
P A R T 

CONTEXT-FREE LANGUAGES AND 
PUSHDOWN AUTOMATA 

In this section, we move out one level and explore the class of context-free 
languages. 

This class is important. For most programming languages, the set of syntactically 
legal statements is (except possibly for type checking) a context-free language. 
The set of well-formed Boolean queries is a context-free language. A great deal 
of the syntax of English can be described in the context-free framework that we 
are about to discuss. To describe these languages, we need more power than the 
regular language definition allows. For example, to describe both programming 
language statements and Boolean queries requires the ability to specify that 
parentheses be balanced. Yet we 
showed in Section 8.4 that it is not 
possible to define a regular lan
guage that contains exactly the set 
of strings of balanced parentheses. 

We will begin our discussion of 
the context-free languages by 
defining a grammatical formal
ism that can be used to describe 
every language in the class 
(which, by the way, does include 
the language of balanced paren
theses). Then, in Chapter 12, we 
will return to the question of 
defining machines that can ac
cept strings in the language. At 
that point, we'll see that the 
pushdown automaton, an NDFSM 
augmented with a single stack, 
can accept 
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exactly the class of context-free languages that we are about to describe. In 
Chapter 13, we will see that the formalisms that we have presented stop short 
of the full power that is provided by a more general computational model. So 
we'll see that there are straightforward languages that are not context-free. 
But, because of the restrictions that the context-free formalism imposes, it will 
turn out to be possible to define algorithms that perform at least the most basic 
operations on context-free languages, including deciding whether a string is in 
a language. We'll summarize those algorithms in Chapters 14 and 15. 

The theory that we are about to present for the context-free languages is 
not as straightforward and elegimt as the one that we have just described for 
the regular languages. We' ll see, for example, that there doesn't exist an al
gorithm that compares two pushdown automata to see if they are equivalent. 
Given an arbitrary context-free grammar G, there doesn't exist a linear-time 
algorithm that decides whether a string w is an element of L(G). But there 
does exist such an algorithm if we restrict our attention to a useful subset of 
the context-free languages. The context-free languages are not closed under 
many common operations like intersection and complement, 

On thP. other hand, because the dass of context-free languages includes 
most programming languages, query languages, and a host of other lan
guages that we use daily to communicate with computers, it is worth taking 
the time to work through the theory that is presented here, even though it is 
less clear than the one we were able to build in, Part II. 
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Context-Free Grammars 

W e saw, in our discussion of the regular languages in Part 11, that there are 
substantial advantages to using descriptive frameworks (in that case, FSMs, 
regular expressions. and regular grammars) that offer less power and flexi

bility than a general purpose programming language provides. Because the frame
works were restrictive. we were able to describe a large class of useful operations that 
could be performed on the languages that we defined. 

We will begin our discussion of the context-free languages with another restricted 
formalism. the context-free grammar. But before we define it, we will pause and an
swer the more general question. ''What is a grammar?" 

11.1 Introduction to Rewrite Systems and Grammars 
We'll begin with a very general computational model: Define a rewrite system (also 
ell lied a prod11ction system or a rule-based system) to be a list of rules and an algorithm 
for applying them. Each rule has a left-hand side and a right-hand side. For example, 
the following could be rewrite-system rules: 

S-+ aSb 
aS-+e 
aSb -+ bSabSa 

In the discussion that follows. we will focus on rewrite system that operate on 
strings. But the core ideas that we will present can be used to define rewrite systems 
that operate on richer data structures. Of course. such data structures can be represented 
as strings. but the power of many practical rule-based systems comes from their ability 
to manipulate other structures directly. 
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Expert systems. (M.3 . .3) are programs that perform tasks in domains like en
gineering, medicine. and bu~ines.' that require expcrti~ when done by peo
ple. Many kinds of expertise can naturally be nHxlclt!d as sets of 
condition/action rules. So many expert systems are built using tools that sup
port rule-based programmi.ng. 

Rule based systems are also used to model business practices (M.3.4) and 
as the basis for reasoning about the behavior of nonplayl.!r characters in com
puter games. (N.3.3} 

When a rewrite system R is invoked on some initial string w. it operates as follows: 

simple-rewrite(R: rewrite system. ·w: initial string) = 
1. Set working-string to 1v. 
2. Until told by R to halt do: 

2.1. Match the left-hand side of some rule against some part of working-string. 
2.2. Replace the matched part of workin~:-.vtri11g with the right-hand side of 

the rule that was matched. 

3. Return working-string. 

If simp/e-rewrite(R, w) can return some string .11 then we'll say that R can d~rive s 
from tv or that there exists a d~rivation in R of s from w. 

