CHAPTEHR 12

Pushdown Automata

rammars define context-free languages. We'd also like a computational formal-
ism that is powerful enough to enable us to build an acceptor for every con-

text-free language. In this chapter, we describe such a formalism.

12.1 Definition of a (Nondeterministic) PDA

A pushdown automaton. or PDA, is a finite state machine that has been augmented by
a single stack. In a minute, we will present the formal definition of the PDA model that
we will use. But, before we do that, one caveat to readers of other books is in order.
There are several competing PDA definitions, from which we have chosen one to pres-
ent here. All are provably equivalent, in the sense that, for all i and j, if there exists a
version; PDA that accepts some language L then there also exists a version; PDA that
accepts L. We'll return to this issue in Section 12.5, where we will mention a few of the
other models and sketch an equivalence proof. For now, simply beware of the fact that
other definitions are also in widespread use.

We will use the following definition: A pushdown automaton (or PDA) M is a sex-
wple (K, 2,1, A, s, A), where:

e K is a [inite set of states,

e ¥ is the input alphabet,

e [is the stack alphabet,

e ye Kisthe start state,

e A C K is the set of accepting states, and

A is the transition relation. It is a finite subset of:

(K X (EU{e}) x I'™) x (K X e).
state input or e string of symbols state string of symbols

to pop from to push on top
top of stack ~f ctanl

250

Chapter 12 Pushdown Automata

A configuration of a PDA M is an element of K X £* X ['*, It captures the three
things that can make a difference to M's future behavior:

& jts current state,

e the input that is still left to read. and
e the contents of its stack.

The initial configuration of a PDA M,on inpul w, is (s, w.).

We will use the following notational convention for describing M's stack as a string:
The top of the stack is to the left of the string. So:

C
a will be written as cab

b

If a sequence ¢\¢y...¢, of characters is pushed onto the stack, they will be pushed
rightmost first, so if the value of the stack before the push was s, the value after the
push will be ¢jc;...c,s.

Analogously to what we did for FSMs, we dcfine the relation yields-in-one-step,
written |-y. Yields-in-one-step relates configuration, 10 configuration, iff M can move
from configuration, to configuration, in one step. Let ¢ be any element of £ U {&}, let
v1, 72 and y be any elements of I'*, and let w be any element of X*, Then:

(g1 cw, 1Y) -m (G2 w, y27) iff (g1, €, 1)), (g2, 72)) € A.

Note two things about what a transition ((¢;. ¢, ¥,). (9>. ¥2)) says about how M ma-
nipulates its stack:

e M may only take the transition if the string y, matches the current top of the stack.
If it does, and the transition is taken, then M pops y, and then pushes y,. M cannot
“peek” at the top of its stack without popping off the values that it examines.

e If y, = g then M must match € against the top of the stack. Bul & matches every-
where. So letting 7y, be £ is equivalent to saying “without bothering to check the
current value of the stack.” It is not equivalent 10 saying, "if the stack is empty.” In
our definition, there is no way to say that directly. although we will see that we can
create a way by letting M. before it does anything else. push a special marker onto

the stack. Then, whenever that marker is on the top of the stack, the stack is other-
wise empty.

The relation yields, written |-y*, is the reflexive, transitive closure of |-y. So config-
uration C, yields configuration G, iff:

Cil-u* G

12.1 Definition of a (Nondeterministic) PDA 251

A computation by M is a finite sequence of configurations C,, C,..., C, for some
n = 0 such that:

e (,is an initial configuration,

¢ C,is of the form (g, &,), for some state g € K and some string y in I'*, and

o Col-mCil-mGl-m---|-u Ca

Note that we have defined the behavior of a PDA M by a transition relation A, not

a transition function. Thus we allow nondeterminism. If M is in some configuration
(91, s, 7), it is possible that:

* A contains exactly one transition that matches. In that case, M makes the specified
move.

A contains more than one transition that matches. In that case, M chooses one of
them. Each choice defines one computation that M may perform.

A contains no transition that matches. In that case, the computation that led to that
configuration halts.

Let C be a computation of M on input w € 2*, Then we will say that:

C is an accepting computation iff C = (s, w, &)|-;* (g, &, &), for some g e A. Note
the strength of this requirement: A computation accepts only if it runs out of input
when it is in an accepting state and the stack is empty.

