PART |11

CONTEXT-FREE LANGUAGES AND
PUSHDOWN AUTOMATA

In this section, we move out one level and explore the class of context-free

languages.

This class is important. For most programming languages, the set of syntactically
legal statements is (except possibly for type checking) a context-free language.
The set of well-formed Boolean queries is a context-free language. A great deal
of the syntax of English can be described in the context-free framework that we
are about to discuss. To describe these languages, we need more power than the
regular language definition allows. For example, to describe both programming
language statements and Boolean queries requires the ability to specify that

parentheses be balanced. Yet we
showed in Section 8.4 that it is not
possible to define a regular lan-
guage that contains exactly the set
of strings of balanced parentheses.

We will begin our discussion of
the context-free languages by
defining a grammatical formal-
ism that can be used to describe
every language in the class
(which, by the way, does include
the language of balanced paren-
theses). Then, in Chapter 12, we
will return to the question of
defining machines that can ac-
cept strings in the language. At
that point, we’ll see that the
pushdown automaton, an NDFSM
augmented with a single stack,
can accept

SD Languages

D Languages

Context-Free
Languages

Regular
Languages

FSMs

Turing Machines

202

Part Il Context-Free Languages and Pushdown Automata

exactly the class of context-free languages that we are about to describe. In
Chapter 13, we will see that the formalisms that we have presented stop short
of the full power that is provided by a more general computational model. So
we'll see that there are straightforward languages that are not context-free.
But, because of the restrictions that the context-free formalism imposes, it will
turn out to be possible to define algorithms that perform at least the most basic
operations on context-free languages, including deciding whether a string is in
a language. We'll summarize those algorithms in Chapters 14 and 15.

The theory that we are about to present for the context-free languages is
not as straightforward and elegant as the one that we have just described for
the regular languages. We'll see, for example, that there doesn‘t exist an al-
gorithm that compares two pushdown automata to see if they are equivalent.
Given an arbitrary context-free grammar G, there doesn’t exist a linear-time
algorithm that decides whether a string w is an element of L(G). But there
does exist such an algorithm if we restrict our attention to a useful subset of
the context-free languages. The context-free languages are not closed under
many common operations like intersection and complement.

On the other hand, because the class of context-free languages includes
most programming languages, query languages, and a host of other lan-
guages that we use daily to communicate with computers, it is worth taking
the time to work through the theory that is presented here, even though it is
less clear than the one we were able to build in Part 11

CHAPTER 11

Context-Free Grammars

1.1

substantial advantages to using descriptive frameworks (in that case, FSMs,

regular expressions, and regular grammars) that offer less power and flexi-

bility than a general purpose programming language provides. Because the frame-

works were restrictive, we were able to describe a large class of useful operations that
could be performed on the languages that we defined.

We will begin our discussion of the context-free languages with another restricted

formalism, the context-free grammar. But before we define it, we will pause and an-
swer the more general question, “What is a grammar?”

W e saw, in our discussion of the regular languages in Part II, that there are

Introduction to Rewrite Systems and Grammars

We'll begin with a very general computational model: Define a rewrite system (also
called a production system or a rule-based system) 1o be a list of rules and an algorithm

for applying them. Each rule has a left-hand side and a right-hand side. For example,
the following could be rewrite-system rules:

S—aSb
aS—e¢

aSbh — bSabSa

In the discussion that follows, we will focus on rewrite system that operate on
strings. But the core ideas that we will present can be used 10 define rewrite systems
that operate on richer data structures. Of course, such data structures can be represented

as strings. but the power of many practical rule-based systems comes from their ability
to manipulate other structures directly.

204 Chapter 11 Context-Free Grammars

Expert systems, (M.3.3) are programs that perform tasks in domains like en-
gineering, medicine, and business. that require expertise when done by peo-
ple. Many kinds of expertise can naturally be modeled as sets of
condition/action rules. So many expert systems are built using tools that sup-
port rule-based programming.

Rule based systems are also used to model business practices (M.3.4) and

as the basis for reasoning about the behavior of nonplayer characters in com-
puter games. (N.3.3)

When a rewrite system R is invoked on some initial string w, it operates as follows:
simple-rewrite(R: rewrile system, w: initial string) =
1. Set working-string to w.

2. Until told by R to halt do:
2.1. Match the left-hand side of some rule against some part of working-string.

2.2. Replace the matched part of working-string with the right-hand side of
the rule that was matched.

3. Return working-string.

If simple-rewrite(R, w) can return some string 5 then we'll say that R can derive s
from w or that there exists a derivation in R of s from w.

Rewrite systems can model natural growth processes, as occur, for example,
in plants. In addition, evolutionary algorithms can be applied to rule sets.
Thus rewrite systems can model evolutionary processes, (Q.2.2)

We can define a particular rewrite-system formalism by specifying the form of the rules
that are allowed and the algorithm by which they will be applicd. In most of the rewrite-
system formalisms that we will consider, a rule is simply a pair of strings. If the string on
the left-hand side matches, it is replaced by the string on the right-hand side. But more

flexible forms are also possible. For example, variubles may be allowed. Let x be a
variable. Then consider the rule:

aya— aa

This rule will squeeze out whatever comes between a pair of a's.

Another useful form allows regular expressions as left-hand sides. If we do that, we
can write rules like the following, which squeezes out b's between a's:

ab*ab*a — aaa

The extended form of regular expressions that is supported in programming
languages like Perl is often used to write substitution rules. (Appendix O)

11.1 Introduction to Rewrite Systems and Grammars 205

In addition to describing the form of its rules, a rewrite-system formalism must de-
scribe how its rules will be applied. In particular, a rewrite-system formalism will define
the conditions under which simple-rewrite will halt and the method by which it will
choose a match in step 2.1. For example, one rewrite-system formalism might specify
that any rule that matches may be chosen. A different formalism might specify that the
rules have to be tried in the order in which they are written, with the first one that
matches being the one that is chosen next.

Rewrite systems can be used to define functions. In this case, we write rules that op-
erate on an input string to produce the required output string. Rewrite systems can
also be used to define languages. In this case, we define a unique start symbol. The rules
then apply and we will say that the language L that is generated by the system is exactly

the set of strings, over L’s alphabet, that can be derived by simple-rewrite from the start
symbol.

A rewrite-system formalism can be viewed as a programming language and
some such languages turn out to be useful. For example, Prolog (M.2.3) sup-
ports a style of programming called logic programming. A logic program is a
set of rules that correspond to logical statements of the form A if B. The in-
terpreter for a logic program reasons backwards from a goal (such as A),
chaining rules together until each right-hand side has been reduced to a set
of facts (axioms) that are already known to be true.

The study of rewrite systems has played an important role in the development of the
theory of computability. We’ll see in Part V that there exist rewrite-system formalisms
that have the same computational power as the Turing machine, both with respect to
computing functions and with respect to defining languages. In the rest of our discus-
sion in this chapter, however, we will focus just on their use to define languages.

A rewrite system that is used to define a language is called a grammar. If G is a
grammar, let L(G) be the language that G generates. Like every rewrite system, every
grammar contains a list (almost always treated as a set, i.e., as an unordered list) of

rules. Also, like every rewrite system, every grammar works with an alphabet, which we
can call V. In the case of grammars, we will divide V into two subsets:

* aterminal alphabet, generally called X, which contains the symbols that make up
the strings in L(G), and
a nonterminal alphabet, the elements of which will function as working symbols

that will be used while the grammar is operating. These symbols will disappear by
the time the grammar finishes its job and generates a string.

One final thing is required to specify a grammar. Each grammar has a unique start
symbol, often called S,

Grammars.can be used to describe phenomena as different as English (L.3),
programming languages like Java (G.1), music (N.1), dance (Q.2.1), the
growth of living organisms (Q.2.2), and the structure of RNA. (K.4)

206

Chapter 11 Context-Free Grammars

A grammar formalism (like any rewrite-system formalism) specifies the form of the
rules that are allowed and the algorithm by which they will be applied. The grammar
formalisms that we will consider vary in the form of the rules that they allow. With one
exception (Lindenmayer systems. which we’ll describe in Section 24.4), all of the gram-
mar formalisms that we will consider include a control algorithm that ignores rule
order. Any rule that matches may be applied next.

To generate strings in L(G), we invoke simple-rewrite (G, S). Simple-rewrite will
begin with S and will apply the rules of G, which can be thought of (given the control
algorithm we just described) as licenses to replace one string by another. At each step
of one of its derivations, some rule whose left-hand side matches somewhere in
working-string is selected. The substring that matched is replaced by the rule’s right-
hand side, generating a new value for working string.

Grammars can be used to define languages that. in turn, define sets of things
that don't look at all like strings. For example. SVG (Q.1.3) is a language that
is used to describe two-dimensional graphics. SVG can be described with a
context-free grammar.

We will use the symbol = to indicate steps in a derivation. So, for example, suppose
that G has the start symbol § and the rules S— aSb, S — bSa,and § — &. Then a der-
ivation could begin with:

S=>aSb=>aaSbb=s...

At each step, it is possible that more than one rule’s left-hand side matches the
working string. It is also possible that a rule’s left-hand side matches the working string
in more than one way. In either case. there is a derivation corresponding to each alter-
native. It is precisely the existence of these choices that enables a grammar to generate
more than one string.

Continuing with our example, there are three choices at the next step:

S => aSb => aaSbb=>aaaSbbb (using the first rule),
§ => aSh =» aaSbb=> aabSabb (using the second rule), and
S => aSb => aaSbb=> aabb (using the third rule).

The derivation process may end whenever one of the following things happens:

1. The working string no longer contains any nonterminal symbols (including, as a
special case. when the working string is £), or

2. There are nonterminal symbols in the working string but there is no match with
the left-hand side of any rule in the grammar. For example, if the working string
were AaBb, this would happen if the only left-hand side were C.

In the first case, but not the second, we say that the working string is generated by
the grammar. Thus, the language that a grammar generates includes only strings over

the terminal alphabet (i.e.,strings in £*), In the second case, we have a blocked or non-
terminated derivation but no generated string.

11.2 Context-Free Grammars and Languages 207

It is also possible that, in a particular case, neither 1 nor 2 is achieved. Suppose, for
example, that a grammar contained only the rules § — Ba and B— bB, with § the
start symbol. Then all derivations proceed in the following way:

S = Ba=>bBa=>bbBa=>bbbBa=>bbbbBa=>-..
The working string is always rewriteable (in only one way, as it happens), and so this
grammar can produce no terminated derivations consisting entirely of terminal sym-
bols (i.e., generated strings). Thus this grammar generates the language &.