Rewrite systems can model natural growth processes. as occur, for example, 
in plants. In addition. evolutionary algorithms can he applied to rule sets. 
Thus rewrite systems can model evolutionary process~ (0 .2.2) 

We can define a particular nwrite·systemfomra/lsm by specifying thl.! form ofthe rules 
that are allowed and the algorithm by which they will he appli~d.ln most of the rewrite
system formalisms that we will consider, a rule is simply a pair of strings. If the string on 
the left-hand side matches. it is replaced hy the string on the right-hand side. But more 
flexible forms are also possible. For example. variublcs may he allowed. Let x be a 
variable. Then consider the rule: 

axa~aa 

This rule will squeeze out whatever comes between a pair of a 's. 
Another useful form allows regular expressions as ldt-hand sides. If we do that. we 

can write rules like the following. which squeezes out b 's between a 's: 

ab*ab•a- aaa 

The extended form of regular expressions that is support~:d in programming 
languages like Perl is often used to write substitution rules. (Appendix 0) 
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In addition to describing the form of its rules, a rewrite-system formalism must de
scribe how its rules will be applied. In particular, a rewrite-system formalism will define 
the conditions under which simple-rewrite will halt and the method by which it wiU 
choose a match in step 2.1. For example, one rewrite-system formalism might specify 
that any rule that matches may be chosen. A different formalism might specify that the 
rules have to be tried in the order in which they are written, with the first one that 
matches being the one that is chosen next. 

Rewrite systems can be used to define functions. In this case, we write rules that op
erate on an input string to produce the required output string. Rewrite systems can 
also be used to define languages. In this case, we define a unique start symbol. The rules 
then apply and we will say that the language L that is generated by the system is exactly 
the set of strings, over L •s alphabet, that can be derived by simple-rewrite from the start 
symbol. 

A rewrite-system formalism can be viewed as a programming language and 
some such languages turn out to be useful. For example, Prolog (M.2.3) sup
ports a style of programming called logic programming. A logic program is a 
set of rules that correspond to logical statements of the form A if B. The in
terpreter for a logic program reasons backwards from a goal (such as A), 
chaining rules together until each right-hand side has been reduced to a set 
of facts (axioms) that are already known to be true. 

The study of rewrite systems has played an important role in the development of the 
theory of computability. We'll see in Part V that there exist rewrite-system formalisms 
that have the same computational power as the Thring machine. both with respect to 
computing functions and with respect to defining languages. In the rest of our discus
sion in this chapter, however, we will focus just on their use to define languages. 

A rewrite system that is used to define a language is called a grammar. If G is a 
grammar,let L( G) be the language that G generates. Like every rewrite system, every 
grammar contains a list (almost always treated as a set, i.e., as a.n unordered list) of 
rules. Also, like every rewrite system, every grammar works with an alphabet, which we 
can call V. In the case of grammars, we will divide V into two subsets: 

• a tenninal alphabet. generally called I, which contains the symbols that make up 
the strings in L( G), and · 

• a nontermlnal alphabet, the elements of which will function as working symbols 
that will be used while the grammar is operating. These symbols wiU disappear by 
the time the grammar finishes its job and generates a string. 

One final thing is required to specify a grammar. Each grammar has a unique start 
symbol, often called S. 

Gramm an can be used to describe phenomena as different as English (L.3). 
programming languages like Java (G.l). music (N.l). dance (Q.2.1), the 
growth of living organisms (0.2.2). and the structure of RNA. (K.4) 
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A grammar formalism (like any rewrite-system formalism) specifics the form of the 
rules that are allowed and the algorithm by which they will be applied. The grammar 
formalisms that we will consider vary in the form of the rules that they allow. With one 
exception (Lindenmayer systems. which we'll describe in Section 24.4). all of the gram
mar formal isms that we will consider include a control algorithm that ignores rule 
order. Any rule that matches may be applied next. 

To generate strings in L( G). we invoke simfJIL•-rewrite (G. S). Simple-rewrite wiD 
begin with Sand will apply the rules of G. which can be thought of (given the control 
algorithm we just described) as licenses to replace one string by another. At each step 
of one of its derivations, some rule whose left-hand side matches somewhere in 
working-string is selected. The substring that matched is replaced by the rule's right
hand side, generating a new value for working string. 

Grammars can be used to define languages that. in turn. define sets of things 
that don't look at all like strings. For example. SVG (0.1.3) is a language that 
is used to describe two-dimensional graphics. SVG can be described with a 
context-free grammar. 

We will use the symbol ~ to indicate steps in a derivation. So. for example. suppose 
that G has the start symbol S and the rules S _... aSb. S- bSa, and S-. e. Then a der
ivation could begin with: 

S ~ aSb -o aaSbb-. . . . 

At each step. it is possible that more than one rule's left-hand side matches the 
working string. It is also possible that a rule's left-hand side matches the working string 
in more than one way. In either case. there is a derivation corresponding to each alter
native. It is precisely the existence of these choices that enables a grammar to generate 
more than one string. 

Continuing with our example, there are three choices at the next step: 

s ~ aSb ~ aaSbb ~ aaaSbbb 
S ~ aSb ~ aaSbb ~ aabSabb 

S ~ aSb ~ aaSbb ~ aabb 

(using the rirst rule), 

(using the second rule). and 

(using the thirtl rule). 