C is a rejecting computation iff C = (s, w,)|-p,* (g, W', @), where C is not an ac-
cepting computation and where M has no moves that it can make from (g, w’, a). A
computation can reject only if the criteria for accepting have not been met and
there are no further moves (including following e-transitions) that can be taken.

Let w be a string that is an element of 2*, Then we will say that:

M accepts w iff at least one of its computations accepts.
M rejects w iff all of its computations reject.

The language accepted by M, denoted L(M), is the set of all strings accepted by M.
Note that it is possible that, on input w, M neither accepts nor rejects.

In all the examples that follow, we will draw a transition ((g), ¢, 71), (92, 72)) as an
arc from g, 10 ¢,, labeled c/y/y,. So such a transition should be read to say, “If ¢
matches the input and y, matches the top of the stack, the transition from g, to g, can
be taken, in which case c should be removed from the input, y, should be popped from
the stack, and y, should be pushed onto it.” If ¢ = ¢, then the transition can be taken
without consuming any input. If y, = &, the transition can be taken without checking
the stack or popping anything. If v, = &, nothing is pushed onto the stack when the

transition is taken. As we did with FSMs, we will use a double circle to indicate accept-
ing states.

Even very simple PDAs may be able to accept languages that cannot be accepted by
any FSM. The power of such machines comes from the ability of the stack to count.

252

Chapter 12 Pushdown Automata

EXAMPLE 12.1 The Balanced Parentheses Language

Consider again Bal = {we {), (}* * the parentheses are balanced }. The follow-
ing one-state PDA M accepts Bal. M uses its stack to count the number of left
parentheses that have not yet been matched. We show M graphically and then as

a sextuple:
Wie

M= (K, 2T, A,s,A), where:

K = {s}, (the states)
Z={()} (the input alphabet)
I'= {(}. (the stack alphabet)
A = {s},and (the accepting state)
A = {((s, (&) (s. (),

((s,), (). (s.2))}.

If M sees a (, it pushes it onto the stack (regardless of what was already there).
If it sees a) and there is a (that can be popped off the stack, M does so. If it sees
a) and there is no (to pop, M halts without accepting. If. after consuming its en-
tire input string, M's stack is empty, M accepts. If the stack is not empty, M rejects.

PDAs, like FSMs, can use their states to remember facts about the structure of the
string that has been read so far. We see this in the next example.

EXAMPLE 12.2 A"B"

Consider again A"B" = {a"b": n = 0}. The following PDA M accepts A"B". M
uses its states to guarantee that it only accepts strings that belong 1o a*b*. It uses
its stack to count a’s so that it can compare them to the b’s. We show M graphically:

a/e/a b/a/e
b/a/e

0) ©

12.1 Definition of a (Nondeterministic) PDA 253

Writing it out,we have M = (K, Z,T, A, 5, A), where:

K= {sf}, (the states)
3 = {a.b)}, (the input alphabet)
I' = {a}, (the stack alphabet)
A = {s,f},and (the accepting states)
A = {((s, a.g), (s, 2)),

((s,b.a),(f.£)),

((f.b,a).(f. &)}

Remember that M only accepts if, when it has consumed its entire input string,
it is in an accepling state and its stack is empty. So, for example, M will reject aaa,

even though it will be in state s, an accepting state, when it runs out of input. The
stack at that point will contain aaa.

EXAMPLE 12.3 WcWR

Let WeWR = {wcw® : we {a,b}*}. The following PDA M accepts WcWX:

a/e/a a/a/e
c/efe

b/e/b b/b/e

M moves from state s, in which it is recording w, to state f,in which it is check-

ing for w®, when it sees the character c. Since every string in WcWR must contain
the middle ¢, state s is not an accepting state.

The definition that we have chosen to use for a PDA is flexible; it allows several
symbols to be pushed or popped from the stack in one move. This will turn out to be
particularly useful when we attempt to build PDAs that correspond to practical gram-
mars that contain rules like T— T*F (the multiplication rule that was part of the

arithmetic expression grammar that we defined in Example 11.19). But we illustrate
the use of this flexibility here on a simple case.