11.2 Context-Free Grammars and Languages

We've already seen our first specific grammar formalism. In Chapter 7, we defined a
regular grammar to be one in which every rule must:

e have a left-hand side that is a single nonterminal, and

* have aright-hand side that is & or a single terminal or a single terminal followed by
a single nonterminal.

We now define a context-free grammar (or CFG) to be a grammar in which each
rule must:

* have a left-hand side that is a single nonterminal, and
¢ have a right-hand side.

To simplify the discussion that follows, define an A rule, for any nonterminal symbol
A, to be a rule whose left-hand side is A.

Next we must define a control algorithm of the sort we described at the end of the
last section. A derivation will halt whenever no rule’s left-hand side matches against
working-string. At every step, any rule that matches may be chosen.

Context-free grammar rules may have any (possibly empty) sequence of symbols on the
right-hand side. Because the rule format is more flcxible than it is for regular grammars, the

rules are more powerful. We will soon show some examples of languages that can be gen-
erated with context-free grammars but that can not be generated with regular ones.

All of the following are allowable context-free grammar rules (assuming appropri-
ate alphabets):

S—aSb
S—e
T—-T
S —aSbhbTT
The following are not allowable context-free grammar rules:

ST — aSh
a —ash
e—a

The name for these grammars, “context-free,” makes sense because, using these
rules, the decision to replace a nonterminal by some other sequence is made without
looking at the context in which the nonterminal occurs. In Chapters 23 and 24 we will
consider less restrictive grammar formalisms in which the left-hand sides of the rules

208

Chapter 11 Context-Free Grammars

may contain several symbols. For example, the rule aSa — a7a would be allowed. This
rule says that S can be replaced by T when it is surrounded by a's. One of those for-
malisms is called “context-sensitive™ because its rules allow context to be considered.

Programming language syntax is typically described using context-free
grammars, as we’ll see below and in Appendix G.

Formally, a context-free grammar G is a quadruple (V, X. R, S). where:

* Vs the rule alphabet, which contains nonterminals (symbols that are used in the
grammar but that do not appear in sirings in the language) and terminals,

e X (the set of terminals) is a subset of V,

¢ R (the set of rules) is a finite subset of (V — X) X V*, and

e S (the start symbol) can be any element of V — X,

Given a grammar G, define x =; y (abbreviated = when G is clear from context)
to be the binary relation derives-in-one-step, defined so that:

Vx,ye VEHx=5yiff x = aAB.y = ayB, and there exists 4 rule A — y in Rg).

Any sequence of the form wy =g w, = w), =;... =3; w, is called a derivation

in G.Let =* be the reflexive, transitive closure of =;. We'll call =;* the derives
relation.

The language generated by G, denoted L(G). is {we X*:S=,*w}. In other

words, the language generated by G is the set of all strings of terminals that can be de-
rived from S using zero or more applications of rules in G,

A language L is context-free iff it is generated by some context-free grammar G.
The context-free languages (or CFLs) are a proper superset of the regular languages.
In the next scveral examples, we will see languages that arc context-free but not regu-

lar. Then, in Chapter 13, we will prove the other part of this claim, namely that every
regular language is also context-free.

EXAMPLE 11.1 The Balanced Parentheses Language

Consider Bal = {we{), (}** the parentheses are balanced}. We showed in
Example 8.10 that Bal is not regular. But it is context-free because it can be gen-
erated by the grammar G = {{S,), (}, {). (}, R,), where:
R={5—(S)
§—S8
S—e}.
Some example derivations in G:
§=(5)=0).
§=>(8) = (55) = ((5)5) = (05) = (NS = (OO).
So,S=*()and S=* (()())-

11.2 Context-Free Grammars and Languages 209

The syntax of Boolean query languages is describable with a context-free
grammar. (Q.11)

EXAMPLE 11.2 A"B"

Consider A"B" = {a"b":n = 0}. We showed in Example 8.8 that A"B” is not

regular. But it is context-free because it can be generated by the grammar
G = {{S, a,b}, {a,b}, R, S}, where:

R={S—aSb
S—e&}.

What is it about context-free grammars that gives them the power to define lan-
guages like Bal and A"B"?

We can begin answering that question by defining a rule in a grammar G to be
recursive iff it is of the form X — w,Yw,, where Y =5* w; Xw, and all of w;, w,, ws,
and w, may be any element of V*. A grammar is recursive iff it contains at least one re-
cursive rule. For example, the grammar we just presented for Bal is recursive because it
contains the rule § — (). The grammar we presented for A"B" is recursive because it
contains the rule § — aSb. A grammar that contained the rule § — aS would also be
recursive. So the regular grammar whose rules are {§ — aT,T— aW,W — aS,W— a}
is recursive. Recursive rules make it possible for a finite grammar to generate an infi-
nite set of strings.

Let’s now look at an important property that gives context-free grammars the
power to define languages that aren’t regular. A rule in a grammar G is self-embedding
iff it is of the form X — w,Yw;,, where Y =5* w3 X w, and both w,w; and w,w, are in
=*. A grammar is self-embedding iff it contains at least one self-embedding rule. So
now we require that a nonempty string be generated on each side of the nested X.The
grammar we presented for Bal is self-embedding because it contains the rule S — (S).
The grammar we presented for A"B" is self-embedding because it contains the rule
§— aSb.The presence of a rule like S — aS does not by itself make a grammar self-
embedding. But the rule § — aT is self-embedding in any grammar G that also con-
tains the rule T— Sb, since S— aT and T=s4* Sb. Self-embedding grammars are
able to define languages like Bal, A"B", and others whose strings must contain pairs of
matching regions, often of the form «»'xy‘z. No regular language can impose such a re-
quirement on its strings.

The fact that a grammar G is self-embedding does not guarantee that L(G)isn’t regular.
There might be a different grammar G’ that also defines L(G) and that is not self-
embedding. For example, G, = ({S, a}, {a}, {S—¢, S—a, S— aSa}, §) is self-

embedding, yet it defines the regular language a*. However, we note the following two
important facts:

. If a grammar G is not self-embedding then L(G) is regular. Recall that our defini-
tion of regular grammars did not allow self-embedding,

210 Chapter 11 Context-Free Grammars

o Ifalanguage L has the property that every prammar that defines it is self-embedding.
then L is not regular.

The rest of the grammars that we will present in this chapter are self-embedding.

EXAMPLE 11.3 Even Length Palindromes

Consider PalEven = {ww® : we {a,b}*}.the language of even-length palindromes
of a’s and b's. We showed in Example 8.11 that PalEven is not regular. But it is context-
free because it can be generated by the grammar G = {{5, a. b}. {a. b}. R. S},
where:

R={S—aSa
§—bSb
S—e}.

EXAMPLE 11.4 Equal Numbers of a's and b's

Let L = {we {a, b}*: #,(w) = #,(w)}. We showed in Example 8.14 that L is
not regular, But it is context-free because it can be generated by the grammar
G = {{S.a,b}, {a.b}, R, S}. where:

R={§—aSb
S—bSa
R
S—e}.

These simple examples are interesting because they capture, in a couple of lines, the
power of the context-free grammar formalism. But our real interest in context-free
grammars comes from the fact that they can describe usetul and powerful languages
that are substantially more complex.

It quickly becomes apparent, when we start 1o build larger grammars, that we need

a more flexible grammar-writing notation. We'll use the following two extensions when
they are helpful:

e The symbol | should be read as “or™. It allows two or more rules to be collapsed

into one. So the following single rule is equivalent to the four rules we wrote in
Example 11.4:

S — asSb|bSalSS|e

¢ We often require nonterminal alphabets that contain more symbols than there are
letters. To solve that problem, we will allow a nonterminal symbol to be any se-
quence of characters surrounded by angle brackels. So <program> and
<variable> could be nonterminal symbols using this convention.

112 Context-Free Grammars and Languages 211

BNF (or Backus Naur form) is a widely used grammatical formalism that ex-
ploits both of these extensions. It was created in the late 1950s as a way to de-

scribe the programming language ALGOL 60. It has since been extended
and several dialects developed. (G.1.1)

EXAMPLE 11.5 BNF for a Small Java Fragment

Because BNF was originally designed when only a small character set was avail-
able, it uses the three symbol sequence : :=in place of — . The following BNF-
style grammar describes a highly simplified and very small subset of Java:

<block> ::= {<stmt-list>} | {}

<stmt-Tist> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> |
if (<cond>) <stmt> |
do <stmt> while (<cond>); | <assignment-stmt>; |
return | return <expression> |
<method-invocation>;

The rules of this grammar make it clear that the following block may be legal in
Java (assuming that the appropriate declarations have occurred):

{ while (x < 12) {
hippo.pretend(x);
X=X+ 2;
1}

On the other hand, the following block is not legal:

{ while x < 12}) (
hippo.pretend(x);
X =X+ 2;

1}

Many other kinds of practical languages are also context-free. For example,

HTML can be described with a context-free grammar using a BNF-style
grammar. (Q.1.2)

EXAMPLE 11.6 A Fragment of an English Grammar

Much of the structure of an English sentence can be described by a (large) context-
free grammar. For historical reasons, linguistic grammars typically use a

212 Chapter 11 Context-Free Grammars

EXAMPLE 11.6 (Continued)

slightly different notational convention. Nonterminals will be written as strings
whose first symbol is an upper case letter. So the following grammar describes a

tiny fragment of English. The symbol NP will derive noun phrases; the symbol VP
will derive verb phrases:

S—NPVP

NP — the Nominal| a Nominal |Nominal|ProperNoun \NP PP
Noniinal — N IAdjs N

N — cat | dogs | bear | girl | chocolate | rifle
ProperNoun — Chris | Fluffy

Adjs — Adj Adjs |Adj

Adj— young | older | smart

VP— V|V NP|VP PP

V— like | 1ikes | thinks | shot | smells
PP — Prep NP

Prep— with

Is English (or German or Chinese) really contexi-free? (L.3.3)

11.3 Designing Context-Free Grammars

In this section. we offer a few simple strategies for designing straightforward context-
free grammars. Later we'll see that some grammars are better than others (for varioxgs
reasons) and we'll look at techniques for finding “good™ grammars. For now, we will
focus on finding some grammar.

