~ • 
that nondctc:rmanl'm" m.ttc th.an a cetfl\Cmcnt &-u,[n ,,.11& In '-cll1.,..., I\ -~·~ •\II ~ 
the df't""'l"i.tllc COIII,XI·/rw '""I ""'f" lil he: tho""' that uan ~ 41(ufotcd ~ -~ ""= .,_;.. 
minL,tM.: J,UA that m.'l) uplf"t an cnJ • .c ~u•n.: m .. :u\n ll.-n •c •dl f'C'"~ lh.at ~~ ~ 
cuntcxt-frcc lan~Wlttn ttuat .-.rc nut &tctnuna,hc tn thn w:nt;C lhut the•~ "'""'Ill.- ta. 
\:Untc~l · hcc lun~u.•tt'-"'- nu cqua".1knt ·~ the: tc-"CUbr bn~«"' al-ft"'f\thm ...,,~~ 
Thcrc arc" h<.wc-vc:r . ~ tmc tcchnwtun th .. t &.:<an he uw h• , _...,"""' ""llldctcrma.nt.m ._ ....,.. 
uf thc k.at\4h of CU'C' th.al "fh·n '''-ur We 11 , .. c1d\ '"" •" them m Uw nc '' ""\:t .. 11ft. ~ 

12.2.3 Techniques for Reducing Nondetermini\m • 
In E:umplc 12.7. v.c ~· nundctcrnunnm armnc frum t•a 'li'Cf) 'P" tf'IIC ~"lrnutfta--...~ 

• ;\ tran,1t1on that 'huuld he tA~cn 4tnl) ef ttM- "'"'t.. "C'm(lC) """''Vtn "•A""- , ___ ~ 
mnrc mu\·c, that rc:quarc: :a mottch nl "'erne "'"nte '"'the: ....... .and 

• A tranMhun that 'huuld he tulcn '"'') If t~ enrut '''""'"' n ~"'1'4) c~~ 
a~aerL't nne or mute mtn'c' that rcquerc a tnal4h ar..alfnl • '~'''k '"l'UI (t\at--._~ 

Uuth nf the~ etr.:um,tancc' .uc c-_wm~llft . ""• -~ ••"'kl h~C' ht Hnd a •111\ '" ~ 
m chmanatc: the numkh.- rman""' that the' •u"" 



We: finl \."Un~u.lc:r the ca\C in ~·hich the nundelermmism could he: eliminated if it 
~·c:rc: I"~Mhlc: to C'hc:ck fur an emrl)' SlaC'k. Althuu~h our PDA model don not rrO\·idc: 
a "'a~· '"do lhnl dlfc:cll~·. it is c:a~y to ~imulate. Any I'IJA AI that ~·ould like to he: attic 
In chc:ck fur c:mrt~· ~lnck C:.ln ~imrl~·. hc:forc il dlX.~ an~·thing c:lse, pu~ a srcaal char• 
nctc:r untnthc: ~luck . l'hc: ~luck is then logic;tll~· empt~· iff ahat ~rccial character is at the 
'"I' uf the: Muck. ·n,e unl~· thing we: mu~t be: careful about is that, hcfore AI can accept 
a ~uintt. its stack mu~t he comrlctd~· empty. So the special character must he: popped 
whc:nc:\·c:r AI rcnchc:s an attepting ~late. 

EXAMPLE 12.9 Using a Bottom of Stack Marker 

We can ~ the ~ra:i&d, htmnm-of-slack marker lcc:hniquc lo reduce the nondc· 
lcrminiwn in the: I'01\ that ~'C shn"·cd in Examrle 12.7. We'll usc I u the marker. 
When •·c: do that. • ·e get the following I'DA AI': 

No~· the tum~iliun hack to •tate 2 no ''"'gcr cumpctc::s v.ith the tnamition to 
11a1e .a. v.·hich can onl~· hc: lakc:n v.·hen the I h the onl)• s.)mhollc:f'l on the w.ck. M' 
" """ nonJctermina.uc though. hcc:4u~~C the tranwtton back lo ilatc 2 romrc:rcs 
Yt'llh the lnlb.Uiun tu .talc ) . We ~ill don., have: • way to specify that M' mould JO 
tu ilale l only if it ha' run out of inrut. 