EXAMPLE 12.4 A"B2"

Let A"B™ = {a"b* :n = 0}.The following PDA M accepts A"B* by pushing two
a’s onto the stack for every a in the input string, Then each b nons a cinole a:

254 Chapter12 Pushdown Automata

EXAMPLE 12.4 (Continued)

a/e/aa b/a/e
\/Q b/a/e .
©) O

12.2 Deterministic and Nondeterministic PDAs

The definition of a PDA that we have presented allows nondeterminism. It sometimes
makes sense, however, to restrict our attention to deterministic PDAs. In this section
we will define what we mean by a deterministic PDA. We also show some examples of
the power of nondeterminism in PDAs. Unfortunately. in contrast to the situation with
FSMs, and as we will prove in Theorem 13.13, there exist nondeterministic PDAs for
which no equivalent deterministic PDA exists.

12.2.1 Definition of a Deterministic PDA

Define a PDA M to be deterministic iff there exists no configuration of M in which
M has a choice of what to do next. For this to be true, two conditions must hold:

1. A, contains no pairs of transitions that compete with each other.

2. If g is an accepting state of M, then there is no transition ((q. &, £). (p. a)) for
any p or a. In other words, M is never forced o choosc between aceepting and
continuing. Any transitions out of an accepting state must either consume input
(since, if there is remaining input, M does not have the option of accepting) or

pop something from the stack (since. if the stack is not empty, M does not have
the option of accepting).

So far, all of the PDAs that we have built have been deterministic. So each machine
followed only a single computational path.

12.2.2 Exploiting Nondeterminism

But a PDA may be designed to have multiple competing moves from a single configu-
ration. As with FSMs, the casicst way to envision the operation of a nondeterministic
PDA M is as a tree, as shown in Figure 12.1. Each node in the tree corresponds to a
configuration of M and each path from the root to a leaf node may correspond to one
computation that M might perform.

Notice that the state, the stack, and the remaining input can be different along dif-

ferent paths. As a result, it will not be possible to simulate all paths in parallel, the way
we did for NDFSMs.

12.2 Deterministic and Nondeterministic PDAs 255

q1. abab.s
qa, abab, # q,, bab, a#
q1, ab, ab#

q;, ab, a¥

FIGURE 12.1 Viewing nondeterminism as search through a space of computation
paths.

EXAMPLE 12.5 Even Length Palindromes

Consider again PalEven = {ww® : we {a, b}*}, the language of even-length
palindromes of a’s and b's. The following nondeterministic PDA M accepts

PalEven:
a/e/a a/a/e
e/efe _ R
: ©

b/e/b b/b/e

M is nondeterministic because it cannot know when it has reached the middle
of its input. Before each character is read, it has two choices: It can guess that it
has not yet gotten to the middle. In that case, it stays in state s, where it pushes
each symbol it reads, Or it can guess that it has reached the middle. In that case, it

takes the e-transition to state f, where it pops one symbol for each symbol that it
reads.

EXAMPLE 12.6 Equal Numbers of a's and b’s

Let L = {we {a,b}*: #,(w) = #,(w)}. Now we don’t know the order in which
the a’s and b’s will occur. They can be interleaved. So for example, any PDA to ac-
cept L must accept aabbba. The only way to count the number of characters that
have not yet found their mates is to use the stack. So the stack will sometimes

count a’s and sometimes count b’s. It will count whatever it has seen more of. The
following simple PDA accepts L:

256 Chapter 12 Pushdown Automata

EXAMPLE 12.6 (Continued)

This machine is highly nondeterministic. Whenever it sees an a in the input, it
can either push it (which is the right thing to do if it should be counting a's) or at-
tempt to pop a b (which is the right thing to do if it should be counting b's). All the
computations that make the wrong guess will fail to accept since they will not suc-

ceed in clearing the stack. But if #;(w) = #,(w), there will be one computation
that will accept.

EXAMPLE 12.7 The a Region and the b Region are Different

Let L = {a"b":m # nim,n > 0}. We want to build a PDA M 1o accept L. Itis
hard to build a machine that looks for something negative, like #. But we can
break L into two sublanguages: {¢"h":0 < m < n} and {¢"'b":0 < n < m}.

Either there are more a's or more b’s. M must accept any string that is in either of
those sublanguages. So M is:

As long as M sees a's, it stays in state 1 and pushes cach a onto the stack. When
it sees the first b, it goes to state 2. It will accept nothing but b’s from that point on.
So far, its behavior has been deterministic. But, from state 2, it must make choices.
Each time it sees another b and there is an a on the stack. it should consume the b
and pop the a and stay in state 2. But, in order to accept, it must eventually either
read at least one b that does not have a matching a or pop an a that does not have

12.2 Deterministic and Nondeterministic PDAs 257

a matching b. It should do the former (and go to state 4) if there is a b in the input
stream when the stack is empty. But we have no way to specify that a move can be
taken only if the stack is empty. [t should do the latter (and go to state 3) if there is

an a on the stack but the input stream is empty. But we have no way to specify that
the input stream is empty.