The most important rule to remember in designing a context-free grammar to gen- 11
erate a language L is the following: !

e If L has the property that every string in it has two regions and those regions must
bear some relationship to each other (such as being of the same length), then the |
two regions must be generated in tandem. Otherwise, there is no way to enforce the |
necessary constraint,

Keeping that rule in mind, there are two simple ways o generate strings: |
¢ To generate a string with multiple regions that must occur in some fixed order but
do not have to correspond to each other. use a rule of the form:
A—BC,..

This rule generates two regions, and the grammar that contains it will then rely on
additional rules to describe how to form a B region and how to form a C region,
Longer rules, like A — BCDE, can be used if additional regions are nccessary.

11.4 Simplifying Context-Free Grammars 213

¢ To generate a string with two regions that must occur in some fixed order and that
must correspond to each other, start at the outside edges of the string and generate
toward the middle. If there is an unrelated region in between the related ones, it
must be generated after the related regions have been produced.

The outside-in structure of context-free grammars makes them well suited to
describing physical things, like RNA molecules, that fold. (K.4)

EXAMPLE 11.7 Concatenating Independent Sublanguages

Let L = {a"b"c™:n, m = 0}. Here, the c™ portion of any string in L is completely
independent of the a"b" portion, so we should generate the two portions separately
and concatenate them together.Solet G = ({S, N, C, a,b,c}, {a,b,c}, R, S} where:

R={§—NC /* Generate the two independent portions.
N— aNb /* Generate the a"b" portion, from the outside in,
N—e
C=» cC /* Generate the c™ portion.

C—el.

EXAMPLE 11.8 The Kleene Star of a Language

Let L = {amb™a™b™...a™b™: k = 0 and Vi (n; = 0)}. For example, the follow-
ing strings are in L: &, abab, aabbaaabbbabab. Note that L = {a"b":n = 0}*,
which gives a clue how to write the grammar we need. We know how to produce
individual elements of {a"b" : n = 0}, and we know how to concatenate regions
together. So a solution is G = ({$, M, a, b}, {a, b}, R, S} where:

R={S—MS /* Each M will generate one {a"b" :n = 0}
region.
S—e
M — aMb /* Generate one region.
M — g},

11.4 Simplifying Context-Free Grammars &

In this section, we present two algorithms that may be useful for simplifying context-
free grammars.

Consider the grammar G = ({S, A.B.C, D, a, b}, {a, b}, R. S), where:
R = {§— AB|AC
A— aAble

214 Chapter 11 Context-Free Grammars

B—bA
C—bCa
D— AB).

G contains two useless variables: C is useless because it is not able 10 generate any
strings in Z*. (Every time a rule is applied 10 a C, a new C is added.) D is useless be-
cause it is unreachable, via any derivation. from S. So any rules that mention either C
or D can be removed from G without changing the language that is generated. We
present two algorithms, one to find and remove variables like € that are unproductive,
and one to find and remove variables like D that are unreachable.

Given a grammar G = (V, 2, R, §), we define removeunproductive(G) to create 8
new grammar G', where L (G’) = L (G)and G’ does not contain any unproductive sym-
bols. Rather than trying to find the unproductive symbols directly, removeunproductive will
find and mark all the productive ones. Any that are left unmarked at the end are unproduc-
tive. Initially, all terminal symbols will be marked as productive since each of them gener-
ates a terminal string (itself). A nonterminal symbol will be marked as productive when it
is discovered that there is at least one way to rewrite it as a sequence of productive symbols.

So removeunproductive effectively moves backwards from terminals, marking nontermi-
nals along the way.

removeunproductive(G: CFG) =
1. G' =0G.

2. Mark every nonterminal symbol in G’ as unproductive,
3. Mark every terminal symbol in G’ as productive.

4. Until one entire pass has been made without any new symbol being
marked do:

For each rule X — a in R do:

If every symbol in & has been marked as productive and X has not yet
been marked as productive, then mark X as productive.

5. Remove from V,; every unproductive symbol.

6. Remove from R every rule with an unproductive symbol on cither the left-
hand side or the right-hand side.

7. Return G'

Removeunproductive must halt because there is only some finite number of nonter-
minals that can be marked as productive, So the maximum number of times it can exe-
cute step 4 is |V — 3|. Clearly L (G')C L (G) since G’ can produce no derivations
that G could not have produced. And L (G') = L (G) because the only derivations
that G can perform but G' cannot are those that do not end with a terminal string.

Notice that it is possible that § is unproductive. This will happen preciscly in case
L (G) = @. We will use this fact in Section 14.1.2 to show the existence of a procedure
that decides whether or not a context-free language is empty.

Next we'll define an algorithm for getting rid of unreachable symbols like D in the
grammar we prcsented above. Given a grammar G=(V.X, R S), we define
removeunreachable(G) to create a new grammar G', where L (G') = L (G) and G*

i |

115 Proving That a Grammar is Correct 215

does not contain any unreachable nonterminal symbols. What removeunreachable does
is to move forward from S, marking reachable symbols along the way.

removeunreachable(G: CFG) =
1.G'=G.
2. Mark § as reachable.
3. Mark every other nonterminal symbol as unreachable.

4. Until one entire pass has been made without any new symbol being marked do:
For each rule X —aAB (where AeV — 2 and a, Be V *) in R do:

If X has been marked as reachable and A has not, then mark A as
reachable.

§. Remove from Vg every unreachable symbol.

6. Remove from R every rule with an unreachable symbol on the left-hand side.
7. Return G',

Removeunreachable must halt because there is only some finite number of nonter-
minals that can be marked as reachable. So the maximum number of times it can exe-
cute step 4 is |V = Z|. Clearly L (G") C L (G) since G’ can produce no derivations
that G could not have produced. And L (G’) = L (G) because every derivation that
can be produced by G can also be produced by G'.

11.5 Proving That a Grammar is Correct #

In the last couple of sections, we described some techniques that are useful in designing
context-free languages and we argued that the grammars that we built were correct
(i.e., that they correctly describe languages with certain properties). But, given some
language L and a grammar G, can we actually prove that G is correct (i.e., that it gen-
erates exactly the strings in L)? To do so, we need to prove two things:

1. G generates only strings in L, and

2. G generates all the strings in L.

The most straightforward way to do step 1 is to imagine the process by which G gen-

erates a string as the following loop (a version of simple-rewrite, using st in place of
working-string):

ll Sf = SI
2. Until no nonterminals are left in st do:
Apply some rule in R to st.

3. Output st,

Then we construct a loop invariant I and show that:
e Jis true when the loop begins,

e [is maintained at each step through the loop (i.e., by each rule application), and
e A (st contains only terminal symbols) — ste L.

Step 2 is generally done by induction on the length of the generated strings.

216

Chapter 11 Context-Free Grammars

EXAMPLE 11.9 The Correctness of the A"B" Grammar

In Example 11.2, we considered the language A"B". We built for it the grammar
G = {{S.a.b}, {a.b}, R. S}, where:

R={S—aSb (1)
S—e}. (2)

We now show that G is correct. We first show that every string w in L(G) is in
A"B™ Let st be the working string at any point in a derivation in (G. We need to de-
fine / so that it captures the two features of every string in A"B™ The number of
a’s equals the number of b’s and the letters are in the correct order. So we let [be:

(#a(s1) = #p(s1))A(s1€ a*(S U e)b*).
Now we prove:

e [istrue when st = §: In this case. #,(s1) = #,(s1)) = 0 and st is of the correct
form.

e If] is true before a rule fires, then it is true after the rule fires: To prove this,
we consider the rules one at a time and show that each of them preserves /.
Rule (1) adds one a and one b to sz, so it does not change the difference be-
tween the number of a’s and the number of b’s. Further, it adds the a to the left
of S and the b to the right of §, 50 if the form constraint was satisficd before ap-

plying the rule it still is afterwards. Rule (2) adds nothing so it does not change
either the number of a's or b’s or their locations.

e If I'is true and s¢ contains only terminal symbols, then st e A"B™: In this case, st
possesses the three properties required of all strings in A"B"; ‘They are com-
posed only of a's and b’s, (#,(sr) = #,(sr)).and all a's come before all b's.

Next we show that every string w in A"B" can be gencrated by G: Every
string in A"B" is of even length. so we will prove the claim only for strings of even
length. The proof is by induction on |w|:

o Base case: If |w| = 0, then w = &, which can be generated by applying rule
(2)to S.

e Prove: If every string in A"B" of length k. where & is even. can he generated by
G, then every string in A"B" of length k& + 2 can also be generated. Notice
that, for any even k, there is exactly one string in A"B" of length & : a*?p*2,
There is also only one string of length k + 2. namely aa* b*~b, that can be
generated by first applying rule (1) to produce asb, and then applying to §
whatever rule sequence generated a*?b*>. By the induction hypothesis, such a
sequence must exist.

11.5 Proving That a Grammar is Correct 217

EXAMPLE 11.10 The Correctness of the Equal a's and b’s Grammar

In Example 11.4 we considered the language L = {w e {a,b}*: #5(w) = #y(w)}.
We built for it the grammar G = {{S. a,b}, {a.b}, R. S}, where:

R={S—aSh (1)

S —bSa (2)
S—»S8S (3)
S—¢}. (4)

This time it is perhaps less obvious that G is correct. In particular, does it gen-
erate every sequence where the number of a’s equals the number of b’s? The an-
swer is yes, which we now prove.

To make it easy to describe this proof, we define the following function:
A(w) = #3(w) — #y(w).

Note that astring wis in L iff we {a,b}* and A(w) = 0.
We begin by showing that every string w in L(G) is in L: Again, let st be the
working string at any point in a derivation in G. Let] be:
ste{a,b,S}* A A(st) = 0.

Now we prove:

1is true when st = S: In this case, #,(sr) = #,(sr)) = 0. So A(st) = 0.

If 1 is true before a rule fires, then it is true after the rule fires: The only sym-
bols that can be added by any rule are a. b, and S. Rules (1) and (2) each add

one a and one b to sz, 5o neither of them changes A (sr). Rules (3) and (4) add
neither a’s nor b’s to the working string, so A(st) does not change.

If / is true and st contains only terminal symbols, then ste L: In this case, st

possesses the two properties required of all strings in L: They are composed
only of a’sand b's and A(sr) = 0.