Nut we Clllll\kh:r lhc .. uut of input" pru"lc:m. Tu Wll\•e that one, we • ·ill make a 
,·h:m,:c: In the inf'Ul lant!UliJo!C. ln~lcad of "ualdmg a machine to aa-cpt a language L. 
•c·u hu1l~ ttnc: lu an·c:rt I#S. " 'hC'rc $~a srcc:ull cnd-i..•f·~tnng marker. In an~· rractical 
')'left\. "'C v.·uuM l"•~nhl~· chn•-.c <nrwlmt'> Of <c'> or <t'nl«>. rather than$. but 
•c'll u~ Shere ~aUt< 11 •• ca~) lu toec:. 

EXAMPlE 12.10 Using an End-of·String Mark~r 

w~ aan u~ the c:nd ·uf·•trin~J marter tcchnit~ue to eliminate the ~maining non~· 
tc:rnuna'm in the I'UA~ that • ·e ~owed in Eumple 12.7 and Eumrlc 12.9. \\'hen 
•..: du that. •-c 1e1 the f,,u.,~;n~ POA Af•: 
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EXAMPLE 12.10 (Continued) 

b/a/e 

el#lle 

b/e/e 
· S/e/t 

Now the transition back to state 2 no longer competes with the transition to 
state 3, since the latter can only be taken when the $ is read. Notice that we must 
be careful to read the $on all paths, not just the one where we nc&!ded it. 

Adding an end-of-string marker to the l<mguagc to he ilrccptcd is u pnwerfut tool for 
reducing nomlctcrminism. In Section 13.5, we'lllh:finc the da~s of deterministic con
text-free languages to be exactly the set of context-free langu~•gcs L sud1 that L$ can be 
.acccptcu by some deterministic PDA. We'll do th<~l hccause. fm pructkal reasons, we 
would like the class of deterministic context-free languages tn be us huge as possible. 

12.3 Equivalence of Context-Free Grammars and PDAs 
So far. we have shown PDAs to accept several of the context-free hmguagcs for which 
we wrote grammars in Chapter 11. This is no accident. In this section we'll prove. as 
usual by construction, that context-free grammars and pushdown automata describe 
exactly the same class of languages. 

12.3.1 Building a PDA from a Grammar 

THEOREM 12.1 For Every CFG There Exists an Equivalent PDA 

Theorem: Given a context-free grammar (i ~ ( V. I.. R. S). there exists a PDA M 
such that L (M) = L (G). 

Proof: The proof is by construction. There are twn equa lly straightforward ways to 
do this construction. sn we will describe both of them. Either of them can be con
verted to a practical parser (a recognizer that returns a p.ar~c tree if it accepts) by 



274 Chapter 12 Pushdown Automata 

12.3.3 The Equivalence of Context-free Grammars and PDAs 

THEOREM 12.3 PDAs and CFGs Describe the Same Class of Languag~ 

1 Theorem: A languag~ is cnntcxt-free iff it is ucccpkd by S<lmc PDA. 

Proof: 'Theorem 12.1 proves the only if part. Theorem 12.2 pro\'cs thc if part. 

12.4 Nondeterminism and Halting 
Recall that a computation C of a PDA M = (K. ~. r. ~ . s. /\)on a ~tring 1v is an ac

cepting computation iff: 

C = (s. ·w, e)I-M* (q, e,e). fur sum~ q e /\ . 

We'll say that a computation C of M llalls iff at least one of the following conditions 
holds: 

• Cis an accepting computation. or 

• C ends in a configuration from which there is no twnsition in l that can be 
taken. 

We'll say that M halts on w iff every computation of M on w halt s. If M halts on U1 

and does not accept. then we say that M rejects w. 
For every context-free language L. we've proven that there exists •• PDA M such 

that L ( M) = L. Suppose that we would like to be a hie to: 

• Examine a string and decide whether or not it is in L. 

• Examine a string that is in L and create a parse tree for it. 

• Examine a string that is in Land create ;t pMsc tree: for'' in time th<ll is linear in the 
length of the string. 

• Examine a string and decide whethc:r or not it is in the comph:mcnt ol' L. 

Do PDAs providl! the tools we need to do those thing-; ~• When we wcre at a similar 
point in our discussion of regular languages. the answer to that qucstinn was yes. For 
every regular language L. there exists a minimal dctcrminbtic FSM that accepts it. 
That minimal DFSM halts on all inputs. accepts e~ll string.s th;at arc in L &md rejects all 
strings that arc not in L. 