As a result, in most of its moves in state 2, M will have a choice of three paths

to take. All but the correct one will die out without accepting. But a good deal of
computational effort will be wasted first.

In the next section, we present lechniques for reducing nondeterminism caused by
the two problems we've just presented:

* A transition that should be taken only if the stack is empty, and
* A transition that should be taken only if the input stream is empty.

But first we present one additional example of the power of nondeterminism.

EXAMPLE 12.8 ~A"B"C"

Let’s first consider A"B"C" = {a"b"c" : n = 0}. If we try to think about building
a PDA to accept A"B"C", we immediately run into trouble. We can use the stack
to count a's and then compare them to the b’s. But then the stack will be empty
and it won’t be possible Lo compare the ¢’s. We can try to think of something
clever to get around this problem, but we will fail. We'll prove in Chapter 13 that
no PDA exists to accept this language.

But now let L = ~A"B"C".There is a PDA that accepts L. L = L, U L,, where:

o L, = {we{a,b,c}*: the letters are out of order}.

o L,={at/c":i,j,k = 0and (i # jorj # k)} (in other words, not equal num-
bers of a's,b's, and ¢’s).

A simple FSM can accept L,. So we focus on L;. It turns out to be easier to
check for a mismatch in the number of a’s, b's, and ¢’s than to check for a match
because, to detect a mismatch, it is sufficient to find one thing wrong, It is not nec-
essary to compare everything. So a string w isin L, iff either (or both) the a's and
b's don’t match or the b’s and c’s don’t match. We can build PDASs, such as the one
we built in Example 12,7, to check each of those conditions. So we can build a
straightforward PDA for L. It first guesses which condition to check for. Then

submachines do the checking. We sketch a PDA for L here and leave the details
as an exercise:

258 Chapter V2 Pushdoan Automats

EXAMPLE 12.8 (Continued)

A PDA (hat doncen't on @0 st I suepme 1 by (Bl g bw km
of ot N,

e/e/e

A POA bz the omse o= | tassgi l:'&'uhtlthmw%
of @ arsd B o Glionmdd M sy st of € 4 .

efe/e

Aﬂ)hht:lh_r-lerﬂcwcﬂmﬂ-uuw-‘m
of &v e thon cBeuks vt wmogusd saamdurs B o

M

This last example is sgnificant fof two reasmm
e [t illustrates the power of nondctctminim

e 1t proves that the class of languages acceptable by FIDAG 0 mot chned undes
plement. We'll have more 1o say aboul that in Sccten 11 4 -

An important fact about the comtent free languages i aomtrast to the rogular e —
that nondeterminism s more than a convensent dovgn toad In Sectnn 11 4 we mall s :
the deterministic context-free languages 10 he thane that can be acepted y soemse

ministic PDA that may explot an end-of atting marker Then me wall peame that there
context-free languages that arc not determmniae in the wnwe Thus theee canty, foe o
context-free languages no equivalent of the regular language algewithn u.lhnun‘,:-h
There are, however, some techmigues that can be used 1o reduce meoewdete s meneam o

of the kinds of cases that often ocout We Tl shetch twa off thom in the et sovtinen S——

12.2.3 Techniques for Reducing Nondeterminism @
In Example 12.7, we saw nondetcrminism ansing (rom teo vory specifie ccumng
Afings

e A tranmition that should be taken only if the stack i empey compwtes againag o
more moves that require a match of some stning on the stack and <

e A transiion that should be taken omly if the input strcam o empiy ¢
against onc of morte moves thatl require a match againet a spweaili ll'lpu.l <

N
Both of these circumstances are commaon, so we soubd bke o find a way 1o

or chiminate the nondeterminism that they cauwe ha

122 Deterministic and Nondeterministic PDAs 259

We first consider the case in which the nondeterminism could be eliminated if it
were possible to cheek for an empty stack. Although our PDA model does not provide
a way to do that directly, it is casy to simulate. Any PDA M that would like 1o be able
10 cheek for empty stack can simply, before it does anything clse, push a speaial char-
acter onto the stack. The stack is then logically empty iff that special character is at the
top of the stack. The only thing we must be carcful about is that, before M can accept
a string, its stack must be completely empty. So the special character must be popped
whenever M reaches an accepting state.