It is perhaps less obviously true that G generates every string in L. Can we be sure
that there are no permutations that it misses? Yes, we can. We next we show that
every string w in L can be generated by G. Every string in L is of even length, so we
will prove the claim only for strings of even length. The proof is by induction on).

e Basecase:If |w| = 0, w = &, which can be generated by applying rule (4) to S.
e Prove thatif every string in L of length = k, where k is ¢ven, can be generated
by G, then every string w in L of length k + 2 can also be generated: Since w

has length k& + 2, it can be rewritten as one of the following: axb, bxa, axa, or
bxb, for some x € {a,b}*. |x| = k. We consider two cases:

e 1 = axb or bxa. If we L, then A(w) = 0 and so A(x) must also be 0.
|x| = k. So, by the induction hypothesis, G generates x. Thus G can also
generate w: It first applies either rule (1) (if w = axb) or rule (2) (if w =

bxa). It then applies to § whatever rule sequence generated x. By the induc-
tion hypothesis, such a sequence must exist.

218 Chapter 11 Context-Free Grammars

EXAMPLE 11.10 (Continued)

® 1w = axa,or bxb. We consider the former case. The argument is parallel for
the latter. Note that any string in L, of either of these forms, must have
length at least 4. We will show that w = vy, where both v and y are in L,
2 < |v| = k,and 2 < |y| < k. If that is so, then G can generate w by first
applying rule (3) to produce SS, and then generating v from the first S and
y from the second $. By the induction hypothesis, it must be possible for it
to do that since both v and y have length = k.

To find v and y, we can imagine building w (which we've rewritten as axa)
up by concatenating one character at a time on the right. After adding only
one character, we have just a. A(a) = 1. Since we L, A(w) = 0. So &
(ax) = —1 (since it is missing the final a of w). The value of A changes by ex-
actly 1 each time a symbol is added to a string. Since A is positive when only a
single character has been added and becomes negative by the time the string
ax has been built, it must at some point before then have been 0. Let v be the
shortest nonempty prefix of w to have a value of () for A. Since » is nonempty
and only even length strings can have A equalt0(),2 = |o|. Since A became 0
sometime before w became ax, » must be at least two characters shorter than
w (it must be missing at least the last character of x plus the final a), so
|v| < k. Since A(v) = 0,ve L. Since w = vy, we know bounds on the
lengthof y:2 < |y| = &.Since A(w) = Oand A(v) = 0, A(y) mustalsobe0
andsoyelL.

11.6 Derivations and Parse Trees

Context-free grammars do more than just describe the set of strings in a language.
They provide a way of assigning an internal structure 1o the strings that they derive.
This structure is important because it, in turn, provides the starting point for assigning
meanings to the strings that the grammar can produce.

The grammatical structure of a string is captured by a parse tree, which records
which rules were applied to which nonterminals during the string’s derivation. In
Chapter 15, we will explore the design of programs, called parsers. that, given a gram-
mar G and a string w, decide whether w e L (G) and, if it is, create a parse tree that
captures the process by which G could have derived w.

A parse tree,derived by a grammar G = (V, Z, R, §).is a rooted, ordered tree in which:

e Every leaf node is labeled with an element of £ U {&},
e The root node is labeled S,
¢ Every other node is labeled with some elementof V — X, and

e If m is a nonleaf node labeled X and the children of m are labeled x), X400, X,
then R contains the rule X — x;, x5...., X,

11.6 Derivations and Parse Trees 219

Define the branching factor of a grammar G to be length (the number of symbols)
of the longest right-hand side of any rule in G. Then the branching factor of any parse
tree generated by G is less than or equal to the branching factor of G.

EXAMPLE 11.11 The Parse Tree of a Simple English Sentence

Consider again the fragment of an English grammar that we wrote in Example 11.6.

That grammar can be used to produce the following parse tree for the sentence
the smart cat smells chocolate:

s
/\
NP vpP

Nominal v NP

A _
Adjs N Nominal
A |

the smart cat smells chocolate

Notice that, in Example 11.11, the constituents (the subtrees) correspond to objects
(like some particular cat) that have meaning in the world that is being described. It is
clear from the tree that this sentence is not about cat smells or smart cat smells.

Because parse trees matter, it makes sense, given a grammar G, to distinguish between:

¢ G's weak generative capacity, defined to be the set of strings, L(G), that G gen-
erates, and

e ('s strong generative capacity, defined to be the set of parse trees that G generates.

When we design grammars it will be important that we consider both their weak and
their strong generative capacities,

In our last examplc. the process of deriving the sentence the smart cat smells
chocolate began with:

S=NPVP= ...
Looking at the parse tree, it isn’t possible to tell which of the following happened next:

S = NP VP = The Nominal VP =
S=NPVP=NPV NP=

Parse trees are useful precisely because they capture the important structural facts

about a derivation but throw away the details of the order in which the nonterminals
were expanded.

Whilc it’s true that the order in which nonterminals are expanded has no bearing
on the structure that we wish to assign to a strin g, order will become important when

220 Chapter 11 Context-Free Grammars

we attempt to define algorithms that work with context-free grammars. For example,
in Chapter 15 we will consider various parsing algorithms for context-free languages
Given an input string w, such algorithms must work systematically through the space
of possible derivations in search of one that could have generated w. To make it eas-
ier to describe such algorithms, we will define two useful families of derivations:

* A left-most derivation is one in which, at each step. the leftmost nonterminal in the
working string is chosen for expansion.

® A right-most derivation is one in which, at each step, the rightmost nonterminal in
the working string is chosen for expansion.

Returning to the smart cat example above:

¢ A left-most derivation is:

S=> NPVP= The Nominal VP => The Adjs N VP=> The Adj N VP=
The smart N VP= the smart cat VP= the smartcat VNP=
the smart cat smel1s NP = the smart cat smells Nominal =
the smart cat smells N=> the smart cat smells chocolate

e A right-most derivation is:

S=>NPVP=> NPV NP=> NP V Nominal = NP V N=> NP V chocolate =
NP smells chocolate = the Nominal sme11s chocolate =
the Adjs N smells chocolate = The Adjs cat smells chocolate =
the Adj cat smells chocolate = the smart cat smells chocolate

11.7 Ambiguity

Sometimes a grammar may produce more than one parse tree for some (or all) of the
strings it generates. When this happens, we say that the grammar is ambiguous. More
precisely, a grammar G is ambiguous iff there is at least one string in L(G) for which G

produces more than one parse tree. It is easy to write ambiguous grammars if we are
not careful. In fact, we already have.

EXAMPLE 11.12 The Balanced Parentheses Grammar is Ambiguous
Recall the language Bal = {we {), (}*: the parentheses are balanced}, for
which we wrote the grammar G = {{S.).(}. {). (}. R, S), where:

R={§—(5)
§—SS
S—e}.

G can produce both of the following parse trees for the string (())():

117 Ambiguity 221

A A
i &) C s Sn/sr\ S
(/;\) e 3(.?-) g
! ($
e

In fact, G can produce an infinite number of parse trees for the string (())()-

A grammar G is unambiguous iff, for all strings w, at every point in a leftmost or
rightmost derivation of w, only one rule in G can be applied. The grammar that we just

presented in Example 11.12 clearly fails to meet this requirement. For example, here
are two leftmost derivations of the string (())():

o §=285=(5)§=((S)S=(0)s=(O)S)=(NO-
o §=55=8555=85=(5)5=((5))5=(0)S=(0)S)=(0)O.

11.7.1 Why Is Ambiguity a Problem?

Why are we suddenly concerned with ambiguity? Regular grammars can also be am-
biguous. And regular expressions can often derive a single string in several distinct ways.

EXAMPLE 11.13 Regular Expressions and Grammars Can Be Ambiguous

Let L = {we {a,b}*: w contains at least one a}. L is regular. It can be defined
with both a regular expression and a regular grammar. We show two ways in
which the string aaa can be generated from the regular expression we have writ-
ten and two ways in which it can be generated by the regular grammar:

Regular Expression

Regular Grammar
(a U b)*a(aUL b)-. §—a
S —bS
choose a from (aU b), then S — aS
choose a from (aU b), then S — aT
choose a, then T—a
choose & from (aU b)*, T—b
or T— aT
T — bT
choose & from (aU b)*, then s s
choose 3, then a’™s o \T

choose a from (aU b), then
choose a from (aU b).

222

Chapter 11 Context-Free Grammars

We had no reason to be concerned with ambiguity when we were discussing reg-
ular languages because. for most applications of them. we don't care about assigning
internal structure to strings. With context-free languages, we usually do care about
internal structure because, given a string w, we want to assign meaning to w. We al-
most always want to assign a unique such meaning. It is generally difficult, if not im-
possible, to assign a unique meaning without a unique parse tree. So an ambiguous
grammar, which fails to produce a unique parse tree, is a problem, as we'll see in our
next example.

EXAMPLE 11.14 An Ambiguous Expression Grammar

Consider Eyy,, which we’ll define to be the language of simple arithmetic cxpressions
of the kind that could be part of anything from a small calculator to a programming
language. We can define E,;, with the following context-free grammar G = {{E, id,
+,*%,(,)}, {id, +,*,(,)}. R, E}, where:

R={E—E+E
E—E*E
E—(E)
E— id}.

So that we can focus on the issues we care about, we’ve used the terminal sym-
bol id as a shorthand for any of the numbers or variables that can actually occur
as the operands in the expressions that G generates. Most compilers and inter-
preters for expression languages handle the parsing of individual operands in a
first pass, called lexical analysis, which can be done with an FSM, We'll return to
this topic in Chapter 15.

Consider the string 2 + 3 * 5, which we will write as id + id * id. Using G, we
can get two parses for this string:

E /E\E E /E\E
E/ \E E/I\E
| | |

Should an evaluation of this expression return 17 or 25? (See Example 11.19
for a different expression grammar that fixes this problem.)

117 Ambiguity 223

Natural languages, like English and Chinese, are not explicitly designed. So it

isn't possible to go in and remove ambiguity from them. See Example 11.22
and L.3.4.

Designers of practical languages must be careful that they create languages for
which they can write unambiguous grammars.

11.7.2 Inherent Ambiguity

In many cases, when confronted with an ambiguous grammar G, it is possible to con-
struct a new grammar G ' that generates L(G) and that has less (or no) ambiguity. Un-
fortunately, it is not always possible to do this. There exist context-free languages for
which no unambiguous grammar exists. We call such languages inherently ambiguous.

EXAMPLE 11.15 An Inherently Ambiguous Language

Let L = {abick:i,j,k = 0,i = jor j = k}. An alternative way to describe it is
{a"b"c": n,m = 0} U {a"b"c™: n,m = 0}. Every string in L has either (or
both) the same number of a's and b’s or the same number of b’s and ¢’s. L is in-

herently ambiguous. One grammar that describes it is G = ({8, §;, 52, A4, B, a, b,
c}, {a,b,c}, R, S}, where:

R={5§—5I8$,
S;—=SclA /* Generate all strings in {a"b"c™ :n,m = 0}.
A— adble
S,— a$;| B /* Generate all strings in {a"b™c™ :n,m = 0}.
B — bBc | &).