Unfortunately. the facts ahout context-free languages and PI>As ar(' different from 
the facts about regular languages and FSMs. Nuw w<.: mu~t fal:c the following: 

1. There are context-free languages fur which no dctcrmini~tic PDA exi~ts. We'll 
prove this as Theorem 13.13. 

2. It is possihlc that a PDA may 

• not holt, or 

• not ever finish reading its input. 
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So, let M be a PDA that accepts some language L. Then. on input 'W. if 1v e L 

then M will halt and accept. But if w -t L. while M will not accept w, it is possible 
that it will not reject it either. To see how this could happen.let l: = {a} and con
sider the PDA M, shown in Figure 12.4. L (M) = {a}. The computation (1. a. e) 
1- (2. a. a) 1- (3, e, s) will cause M to accept a. But consider any other input ex
cept a. Observe that: 

• M will never halt. There is no accepting configuration, but there is always at 
least one computational path that has not yet halted. For example. on input aa, 
one such path is: 
(1, aa, e) 1- (2, aa, a) 1- (1, aa, aa) 1- (2, aa, aaa) I· 
(1, aa, aaaa) 1- (2, aa, aaaaa) 1- ... 

• M wiH never finish reading. its input unless its input is e. On input aa, for ex
ample, there is no computation that will read the second a. 

3. There exists no algorithm to minimize a PDA. In fact, it is undecidable whether a 
PDA is already minimal. 

e/s/a 

s/e/a 

a/a/s 
FIGURE 12.4 A PDA that may neither 
accept nor reject. 

Problem 2 is especially critical. This same problem also arose with NDFSMs. But 
t.here we had a choice of two solutions: 

• Use m~f.ttmtmlfsm to convert the NDFSM to an equivalent deterministic one. A 
OFSM halts on input 'Win lwl steps. 

• Simulate t_he NDFSM using mlfsmsimulate, which ran all computational paths in 
parallel and handled £-transitions in a way that guaranteed that the simulation of 
an NDFSM M on input ·w halted in \tvl steps. 

Neither of those approaches works for PDAs. There may not be an equivalent de
terministic PDA. And it is not possible to simulate all paths in parallel on a single PDA 
because each path would need its own stack. So what can we do'? Solutions to these 
problems fall into two classes: 

• Formal ones that do not restrict the class of languages that are being considered. 
Unfortunately. these approaches generally do restrict the form of the grammars 
and PDAs that can be used. For example. they may require that grammars be in 
Chomsky or Greibach normal form. As a result, parse trees may not make much 
sense. We'll see some of these techniques in Chapter 14. 

• Practical ones that work only on a subclass of the context-free languages. But 
the subset is large enough to be useful and the techniques can use grammars in 
their natural forms. We'll see some of these techniques in Chapters 13 and 15. 

12.5 Alternative Equivalent Definitions of a PDA • 
We could have defined a PDA somewhat differently. We list here a few reasonable al
ternative definitions. In all of them a PDA M is a sextuple (K. }:. r. !1, .... A): 
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• We allow M to pop and to push any string in r*. In some definitions. M may pop 
only a single symbol but it may push any numher of them. In some definitions. M 
may pop and push only a single symhol. 

• In our definition. M accepts its input ll ' only if. when it finishes rc:ading w, it is in an 
accepting state and its stack is empty. There arc two altcrnati\'cs to this: 

• Accept if. when the input has heen consumed. M lands in an accepting state. re
gardless of the contents of the stack. 

• Accept if. when the input has been consumed. the stm:k is empty. regardless of 
the state M is in. 

All of these definitions are equivalent in the! sense that. if some language L is ac
cepted by a PDA using one definition. it can be acccpt\!d hy some J>DA using each of 
the other definitions. 

We can prove this claim for any pair of definitions hy construction. To do so. we show 
an algorithm that transforms a PDA of one sort into an eyuivalcnt PDA of the other sort. 

EXAMPLE 12.14 Accepting by Final State Alone 

Define a PDA M = (K, ~. r. 11.. s, A) in exactly the way we have except that it 
will accept iff it lands in an accepting state. regardless of the contents of the stack. 
In other words, if (s, w ,e) 1-M• (q, s. ')')and q eA. then M accept,;. 

To show that this model is equivalent to ours. we must show two things: For 
each of our machines. there exists an equivalent one of these, and. for each of 
these, there exists an equivalent one of ours. We'll uo the first part to show how 
such a construction can be done. We leave the second as an exercise. 