EXAMPLE 12.9 Using a Bottom of Stack Marker

We can use the special, bottom-of-stack marker technique to reduce the nonde-
terminism in the PDA that we showed in Example 12.7. We'll use # as the marker.
When we do that, we get the following PDA M

a/e/a b/a/e e/a/e
e/e/0 ﬂ b/a/e _Q e/a/e
O =20 ©

wi@la

Now the tranasition back to state 2 no longer competes with the transition to
state 4, which can only be taken when the # is the only symbol lefl on the stack. M’
18 stll nondeterministic though. because the transition back to state 2 competes
with the transition to state 3. We still don't have a way to spealy that M’ should go
1o state 3 only il it has run out of input.

Next we conmider the “out of inpnt”™ problem. To solve that onc, we will make a
change to the nput language. Instcad of buillding a machine 10 accept a language L,
we'll bunld one to accept LS, where $ 18 a speaial end-of-stnng marker. In any practical
sWatem, we would probably choose <aiewline> of <cr> or <enter>, rather than $, but
we'll use $ here because 11 is casy 10 sce.

EXAMPLE 12.10 Using an End-of-String Marker

We can use the end-of-string marker technique to climinate the remaining nonde-
terminism in the PDAs that we showed in Example 12.7 and Example 12.9. When
we do that, we get the following PDA M*:

260 Chapter 12 Pushdown Automata

EXAMPLE 12.10 (Continued)

a/e/a b/a/e efa/e
\ efe/# L/(J\ b/a/e :Q $/ale
$ U * @ elble

b/#/e

b/e/e
$/e/e

Now the transition back 10 state 2 no longer competes with the transition to
slate 3, since the latter can only be taken when the $ is read. Notice that we must
be carelul to read the § on all paths, not just the one where we needed it.

Adding an end-ol-string marker to the language to be accepted is a powerful tool for
reducing nondeterminism. In Section 13.5, we'll define the class of deterministic con-
text-free languages to be exactly the set of context-free languages L such that L$ can be
accepted by some deterministic PDA. We'll do that because, for practical reasons, we
would like the class of deterministic context-free languages to be as large as possible.

12.3 Equivalence of Context-Free Grammars and PDAs

So far. we have shown PDAs to accept several of the context-free languages for which
we wrote grammars in Chapter 11. This is no accident. In this section we’ll prove, as
usual by construction, that context-free grammars and pushdown automata describe
exactly the same class of languages.

12.3.1 Building a PDA from a Grammar

THEOREM 12.1 For Every CFG There Exists an Equivalent PDA

! Theorem: Given a context-free grammar G = (V. 2. R. S). there exists a PDA M
such that L (M) = L (G).

Proof: The proof is by construction. There are two equally straightforward ways to
do this construction. so we will describe both of them. Either of them can be con-
verted to a practical parser (a recognizer that returns a parse tree if it accepts) by

274 Chapter 12 Pushdown Automata

12.3.3 The Equivalence of Context-free Grammars and PDAs

THEOREM 12.3 PDAs and CFGs Describe the Same Class of Languages
Theorem: A language is context-free ilf it is accepted by some PDA.

Proof: Theorem 12.1 proves the only if part. Theorem 12,2 proves the if part.

12.4 Nondeterminism and Halting

Recall that a computation C of a PDA M = (K, X. 1", A.s. A) on a string w is an ac-
cepting computation iff;

C = (s, w, &)|-y* (g, &,8). for some g & A,

We'll say that a computation C of M halis iff at least one of the following conditions
holds:

e (Cisan accepling computation. or

e (C ends in a configuration from which there is no transition in A that can be
taken,

We'll say that M halts on w iff every computation of M on « halts. If M halts on @
and does not accept, then we say that M rejects w.

For every context-free language L. we've proven that there exists a PDA M such
that L (M) = L. Suppose that we would like to be able 10
e Examine a string and decide whether or not it isin L.,

¢ Examine a string that is in L and create a parse tree for it,
e Examine astring thatis in L and create a parse tree for it in time that is linear in the
length of the string,

e Examine a string and decide whether or not it is in the complement of L,

Do PDAs provide the tools we need to do those things? When we were at a similar
point in our discussion of regular languages. the answer to that question was yes. For
every regular language L, there exists a minimal deterministic FSM that accepts it.
That minimal DFSM halts on all inputs, accepts all strings that are in L. and rejects all
strings that are not in L.