Now consider the strings in A"B"C" = {a"b"c": n = 0}. They have two dis-
tinct derivations, one through §; and the other through S,. It is possible to prove

that L is inherently ambiguous: Given any grammar G that generates L there is at
least one string with two derivations in G.

EXAMPLE 11.16 Another Inherently Ambiguous Language

Let L = {a/a*b':i,j,k,1=0,i = k or j = 1}. L is also inherently ambiguous.

Unfortunalely,-there are no clean fixes for the ambiguity problem for context-free
languages. In Section 22.5 we’ll see that both of the following problems are undecidable:

¢ Given a context-free grammar G, is G ambiguous?
¢ Given a context-free language L, is L inherently ambiguous?

224 Chapter 11 Context-Free Grammars

11.7.3 Techniques for Reducing Ambiguity #

Despite the negative theoretical results that we have just mentioned, it is usually very
important, when we are designing practical languages and their grammars, that we
come up with a language that is not inherently ambiguous and a grammar for it that is
unambiguous. Although there exists no general purpose algorithm to test for ambigui-
ty in a grammar or to remove it when it is found (since removal is not always possible),
there do exist heuristics that we can use to find some of the more common sources of

ambiguity and remove them. We’'ll consider here three grammar structures that often
lead to ambiguity:

1. eruleslike S — &,

2. Rules like S— SS or E— E + E. In other words recursive rules whose right-
hand sides are symmetric and contain at least two copies of the nonterminal on
the left-hand side.

3. Rule sets that lead to ambiguous attachment of optional postfixes.

Eliminating e-Rules

In Example 11.12, we showed a grammar for the balanced parentheses language. That
grammar is highly ambiguous. Its major problem is that it is possible to apply the rule
S— §S arbitrarily often. generating unnecessary instances of S, which can then be
wiped out without a trace using the rule §— &. If we could eliminate the rule § — &, we
could eliminate that source of ambiguity. We’'ll call any rule whose right-hand side is &
an e-rule.

We'd like to define an algorithm that could remove &-rules from a grammar G with-
out changing the language that G generates. Clearly if g€ L (G). that won't be possi-
ble. Only an s-rule can generate &. However, it is possible to define an algorithm that
eliminates e-rules from G and leaves L(G) unchanged except that. if £ € L (G), it will
be absent from the language generated by the new grammar. We will show such an al-
gorithm. Then we'll show a simple way to add & back in, when necessary, without
adding back the kind of e-rules that cause ambiguity.

Let G = (V, Z,R.S) be any context-free grammar. The following algorithm con-
structs a new grammar G’ such that L (G’) = L (G) — {e} and G' contains no e-rules:

removeEps (G: CFG) =
1. LetG' ' =G.

2. Find the set N of nullable variables in G*. A variable X is nullable iff either:
(1) thereisarule X— &, or
(2) thereisarule X — PQR ... suchthat P, Q. R, .. .are all nullable.
So compute N as follows:
2.1. Set N tothe set of variables that satisfy (1).
2.2. Until an entire pass is made without adding anything to N do;

Evaluate all other variables with respect to (2). If any vari-
able satisfies (2) and is not in N, insert it,

11.7 Ambiguity 225

3. Define a rule to be modifiable iff it is of the form P — aQp for some Q in N
and any a, B in V *. Since Q is nullable, it could be wiped out by the applica-
tion of e-rules. But those rules are about to be deleted. So one possibility
should be that Q just doesn’t get generated in the first place. To make that hap-

pen requires adding new rules. So, repeat until G’ contains no modifiable rules
that haven't been processed:

3.1. Given the rule P— aQp. where Q € N, add the rule P — o if it is not al-
ready presentandif a8 # eand if P # op. This last check prevents adding
the useless rule P — P, which would otherwise be generated if the original
grammar contained, for example, the rule P — PQ and Q were nullable.

4. Delete from G’ all rules of the form X — &.

5. Return G'.

If removeEps halts, L (G') = L(G) — {¢} and G' contains no e-rules. And
removeEps must halt. Since step 2 must add a nonterminal to N at each pass and it can-
not add any symbol more than once, it must halt within |V — Z| passes. Step 3 may
have to be done once for every rule in G and once for every new rule that it adds. But
note that, whenever it adds a new rule, that rule has a shorter right-hand side than the
rule from which it came. So the number of new rules that can be generated by some
original rule in G is finite. So step 3 can execute only a finite number of times.

EXAMPLE 11.17 Eliminating &-Rules

LetG = {{S.T,A,B,C, a,b,c}, {a,b,c}, R, S), where:

R={S— aTa
T— ABC
A—aAlC
B—Bb|C
C— c|e}.

On input G, removeEps behaves as follows: Step 2 finds the set N of nullable
variables by initially setting N to {C}. On its first pass through step 2.2 it adds A
and B to N. On the next pass, it adds T (since now A, B, and C are all in N).On the

next pass, no new clements are found, so step 2 halis with N = {C, A, B, T}. Step3
adds the following new rules to G':

§— aa * Since T is nullable.

T—BC /* Since A is nullable.

T—AC * Since B is nullable.

T— AB * Since C is nullable.

T—C I* FromT — BC, since B is nullable. Or from
T— AC.

T—B

[* FromT — BC, since C is nullable. Or from
T— AB.

226 Chapter 11 Context-Free Grammars

EXAMPLE 11.17 (Continued)

T—A F FromT — AC, since C is nullable. Or from
T— AB.

A—a /* Since A is nullable.

B—b /* Since B is nullable.

Finally, step 4 deletes the rule C— &,

Sometimes L(G) contains € and il is important to retain it. To handle this case, we
present the following algorithm, which constructs a new grammar G", such that
L (G") = L (G). If L(G) contains &, then G” will contain a single &-rule that can be
thought of as being “quarantined™. Its sole job is to gencrate the string &. It can have no
interaction with the other rules of the grammar.

atmostoneEps (G: CFG) =

1. G" = removeEps (G).

2. If 8¢ is nullable then: /* This means that e e L (G).
2.1. Create in G" a new start symbol §*,

22. Addto R;-thetworules:S* —¢gand S*— §;.
3. Return G".

EXAMPLE 11.18 Eliminating £-Rules from the Balanced Parens Grammar

We again consider Bal = {we {), (}*: the parentheses are balanced} and the
grammar G = {{S,).(}, {), (}, R. §). where:

R={5—(5) (1)
§—SS (2)
s—e}. 3)

We would like to eliminate the ambiguity in G. Since ee L (G), we call
atmostone Eps(G), which begins by applying removeEps to G:
e Instep2,N = {S}.
e Instep 3, rule (1) causes us to add the rule § — (). Rule (2) causes us to con-

sider adding the rule § — S, but we omit adding rules whose right-hand sides
and left-hand sides are the same.

e Instep 4, we delete the rule S — &.

So removeEps(G) returns the grammar G’ = {{S,). (}. {). (}. R. S), where R =
{§—=(5)
S=()
s — S5}

11.7 Ambiguity 227

In its step 2, atmostoneEps creates the new start symbol S*. In step 3, it adds
the two rules $*— ¢, S*—S. So armostoneEps returns the grammar G" =
{{$%5.).(}. (). (}. R, §*), where:

R={S*—¢
S*—S
S=(9)
S=()
§—S§S}.

The string (())() has only one parse in G".

Eliminating Symmetric Recursive Rules

The new grammar that we just built for Bal is better than our original one. But it is still
ambiguous. The string ()()() has two parses, shown in Figure 11.1. The problem now is
the rule S — S§, which must be applied » — 1 times to generate a sequence of n bal-

anced parentheses substrings. But, at each time after the first, there is a choice of which
existing S to split.

5 §
| l
S S
S/\S S/\S
S/\S S/\S
VANEERVAN /\ /\ FIGURE 111 Two parse trees for the
)y)y)y)y) () string(0).

The solution to this problem is to rewrite the grammar so that there is no longer a
choice. We replace the rule S — SS with one of the following rules:

§—3S5, /* force branching to the left.
§—S5,8 /* force branching to the right.

Then we add the rule § — S, and replace the rules § — (§) and § — () with the rules
§,— (8) and S, —> (). What we have done is to change the grammar so that branching can
occur only in one direction. Every § that is generated can branch, but no S, can. When all
the branching has happened, S rewrites to $; and the rest of the derivation can occur.

So one unambiguous grammar for Balis G = {{§,), (}, {). (}, R, S), where:

R={§*—e¢ (1)
S*—§ ()
S— 8§, (3) /* Force branching to the left.
=S5 (4)
§1—(S) (5)

Si— N} 73

228 Chapter 11 Context-Free Grammars i

The technique that we just used for Bal is useful in any situation in which ambi-
guity arises from a recursive rule whose right-hand side contains two or more
copies of the left-hand side. An important application of this idca is 1o expression
languages. like the language of arithmetic expressions that we introduced in
Example 11.14,

EXAMPLE 11.19 An Unambiguous Expression Grammar

Consider again the language E,,., which we defined with the following context-
free grammar G = {{E.id,+, *, (,)}. {id. +,*. (L)}, R. E}, where:

R={E—~E+E
E—E*E
E—(E)
E-» id}.

G is ambiguous in two ways:

1. It fails 1o specify associativity. So. for example. there are two parses for the
string id + id + id. corresponding to the bracketings (id + id) + id and
id + (id + id).

2. It fails to define a precedence hierarchy for the operators + and *. So, for ex-

ample, there are two parses for the string id + id * 1d, corresponding to the
bracketings (id + id) * idand id + (id * id).

The first of these problems is analogous to the one we just solved for Bal, We
could apply that solution here. but then we'd still have the second problem. We
can solve both of them with the following grammar G' = {{E, T,F,id,
+,* (,)} {id, +,* ()} R, E}. where:

R={E—E+T
E—T
R B
T—F
F—(E)
F—id}.
Just as we did for Bal. we have forced branching to go in a single direction (1o

the left) when identical operators are involved. And. by adding the levels 7" (for
term) and F (for factor) we have defined a precedence hierarchy: Times has

11.7 Ambiguity 229

higher precedence than plus does. Using G', there is now a single parse for the
string id + id * id:

E/ \'r‘

I Frq o
L ,L

i‘d + 'i\d * id

Ambiguous Attachment

The third source of ambiguity that we will consider arises when constructs with option-
al fragments are nested. The problem in such cases is then, “Given an instance of the
optional fragment, at what level of the parse tree should it be attached?”