Given a PDA M that accepts by accepting state and empty stack. construct a 
new PDA M ' that accepts by accepting state alone. where L (M') = L (M). M ' 
will have a single accepting state qa. The only way for M' to get to q,. will be to 
land in an accepting state of M when the stack is logically empty. But there is no 
way to check that the stack is empty. So M' will begin by pushing a bottom-of
stack marker #,onto the stack. Whenever# is the top symhol on the stack, the 
stack is logically empty . 

.So the construction proceeds as follows: 

1. initially, let M' = M. 

2. Create a new start states'. Add the transition ((s', e, s). (s, #)). 

3. Create a new accepting state qa-
4. For each accepting state a in M do: 

Add the transition ((a. e, #), (q0 , e)). 
5. Make q0 the only accepting state in M'. 

It is easy to see that M' lands in its only accepting state (q,,) iff M lands in some 
accepting state with an empty stack. Thus M' and M accept the same strings. 
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As an example. we apply this algorithm to the PDA we built for the balanced 
parentheses language Bal: 

~(//( 
)/(/~-

becomes 

Notice., by the way, that while M is deterministic, M' is not. 

12.6 Alternatives that are Not Equivalent to the PDA • 
We defined a PDA to be a finite state machine to which we add a single stack. We men
tion here two variants of that definition, each of which turns out to define a more pow
erful class of machine. In both cases, we'll still start with an FSM. 

For the first variation. we add a first-in, first-out (FIFO) queue in place of the stack. 
Such machines are called tag systems or Post machines. As we '11 see in Section 18.2.3, 
tag systems are equivalent to Turing machines in computational power. 

For the second variation, we add two stacks instead of one. Again, the resulting ma
chines are equivalent in computational power to Thring machines, as we'll see in 
Section 17 .5.2. 

Exercises 
t. Build a PDA to accept each of the following languages L: 

a. BalDelim = { w: where w is a string of delimiters:(,),[,],{,}, that are prop-
erly balanced}. 

b. { a1D' : 2i = 3j + 1}. 
c. {we{a.b}*:#a{w) = 2·#b(tv)}. 
d. { a"b'" : m s 11 s 2m}. 
e. {we{a, b}*:w = wR}. 
L {a;t/ck:i,j,k ~ Oand(i ¢ jorj ¢ k)} . 

g. {tv e {a, b} • : every prefix of w has at least as many a's as b 's}. 
h. { a"b111a": n, m :=:: 0 and m is even}. 

i. {xc":xe{a, b}*,#a(x) = ltor#b(x) = n}. 
j. { a"b"' : m :=:: n. m-n is even}. 

k. { a"'b"c1'd'1 : m,11, p, q 2: 0 and m + n = p + q }. 
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I. { h;#hi+ ,R: b; is the binary rcprescnt~1tion of some integer ;, 1 ~ 0. without 
leading zeros}. (For example 101#011 e L) 

m. {xR#y : x. y e { 0,1 }* and xis a suhstring. of_\'}. 
n. L1*, where L1 = {xxR:xe {a.b}*.} , 

2. Complete the PDA that we sketched, in Example 12.S. fm • A118 11C11 , where 
Ar,B"C11 = { a"b'1c" : n 2:: n}. 

3. Let L = {ba"' 1ba"'lba"" ... ba"'" : 11 2:: 2, m 1• m2 • •• • • m,1 2:: 0. and m; ~ mi for 
some i.j} . 
a. Show a PDA that accepts /.. 
b. Show a context-free grammar that generates L. 
c. Prove that L is not regular. 

4. Consider the language L = Ll n L2. where L, = r ll' 'lf'R : '((' E {a. b }*} and 
L2 = ia"b*a":n 2 OJ. 
a. List the first four strings in the lexicographic enumeration of L. 
b. Write a context-free grammar to generate L. 
c. Show a natural PDA for L. (In other words. dor,.t just build it from the gram~ 

mar using one of the two-state constructions prcscnwd in this chapter.) 
d. Prove that L is not regular. 

S. Build a deterministic PDA to accept each of the following languages: 
a. L$.whcre L ={·we {a.b}* :#a('w) = #b(w)}. 

b. L$ where L = { a'1b+am: n· 2:: 0 and 3k <::: 0 (m = 2k + 11) ~. 

6. Complete the proof that we started in Examplt! 12.14. Specifically. show that if 
M is a PDA that acce pts hy accepting stale atune. th~:n lhl!rc: exists a PDA M' 
that accepts by accepting ·state and empty stack (our ddinition) where 
L (M') = L (M). 
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