Unfortunately. the facts about context-free languages and PDAs are different from
the facts about regular languages and FSMs. Now we must face the following:
1. There are context-free languages for which no deterministic PDA exists. We'll
prove this as Theorem 13.13.
2. Itis possible that a PDA may

s not halt, or

* nol ever finish reading its input.

12.5 Alternative Equivalent Definitions of a PDA 275

So, let M be a PDA that accepts some language L. Then, on input w,if we L
then M will halt and accept. But if w ¢ L. while M will not accept w, it is possible
that it will not reject it either. To see how this could happen.let £ = {a} and con-
sider the PDA M, shown in Figure 12.4. L (M) = {a}. The computation (1, a, &)
|- (2. a.a) |- (3, &, &) will cause M to accept a. But consider any other input ex-
cept a. Observe that:

e M will never halt. There is no accepting configuration, but there is always at

least one computational path that has not yet halted. For example, on input aa,
one such path is:

(1, aa, &) |- (2, aa, a) |- (1, aa, aa) |- (2, aa, aaa) |-
(1, aa, aaaa) |- 2, aa, aaaaa) |-...

e M will never finish reading its input unless its input is &, On input aa, for ex-
ample, there is no computation that will read the second a.

3. There exists no algorithm to minimize a PDA. In fact, it is undecidable whether a
PDA is already minimal.

e/e/a o N a/a/e .
| 1 I (2) @ FIGURE 124 A PDA that may neither
efe/a

accept nor reject.

Problem 2 is especially critical. This same problem also arose with NDFSMs. But
there we had a choice of two solutions:

e Use ndfsmtodfsm to convert the NDFSM to an equivalent deterministic one. A
DFSM halts on input w in |w| sieps.

Simulate the NDFSM using ndfsmsimulate, which ran all computational paths in

parallel and handled e-transitions in a way that guaranteed that the simulation of
an NDFSM M on input w halted in || steps.

Neither of those approaches works for PDAs There may not be an equivalent de-
terministic PDA. And it is not possible to simulate all paths in parallel on a single PDA

because each path would need its own stack. So what can we do? Solutions to these
problems fall into two classes:

» Formal ones that do not restrict the class of languages that are being considered.
Unfortunately, these approaches generally do restrict the form of the grammars
and PDAs that can be used. For example, they may require that grammars be in
Chomsky or Greibach normal form. As a result, parse trees may not make much
sense. We'll see some of these techniques in Chapter 14.

Practical ones that work only on a subclass of the context-free languages. But
thc.suhscl is large enough to be useful and the techniques can use grammars in
their natural forms, We'll see some of these techniques in Chapters 13 and 15.

12.5 Alternative Equivalent Definitions of a PDA ¢

We could have defined a PDA somewhat differently. We list here a few reasonable al-
ternative definitions. In all of them a PDA M is a sextuple (K. 2. T, A, s, A):

276

Chapter 12 Pushdown Automata

e We allow M to pop and to push any string in I'*, In some definitions, M may pop
only a single symbol but it may push any number of them. In some definitions, M
may pop and push only a single symbol.

In our definition, M accepls its input @ only if. when it finishes reading w, itisinan
accepting state and its stack is empty. There are two alternatives to this:

e Accept if, when the input has been consumed. M lands in an accepting state, re-
gardless of the contents of the stack.

« Accept if, when the input has been consumed. the stack is empty. regardless of
the state M is in.

All of these definitions are equivalent in the sense that, if some language L is ac-
cepted by a PDA using one definition, it can be accepted by some PDA using each of
the other definitions.

We can prove this claim for any pair of definitions by construction. To do so, we show
an algorithm that transforms a PDA of one sort into an equivalent PDA of the other sort.

EXAMPLE 12.14 Accepting by Final State Alone

Define a PDA M = (K, =.T, A, s, A) in exactly the way we have except that it
will accept iff it lands in an accepting state, regardless of the contents of the stack.
In other words, if (s, w, &) |-p* (g, 8. ¥) and g € A, then M accepts.

To show that this model is equivalent 10 ours, we must show two things: For
each of our machines, there exists an equivalent one of these, and, for each of
these, there exists an equivalent one of ours. We’ll do the first part to show how
such a construction can be done. We leave the second as an exercise.