Probably the most often described instance of this kind of ambiguity is known as the
dangling else problem. Suppose that we define a programming language with an if
statement that can have either of the following forms:

<stmt> = if <cond> then <stmt>
<stmt> = if <cond> then <stmt> else <stmt>

In other words, the ese clause is optional. Then the following statement, with just a

single else clause, has two parses:

if cond, then if cond, then st else st

In the first parse, the single e1se clause goes with the first i f. (So it attaches high in

the parse tree.) In the second parse, the single e1se clause goes with the second if. (In
this case, it attaches lower in the parse tree.)

EXAMPLE 11.20 The Dangling Else Problem in Java

Most programming languages that have the dangling else problem (including C,
C++. and Java) specify that each else goes with the innermost 1 f to which it can
be attached. The Java grammar forces this to happen by changing the rules to

something like these (presented here in a simplified form that omits many of the
statement types that are allowed):

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
<IfThenElseStatementNoShortIf> | ...

<StatementNoShortlf> ::= <block> | <IfThenElseStatementNoShortIf> | ...
<IfThenStatement> ::= i f (<Expression>) <Statement>

<IfThenElseStatement> i:= i f (<Expression>) <StatementNoShortIf> else
<Statement>

230 Chapter 11 Context-Free Grammars

EXAMPLE 11.20 (Continued)

<IfThenElseStatementNoShortIf> ::= if (<Expression>)
<StatementNoShortIf> e1se <StatementNoShortIf>

In this grammar. there is a special class of statements called <Statement
NoShortlf>. These are statements that are guaranteed not to end with a short
(i.e.. else-less if statement). The grammar uses this class 1o guarantee that, if a
top-level if statement has an else clause, then any embedded 1 f must also have
one. To see how this works. consider the following parse tree:

<Statementz

eIl ThenElseStatement >

B i

if (cond) <StalemeniNoShortif> else <Stalement

The top-level if statement claims the else clause for itsell by guaranteeing
that there will not be an embedded 1 f that is missing an else. If there were, then
that embedded i f would grab the one else clause there is.

For a discussion of other ways in which programming languages can solve
this problem. see G.3.

Attachment ambiguity is also a problem for parsers for natural languages such as
English, as we'll see in Example 11.22

Proving that a Grammar is Unambiguous

While it is undecidable, in general. whether a grammar is ambiguous or unambiguous, it
may be possiblc to prove that a particular grammar is cither ambiguous or unambigu-
ous. A grammar G can be shown 1o be ambiguous by exhibiting a single string for
which G produces 1wo parse trees. To see how it might be possible to prove that G is
unambiguous, recall that G is unambiguous iff every string derivable in G has a single
leftmost derivation. So.if we can show that. during any lefimost deriviation of any string
we L (G), exactly one rule can be applied. then G is unambiguous,

EXAMPLE 11.21 The Final Balanced Parens Grammar is Unambiguous

We return to the final grammar G that we produced for Bal. G = {{5.). (}. {),
(}, R, S), where:

11.7 Ambiguity 231

R={S*—¢ (1)

53¢—>§ (2)
s—SS, (3)
§—=5 @
S5i—=(8) (5)
S$i—=0}. (6)

We prove that G is unambiguous. Given the leftmost derivation of any string
w in L(G), there is, at each step of the derivation, a unique symbol, which we’ll
call X, that is the leftmost nonterminal in the working string. Whatever X is, it
must be expanded by the next rule application, so the only rules that may be
applied next are those with X on the left-hand side. There are three nontermi-
nals in G. We show, for each of them, that the rules that expand them never
compete in the leftmost derivation of a particular string w. We do the two easy
cases first:
¢ S$* The only place that §* may occur in a derivation is at the beginning. If w = &,

then rule (1) is the only one that can be applied. If w # &, then rule (2) is the only
one that can be applied.

Sy: If the next two characters to be derived are (), §; must expand by rule (6).
Otherwise, it must expand by rule (5).

In order discuss S, we first define, for any matched set of parentheses m, the
siblings of m 1o be the smallest set that includes any matched set p adjacent, on
the right, to m and all of p's siblings. So, for example, consider the string:

((_li_) () ()
: 273 4
5

The set () labeled 1 has a single sibling, 2. The set (()()) labeled 5 has two sib-
lings, 3 and 4. Now we can consider S. We observe that:

e S must generate a string in Bal and so it must generate a matched set, possibly
with siblings.

* So the first terminal character in any string that S generates is (. Call the string

that starts with that (and ends with the) that matches it. s.
e The only thing that §; can generate is a single matched set of parentheses that
has no siblings.

* Letn be the number of siblings of 5. In order to generate those siblings. S must

expand by rule (3) exactly » times (producing n copies of S,) before it expands
by rule (4) to produce a single S,. which will produce 5. So, at every step in a
derivation, let p be the number of occurrences of S, to the right of S.1{ p < n,
S must expand by rule (3).1f p = n, S must expand by rule (:1).

232

Chapter 11 Context-Free Grammars

Going Too Far

We must be careful, in getting rid of ambiguity. that we don't do so at the expense of
being able to generate the parse trees that we want. In both the arithmetic expression
example and the dangling else case. we were willing 1o force one interpretation. Some-
times, however, that is not an acceptable solution,

EXAMPLE 11.22 Throwing Away The Parses That We Want

Let's return to the small English grammar that we showed in Example 11.6. That
grammar is ambiguous. It has an ambiguous attachment problem, similar to the
dangling else problem. Consider the following two senlences:

Chris 1ikes the girl with a cat.

Chris shot the bear with a rifle.

Each of these sentences has two parse trees because, in each case, the preposi-
tional phrase with a N, can be attached either to the immediately preceding NP
(the girl or the bear) or to the VP, The correct interpretation for the first sen-
tence is that there is a girl with a cat and Chris likes her. In other words, the prepo-
sitional phrase attaches to the NP. Almost certainly, the correct interpretation for
the second sentence is that there is a bear (with no rifle) and Chris used a rifle to
shoot it. In other words, the prepositional phrase attaches to the VP, See L.3.4 for
additional discussion of this example.

For now, the key point is that we could solve the ambiguity problem by elimi-
nating one of the choices for PP attachment. But then, for one of our two sen-
tences, we'd get a parse tree that corresponds to nonsense. In other words, we
might still have a grammal with the required weak generative capacity, but we
would no longer have one with the required strong generative capacity. The solu-
tion to this problem is to add some additional mechanism to the context-free
framework. That mechanism must be able to choose the parse that corresponds to
the most likely meaning.

English parsers must have ways to handle various Kinds of attachment am-
biguities, including those caused by prcpositional phrases and relative
clauses. (L.3.4)

11.8 Normal Forms &

So far, we've imposed no restrictions on the form of the right-hand sides of our gram-
mar rules, although we have seen that some kinds of rules, like those whose right-hand
side is &, can make grammars harder to use. In this section, we consider what happens
if we carry the idea of getting rid of e-productions a few steps farther.

11.8 Normal Forms 233

Normal forms for queries and data can simplify database processing. (H.5)
Normal forms for logical formulas can simplify automated reasoning in arti-

ficial intelligence systems (M.2) and in program verification systems. (H.1.1)

Let C be any set of data objects. For example, C might be the set of context-free
grammars. Or it could be the set of syntactically valid logical expressions or a set of
database queries. We'll say that a set F'is a normal form for C iff it possesses the follow-
ing two properties:
¢ For every element ¢ of C, except possibly a finite set of special cases, there exists
some element f of F such that fis equivalent to ¢ with respect to some set of tasks.

F is simpler than the original form in which the elements of C are written. By “sim-

pler” we mean that at least some tasks are easier to perform on elements of F than
they would be on elements of C.

We define normal forms in order to make other tasks easier. For example, it might
be easier to build a parser if we could make some assumptions about the form of the
grammar rules that the parser will use. Recall that, in Section 5.8, we introduced the
notion of a canonical form for a set of objects. A normal form is a weaker notion, since
it does not require that there be a unique representation for each object in C, nor does
it require that “equivalent” objects map to the same representation. So it is sometimes

possible to define useful normal forms when no useful canonical form exists. We’ll now
do that for context-free grammars.

11.8.1 Normal Forms for Grammars
We'll define the following two useful normal forms for context-free grammars:

¢ Chomsky Normal Form: In a Chomsky normal form grammar G = (V, 2, R, §),
all rules have one of the following two forms:

s X—a,whereaeZ,or
e X — BC,where Band C are elementsof V — 3.

Every parse tree that is generated by a grammar in Chomsky normal form has a
branching factor of exactly 2, except at the branches that lead to the terminal

nodes, where the branching factor is 1. This property makes Chomsky normal form
grammars useful in several ways, including;

» Parsers can exploit efficient data structures for storing and manipulating binary
trees.

e Every derivation of a string w contains |w| — 1 applications of some rule of the

form X — BC, and |w| applications of some rule of the form X —>a. So it is

straightforward 10 define a decision procedure to determine whether w can be
generated by a Chomsky normal form grammar G.

234 Chapter 11 Context-Free Grammars

In addition. because the form of all the rules is so restricted. it is easier than it
would otherwise be to define other algorithms that manipulate grammars.

Greibach Normal Form: In a Greibach normal form grammar G = (V. 2, R. S),
all rules have the following form:

e X—aB.whercaeXand Be(V =)%

In every derivation that is produced by a grammar in Greibach normal form, pre-

cisely one terminal is generated for cach rule application. This property is useful in
several ways, including:

e Every derivation of a string w contains |w! rule applications. So again it is
straightforward 10 define a decision procedure 1o determine whether w can be
generated by a Greibach normal form grammar (.

e As we'll see in Theorem 14.2. Greibach normal form grammars can easily be
converted 10 pushdown automata with no e-transitions. This is usctul because
such PDAs are guaranteed to halt.

THEOREM 11.1 Chomsky Normal Form

Theorem: Given a context-free grammar G. there exists a Chomsky normal form
grammar G such that L (G¢) = L (Ge) = {&}.

Proof: The proof is by construction, using the algorithm convertoChomsky pre-
sented below.

THEOREM 11.2 Greibach Normal Form

Theorem: Given a context-free grammar G, there exists a Greibach normal form
grammar Gg; such that L (Gg) = L(G) = {&].