Given a PDA M that accepts by accepting state and empty stack, construct a
new PDA M’ that accepts by accepting state alone, where L (M') = L (M). M’
will have a single accepting state g,. The only way for M’ to get to g, will be to
land in an accepting state of M when the stack is logically empty. But there is no
way to check that the stack is empty. So M" will begin by pushing a bottom-of-
stack marker #, onto the stack. Whenever # is the top symbol on the stack, the
stack is logically empty.

So the construction proceeds as follows:

1. Initially,let M' = M.

2. Create a new start state s'. Add the transition ((s', &, &). (s, #)).
3. Create a new accepting state ¢,.

4. For each accepting state @ in M do:

Add the transition ((a, &, #), (¢, £)).
§. Make g, the only accepting state in M',

It is easy to see that M’ lands in its only accepting state (¢,) iff M lands in some
accepting state with an empty stack. Thus M’ and M accept the same strings.

12.6 Alternatives that are Not Equivalent to the PDA 277

As an example, we apply this algorithm to the PDA we built for the balanced
parentheses language Bal:

W

becomes

Notice, by the way, that while M is deterministic, M’ is not.

12.6 Alternatives that are Not Equivalent to the PDA #

We defined a PDA to be a finite state machine to which we add a single stack. We men-

tion here two variants of that definition, each of which turns out to define a more pow-
erful class of machine. In both cases, we’ll still start with an FSM.

For the first variation, we add a first-in, first-out (FIFO) queue in place of the stack.

Such machines are called tag systems or Post machines. As we'll see in Section 18.2.3,
tag systems are equivalent to Turing machines in computational power.

For the second variation, we add two stacks instead of one. Again, the resulting ma-

chincs are equivalent in computational power to Turing machines, as we'll see in
Section 17.5.2.

Exercises

1. Build a PDA to accept each of the following languages L:

a. BalDelim = {w : where w is a string of delimiters: (,),[,], {, }, that are prop-
erly balanced}.

b. {a'b/:2i =3 + 1}.

e {we{ab}*:#,(w) = 2-#,(w)}.

d. {a"b":m = n = 2m).

e. {we{a.b}*:w = wf}.

£ {ab/c*:ij,k =0and (i # jorj # k)}.

g- {we{a,b}*:every prefix of w has at least as many a’s as b's}.
h. {a"b"a":n,m = Qand mis even}.

i {xc":xe{a b}* #,(x) = nor #y(x) = n}.

j- {a"b":m = n,m-niseven}.

k. {a"b"c"d" :m,n,p,q=0andm+n=p + q}.

278 Chapter 12 Pushdown Automata

3.

L {b,-#b,-Y,R : b; is the binary representation of some integer #, 1 = (), without
leading zeros}. (For example 101#011 € L..)

m. {x"#y:x. ye {0,1}* and x is a subsiring of v},

n. L* where L) = {xa®:xe {ab}*},

Complete the PDA that we sketched. in Example 12.8. for ~A"B"C", where
A'B"C" = {a"b"c":n = 0}.

Let L = {ba™ba"™ba™... ba™:n =2, m.my,....m, = 0. and m; # m; for
some i.j}.

a. Show a PDA that accepts L.

b. Show a context-free grammar that generates L.

¢. Prove that L is not regular.

Consider the language L = LN L, where Ly = {ww® :we{a, b}*} and
L; = {a"b*a":n = 0).

a. List the first four strings in the lexicographic enumeration of L.

b. Write a context-free grammar to generate /..

¢. Show a natural PDA for L. (In other words. don’t just build it from the gram-

mar using one of the two-state constructions presented in this chapter.)

d. Prove that L is not regular,

Build a deterministic PDA to accept each of the following languages:

a. LS. where L = {we {a.b}*:#a(w) = #,(w)}.

b. L$ where L = {a"b*a”:n = 0and 3k = 0 (m = 2k + n)}.
Complete the proof that we started in Example 12,14, Specifically, show that if
M is a PDA that accepts by accepting state alone. then there exists a PDA M’
that accepts by accepting state and emply stack (our definition) where
L(M') =L (M).

	CH1 Why study the Theory of Computation?
	1.1 The Shelf Life of Programming Tools
	1.2 Applications of the Theory Ard Everywhere

	CH2 languages and Strings
	2.1 Strings
	2.1.2 Functions on Strings
	2.1.3 Relations on strings

	2.2 Languages
	2.2.2 Techniques for Defining Languages