Proof: The proof is also by construction. We present it in .1,

11.8.2 Converting to a Normal Form

Normal forms are useful if there exists a procedure for converting an arbitrary object
into a corresponding object that meets the requirements of the normal form. Algo-

rithms to convert grammars into normal forms generally begin with a grammar G and
then operate in a series of steps as [ollows:

1. Apply some transformation to G to get rid of undesirable property 1. Show that
the language generated by G is unchanged.

2. Apply another transformation to G to get rid of undesirable property 2. Show
that the language gencrated by G is unchanged and that undesirable property 1
has not been reintroduced.

3. Continue until the grammar is in the desired form.

Because it is possible for one transformation to undo the work of an earlier one, the

order in which the transformation steps are performed is often critical 10 the correct-
ness of the translormation algorithm.

|

11.8 Normal Forms 235

One transformation that we will exploit in converting grammars both to Chomsky
normal form and to Greibach normal form is based on the following observation. Con-
sider a grammar that contains the three rules:

X—aYc

Y—=b

Y=+Z2Z

We can construct an equivalent grammar by replacing the X rule with the rules:
X — abc
X—aZZc

Instead of letting X generate an instance of Y, X immediately generates whatever Y
could have generated. The following theorem generalizes this claim.

THEOREM 11.3 Rule Substitution

[Theorem: Let G = (V, Z, R, 5) be a context-free grammar that contains a rule r of

the form X —aYB. where a and B are elements of V* and Ye(V —). Let
\ Y = ylval ... |y, be all of G's rules whose left-hand side is Y. And let G’ be the
. resultl of removing from R the rule r and replacing it by the rules
| X—ay,B.X—ayB.....X—ay,B.Then L (G') = L (G).

Proof: We first show that every string in L(G) is also in L (G’): Suppose that w is in
L(G). If G can derive w without using rule r, then G’ can do so in exactly the
same way. If G can derive w using rule r, then one of its derivations has the fol-

lowing form, for some value of k between 1 and n:
S§= .,. =8Xd=daVYBd=>8ay,fd=> ... = w.

| Then G’ can derive 0 with the derivation:
S=..=28X¢= dayiBd= ... =w.

Next we show that only strings in L(G) can be in L(G'). This must be so be-

cause the action of every new rule X' — ay; 8 could have been performed in G by
| applying the rule X — «Y and then the rule Y — y,,

-

11.8.3 Converting to Chomsky Normal Form

Thcre exists a straightforward four-step algorithm that converts a grammar
= (V. Z, R.S) into a new grammar G such that G is in Chomsky normal form and
L(GL) = L (G) — {&}. Define:
converttoChomsky(G: CFG) =

L. Let G be the result of removing from G all e-rules, using the algorithm
removeEps, defined in Section 11.7.4.

2. Let G¢ be the result of removing from G- all unit productions (rules of the

form A — B), using the algorithm remmeUnH.\ defined below. It is important
that removel lnite visn afo~— -

236 Chapter 11 Context-Free Grammars

productions. Once this step has been completed, all rules whose right-hand

sides have length 1 are in Chomsky normal form (i.e., they are composed of a
single terminal symbol).

3. Let G be the result of removing from G all rules whose right-hand sides
have length greater than 1 and include a terminal (e.g.. A — aB or A — BaC),
This step is simple and can be performed by the algorithm removeMixed given
below. Once this step has been completed. all rules whose right-hand sides
have length 1 or 2 are in Chomsky normal form.

4. Let G be the result of removing from G all rules whose right-hand sides
have length greater than 2 (e.g.. A — BCDE). This step too is simple. It can be
performed by the algorithm removeLong given below.

5. Return G.

A unit production is a rule whose right-hand side consists of a single nonterminal
symbol. The job of removeUnits is to remove all unit productions and to replace them by
a set of other rules that accomplish the job previously done by the unit productions. So,
for example, suppose that we start with a grammar G that contains the following rules:

S—= XY

X—A

A—Bla

B—b

Once we get rid of unit productions, it will no longer be possible for X to become A
(and then B) and thus to go on to generate a or b. So X will need the ability to go directly
to a and b, without any intermediate steps. We can define removeUnits as follows:

removeUnits(G: CFG) =
1- Let G'I — G.

2. Until no unit productions remain in G’ do:
2.1. Choose some unit production X — Y.
2.2. Remove it from G'.

2.3. Consider only rules that still remain in G'. For every rule Y — 8, where
BeV* do:

Add to G' the rule X — B unless that is a rule that has already been
removed once.
3. Return G'.

Notice that we have not bothered to check to make sure that we don't insert a rule
that is already present. Since R, the set of rules, is a set, inserting an clement that is al-
ready in the set has no effect.

At each step of its operation, removeUnits is performing the kind of rule substitution
described in Theorem 11.3. (It happens that both « and 8 are empty.) So that theorem
tells us that, at each step, the language generated by G’ is unchanged from the previous
step. If removeUnity halts, it is clear that all unit productions have been removed. It is
less obvious that removeUnits can be guaranteed to hall, At each step, one unit produc-
tion is removed, but several new rules may be added, including new unit productions. To
see that removeUnit must halt, we observe that there is a bound = |V — Z|? on the

11.8 Normal Forms 237

number of unit productions that can be formed from a fixed set V — 2 of nonterminals.
At each step, removeUnits removes one element from that set and that element can
never be reinserted. So removeUnits must halt in at most |V — =|? steps.

EXAMPLE 11.23 Removing Unit Productions
Let G = (V, 2, R, §), where:

R = {S—XY
X—A
A—Bla
B—b
Y—-T
T—Y|c}

The order in which removeUnits chooses unit productions to remove doesn’t
matter. We'll consider one order it could choose:

Remove X — A. Since A— B| a,add X— B a.

Remove X— B. Add X—b.

Remove Y— T. Add Y — Y | c. Notice that we’ve added Y — Y, which is
useless, but it will be removed later.

RemoveY —Y. Consider addingY — T, but don't since it has previously been
removed.

Remove A— B, Add A—b.
Remove T— Y. Add T — ¢, but with no effect since it was already present.
At this point, the rules of G are:

S— XY

A—alb

B—b

T—c

X—alb

Y—c

No unit productions remain, so removeUnits halts.

We must now define the two straightforward algorithms that are required by steps 3
and 4 of the conversion algorithm that we sketched above. We begin by defining:
removeMixed (G: CFG) =
1. LetG' = G.

2. Create a new nonterminal T, for each terminal a in 3.

3. Modify each rule in G’ whose right-hand side has length greater than 1 and that
contains a terminal symbol by substituting T, for each occurrence of the terminal a.

4. Add to G, for each T, the rule T, —a.

5. Return G'.

238 Chapter 11 Context-Free Grammars

EXAMPLE 11.24 Removing Mixed Productions

The result of applying removeMixed to the grammar:

A—a

A—aB
A— BaC
A— BbC

is the grammar:

A—a
A—T,B
A— BT,C
A— BT,C
T,—a
Th"_'b

Finally we define removeLong. The idea for removeLong is simple. If there is a rule
with n symbols on its right-hand side. replace it with a sct of rules. The first rule gener-
ates the first symbol followed by a new symbol that will correspond to “the rest”, The
next rule rewrites that symbol as the second of the original svmbols, followed by yet
another new one, again corresponding to “the rest”. and 5o forth. until there are only

two symbols left to generate. So we define:
removelLong (G: CFG) =
1. LetG' = G.

2. For each G’ rule r* of the form A — N\NoNiN, ... N,,n > 2, create new non-
terminals M %, M4, ... M% _,.

3. In G', replace r % with the rule A — NM%,.

4. To G', add the rules M% — NoMA M5 — NMKA. .. MY, |\ — N, _ N,

S. Return G',

When we illustrate this algorithm, we typically omit the superscripts on the M’s, and,
instead, guarantee that we use distinct nonterminals by using distinct subscripts.

EXAMPLE 11.25 Removing Rules with Long Right-hand Sides

The result of applying removelLong o the single rule grammar:
A — BCDEF

is the grammar with rules:
A— BM,
M,— CM;

M_‘;‘_’DM.;
M4"’EF

11.8 Normal Forms 239

We can now illustrate the four steps of converttoChomsky.

EXAMPLE 11.26 Converting a Grammar to Chomsky Normal Form
Let G = ({S,A,B,C,a,c}, {A, B, C}, R, S), where:

R = {§—aACa
A—Bla
B—Clc
C—cC| &}.

We convert G to Chomsky normal form. Step 1 applies removeEps to eliminate
e-productions. We compute N, the set of nullable variables. Initially N = {C}.
Because of the rule B — C, we add B.Then, because of the rule A — B, we add A.

So N = {A, B, C}. Since both A and C are nullable, we derive three new rules
from the first original rule, giving us:

S—aACa| ada | aCa| aa

We add A — & and B — ¢, but both of them will disappear at the end of this
step. We also add C— ¢, So removeEps returns the rule set:
S—aACa| ada | aCa | aa
A—Bla
B—Clc
C—cClc

Next we apply removeUnits:

Remove A—B.AddA—C]c.

Remove B — C. Add B — cC (and B — c, but it was already there).
Remove A — C. Add A — cC (and A — c, but it was already there).

So removeUnits returns the rule set;

S—aACa| ada| aCa| aa
A—alc|cC

B—c| cC

C—cClc

Next we apply removeMixed, which returns the rule set:

§—T,ACT, | TAT, | TCT,| T,T,
A—alc|TC

B—cl|T.C

C—TLC|c

240

Chapter 11 Context-Free Grammars

EXAMPLE 11.26 (Continued)

T,—a
T.—c

Finally, we apply removeLong, which returns the rule set:

§—=T.5, §—T.5; S— 1.8 S—TT,
S-S S, — AT, §=v 1.
$—CT,

A—alc|TC
B—c|T.C
C—TClc
T,—a

T.—c

From Example 11.26 we see that the Chomsky normal form version of a grammar
may be longer than the original grammar was. How much longer? And how much time
may be required to execute the conversion algorithm? We can answer both of these
questions by answering them for each of the steps that the conversion algorithm exe-
cutes. Let n be the length of an original grammar G. Then we have:

1. Use removeEps to remove &-rules: Suppose that (G contains a rule of the form
X — A AxA; ... Ay 1T all of the variables A; through A; are nullable, this single
rule will be rewritten as 2*~1 rules (since each of the k nonterminals can either
be present ar not. except that they cannot all be absent). Since k can grow as n,
we have that the length of the grammar that remove£ps produces (and thus the
amount of time that removeEps requires) is O (2") In this worst case, the con-
version algorithm becomes impractical for all but toy grammars. We can prevent
this worst case from occurring though. Suppose that all right-hand sides can be
guaranteed to be short. For example. supposc they all have length at most 2.
Then no rule will be rewritten as more than 3 rules. We can make this guarantee
if we modify converttoChomsky slightly. We will run removeLong as step 1
rather than as step 4. Note that none of the other steps can create a rule whose
right-hand side is longer than the right-hand side of some rule that already ex-

ists. So it is not necessary to rerun removeLong later. With this change,
remove Eps runs in linear time.

2. Use removeUnits to remove unit productions: We've alrcady shown that this step
must halt in at most |V — 2| steps. Each of those steps takes constant time and

may create one new rule. So the length of the grammar that removeUnits pro-
f . . R)
duces, as well as the time required for it to run,is O (#7).

3. Use removeMixed to remove rules with right-hand sides of length greater than 1

and that contain a terminal symbol: This step runs in lincar time and constructs a
grammar whose size grows linearly.

119 Island Grammars 241
4. Use removel.ong to remove rules with long right-hand sides: This step runs in lin-
ear time and constructs a grammar whose size grows linearly.

So, if we change converttoChomsky so that it does step 4 first, its time complexity is
© (n%) and the size of the grammar that it produces is also @ (n?).

11.8.4 The Price of Normal Forms

11.9

While normal forms are useful for many things, as we will see over the next few chap-
ters, it is important to keep in mind that they exact a price and it’s one that we may or
may not be willing to pay, depending on the application. If G is an arbitrary context-free
grammar and G' is an equivalent grammar in Chomsky (or Greibach) normal form,
then G and G' generate the same set of strings, but only in rare cascs (for cxample if G
happened already to be in normal form) do they assign to those strings the same parse
trees. Thus, while converting a grammar to a normal form has no effect on its weak gen-
erative capacity, it may have a significant effect on its strong generative capacity.

Island Grammars &

Suppose that we want to parse strings that possess one or more of the following
properties:

¢ Some (perhaps many) of them are ill-formed. In other words, while there may be a

grammar that describes what strings are “supposed to look like”, there is no guar-
antee that the actual strings we'll see conform to those rules. Consider, for example,
any grammar you can imagine for English. Now imagine picking up the phone and
hearing something like. “Um, I uh need a copy of uh my bill for er Ap, no May, I
think, or June, maybe all of them uh, I guess that would work." Or consider a gram-
mar for HTML. It will require that tags be properly nested. But strings like
<i>bold italic</i> show up not infrequently in HTML documents.
Most browsers will do the right thing with them, so they never get debugged.

We simply don’t know enough about them to build an exact model, although we do
know something about some patterns that we think the strings will contain.

They may contain substrings in more than one language. For example, bi(multi)lin-
gual people often mix their speech. We even give names to some of the resulting hy-
brids: Spanglish, Japlish, Hinglish, etc. Or consider a typical Web page. It may
contain fragments of HTML, Java script, or other languages, interleaved with each
other. Even when parsing strings that are all in the same “language”, dialectical is-
sues may arise. For example, in response to the question, “Are you going to fix din-
ner tonight?” an American speaker of English might say, “I could,” while a British
speaker of English might say, “I could do.” Similarly, in analyzing legacy software,
there are countless dialects of languages like Fortran and Cobol.

They may contain some substrings we care about, interleaved with other substrings
we don't care about and don’t want 1o waste time parsing. For example, when pars-

ing an XML document to determine its top level structure, we may have no interest
in the text or even in many of the tags.

Exercises 245

Then the sentence s that is most likely to have been generated, given the obser-
vation o, is the one with the highest conditional probability given o. Recall that
argmax of w returns the value of the argument w that maximizes the value of the
function it is given. So the highest probability sentence s is:

s = argmax Pr (wlo)

weX
= argmaxpr (01!:} 2:; (w)
weX

Stochastic context-free grammars can be used model the three-dimensional
structure of RNA. (K.4)

In Chapter 15, we will discuss techniques for parsing context-free languages that are
defined by standard (i.e., without probabilistic information) context-free grammars.
Those techniques can be extended to create techniques for parsing using stochastic
grammars. So they can be used to answer both of the questions that we just presented.

Exercises

1. Let 2 = {a, b}. For the languages that are defined by each of the following
grammars, do each of the following:
i. List five strings that are in L.
ii. List five strings that are not in L (or as many as there are, whichever is
greater).

iii. Describe L concisely. You can use regular expressions, expressions using

variables (e.g., a"b", or set theoretic expressions (e.g., {x:... }).

iv. Indicate whether or not L is regular. Prove your answer.

a S— aS|Sble

b. S— aSa|bSb|alb

c. S— aS|bS|e

d. S— aS|asbS|e

Let G be the grammar of Example 11.12. Show a third parse tree that G can pro-
duce for the string (())().

3. Consider the following grammar G:

S — 0S1|Ss]10
Show a parse tree produced by G for each of the following strings:
a. 010110.
b. 00101101.

4. Consider the following context free grammar G:
S — aSa

246 Chapter 11 Context-Free Grammars

7‘

e

S—e

T—bT

T—=cT

T'—e
One of these rules is redundant and could be removed without altering L(G).
Which one?

Using the simple English grammar that we showed in Example 11.6, show two

parse trees for each of the following sentences. In cach case, indicate which parse

tree almost certainly corresponds to the intended meaning of the sentence:

a. The bear shot Fluffy with the rifle,

b. Fluffy Tikes the girl with the chocolate.

Show a context-free grammar for each of the following languages L:

a. BalDelim = {w : where 2 is a string of delimiters: (.), [, |. {. }. that are
properly balanced }.

b. {a'b/:2i =3+ 1}.

c. {a'b/:2i# 3+ 1}.

d. {we{a.b}*:4,(w) = 2-#,(w)}.}.

e. L={wel{ab}*:w=wr}.

f. {abich:ij k= 0and(i# jorj# k)}.

g. {ab'c*:i,j k= 0and (k = iork =< j)).

h. {we {a.b}*:every prefix of w has at least as many a's as b's}.

i. {a"":m = n,m-niseven}.

jo {a"b"dim.n.p.gq=0andm+n =p + q}.

k. {xc":xe{a,b}*and (#,(x) = nor#y(x) = n)}.

L {b#b;.: b, is the binary representation of some integer i, i = (), without
leading zeros }. (For example 101#011 e L.)

m. {x®#y:x,ye{0.1}* and x is a substring of y}.

Let G be the ambiguous expression grammar of Example 11.14, Show at least

three different parse trees that can be generated from G for the string

id+id*id*id.

Consider the unambiguous expression grammar G’ of Example 11.19.

a. Trace a derivation of the string id+id*id*id in G'.

b. Add exponentiation (**) and unary minus (=) 10 (', assigning the highest

precedence to unary minus, followed by exponentiation, multiplication, and
addition, in that order.

Let L ={we{a, b. U,e (.). % "}*: w is a symactically legal regular

expression }.

a. Write an unambiguous context-free grammar that generates .. Your gram-
mar should have a structure similar to the arithmetic expression grammar G’
that we presented in Example 11.19. It should create parse trees that:

Exercises 247

* Associate left given operators of equal precedence, and

¢ Correspond to assigning the following precedence levels to the operators
(from highest to lowest):

e *and?
* concalenation
e U
b. Show the parse tree that your grammar will produce for the string (a U b) ba*.

10. Let L = {we{A — Z, o A, V.—,(,)}*: w is a syntactically legal Boolean
expression }.

a. Write an unambiguous context-free grammar that generates L and that cre-
ates parse trees that:

» Associate left given operators of equal precedence, and

e Correspond to assigning the following precedence levels to the operators
(from highest to lowest): =, A, vV, and —.

b. Show the parse tree that your grammar will produce for the string:
-PVvR—=Q—5

11. In L3.1, we present a simplified grammar for URIs (Uniform Resource Identi-

fiers), the names that we use to refer to objects on the Web.

a. Using that grammar, show a parse tree for:

https://www.mystuff.wow/widgets/fradgit#sword

b. Write a regular expression that is equivalent to the grammar that we present.
12. Prove that each of the following grammars is correct:

a. The grammar, shown in Example 11.3, for the language PalEven.

b. The grammar, shown in Example 11.1, for the language Bal.

13. For each of the following grammars G, show that G is ambiguous. Then find an
equivalent grammar that is not ambiguous.

a. ({S.A.B,T ac}, {a.c},R.S),whereR = {S—AB,S— BA,A— aA,
A— ac,B—Tc,T— aT,T— a}.

b. ({5, a, b}, {a,b}, R, S), where R = {S—¢,§— aSa, S$— bSb,S— aSb,
$— bSa.§ — SS}.

e. {{5,A.B.T, a, c}.{a c}, R, S), where R={S—AB,A—>AA,A— a,
B—Tc,T— aT,T— a}.
d. ({S,a.b}, {a.b},R,S),where R = {S— aSb.§— bSa,§—55.5—¢}.(G
is the grammar that we presented in Example 11.10 for the language
L = {we{ab}*:#,(w) = #,(w)}.)
e. ({S,a,b}, {a.b}, R, S).where R = {§— aSb,§— aaSb,S§ —&}.
14. Let G be any context-free grammar. Show that the number of strings that have a
derivation in G of length n or less. for any n > 0, is finite.
15. Consider the fragment of a Java grammar that is presented in Example 11.20.

How coulfi it be changed to force each else clause to be attached to the outer-
most possible i f statement?

248

Chapter 11

16. How does the COND form in Lisp. as described in G.5, avoid the dangling else

Context-Free Grammars

problem?

17. Consider the grammar G’ of Example 11.19.

a. Convert G’ to Chomsky normal form.

b. Consider the string id*id+id.
i. Show the parse tree that G’ produces for it. A
ii. Show the parse tree that vour Chomsky normal form grammar pro-

18. Convert each of the following grammars to Chomsky normal form:

b.

duces for it.

S—ala
S—B
B—bbC
B—bb

C—e

C—cC

S— ABC
A—aC| D
B—bB|le| A
C— Acle| Cc
D— aa
§—aTVa
T—aTa| bTble|V
V—cVc|e

"= |

	CH1 Why study the Theory of Computation?
	1.1 The Shelf Life of Programming Tools
	1.2 Applications of the Theory Ard Everywhere

	CH2 languages and Strings
	2.1 Strings
	2.1.2 Functions on Strings
	2.1.3 Relations on strings

	2.2 Languages
	2.2.2 Techniques for Defining Languages