The derivation process may end whenever one of the following things happens: 

1. The working string no longer contains any non terminal symbols (including, as a 
special case. when the working string is e), or 

2. There are nonterminal symbols in the working string hut there is no match with 
the left-hand side of any rule in the grammar. For examplt!. if the working string 
were AaBb, this would happen if the only left-hand side were C. 

In the first case, but not the seconci we say that the wo rking string is grntrat«l by 
the grammar. Thus, the language that a grammar generates includes only strings over 
the terminal alphabet (i.e., strings in ~*).In the second case. we have a blocked or non
terminated derivation but no generated string. 
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It is also possible that, in a particular case, neither 1 nor 2 is achieved. Suppose, for 
example. that a grammar contained only the rules S-+ Ba and B-+ bB, with S the 
start symbol. Then an derivations proceed in the following way: 

S ~ Ba ~ bBa ~ bbBa::::::. bbbBa ~ bbbbBa • • · • 

The working string is always rewriteable (in only one way, as it happens), and so this 
grammar can produce no terminated derivations consisting entirely of terminal sym
bols (i.e., generated strings). Thus this grammar generates the language 0. 

11.2 Context-Free Grammars and Languages 
We've already seen our first specific grammar formalism. In Chapter 7, we defined a 
regular grammar to be one in which every rule must: 
• have a left-hand side that is a single nonterminal, and 
• have a right-hand side that is e or a single terminal or a single terminal followed by • 

a single nonterminal. 
We now define a contut-frtt grammar (or CFG) to be a grammar in which each 

rule must: 
• have a left-hand side that is a single nonterminal, and 

• have a right-hand side. 

To simplify the discussion that follows, define an A rule, for any nonterminal symbol 
A, to be a rule whose left·hand side is A. 

Next we must define a control algorithm of the sort we described at the end of the 
last section. A derivation will halt whenever no rule's left-hand side matches against 
working-string. At every step, any rule that matches may be chosen. 

Context-free grammar rules may have any (possibly empty) sequence of symbols on the 
right-band side. Because the rule fonnnt is more flexible than it is for regular grammars. the 
rules are more powerful. We wiD soon show some examples of languages that can be gen
erated with context-free grammars but that can not be generated with regular ones. 

All of the following are allowable context-free grammar rules (assuming appropri
ate alphabets): 

S-+aSb 
S-+e 
T-+T 
S-+aSbbiT 

The following are not allowable context-free grammar rules: 

ST-+aSb 
a-+ aSb 
e-+a 

The name for these grammars, "context-free," makes sense because, using these 
rules, the decision to replace a nonterminal by some other sequence is made without 
looking at the context in which the non terminal occurs. In Chapters 23 and 24 we will 
consider less restrictive grammar formalisms in which the left-hand sides of the rules 
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may contain several symbols. For example, the rule aSa - a Ta would be allowed. This 
rule says that Scan be replaced by T when it is surrounded by a's. One of those for
malisms is called .. context-sensitive .. because its rules allow context to be considered. 

Programming language syntax is typically described using context-free 
grammars, as we'll see below and in Appendix G. 

Formally, a context-free grammar G is a quadruple ( V. l:. R. S). where: 

• Vis the rule alphabet, which contains nonterminaJs (symbols that are used in the 
grammar but that do not appear in strings in the language) •md terminals, 

• ~ (the set of terminals) is a subset of V, 
• R (the set of rules) is a finite subset of ( V- I) x V*, and 

• S (the start symbol) can be any element of V - I. 

Given a grammar G. define x =>r; y (abbreviated => when G is clear from context) 
to be the binary relation derives-in-one-step. defined so that: 

Vx, y e V *(x =>a y iff x = aA {3, y = ay {3, and there exists a rule A - y in Ra). 

Any sequence of the form w11 =>r; w1 =>0 u~ =>r; . •. ~ti w, is called a derivation 
in G. Let ~G* be the reflexive, transitive closure of ~ci· We'll call ~G• the derlvn 
relation. 

The language generated by G, denoted L( G). is {we ~ * : S ~G• ·w}. In other 
words, the language generated by G is the set of all strings of tcmtinals that can be de
rived from S using zero or more applications of rules in G. 

A language L is context-free iff it is generated by some context-free grammar G. 
The context-free languages (or CFLs) are a proper superset of the regular languages. 
In the next scvc·ral examples, we will see languugcs that arc context-free but not regu
lar. Then, in Chapter 13, we will prove the other part of this claim. namely that every 
regular language is also context-free. 

EXAMPLE 11.1 The Balanced Parentheses Language 

Consider Bal ={we{), (}•: the parentheses are balanced}. We showed in 
Example 8.10 that BaJ is not regular. But it is context-free because it can be gen
erated by the grammar G = { { S, ), (}, { ), ( } , R. S). where: 

R={S-(S) 

s-ss 
s-e}. 

Some example derivations in G: 

s~<s>~o . 
. S => (S) ~ (SS) => ((S)S) ~ (()S) ~ (()(S)) => (()()). 

So,s~ *()and s~• (()()). 
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The syntax of Boolean query languages is describable with a context-free 
graln~ar.(().ll) 

EXAMPLE 11.2 A"B" 

Consider Ansn = { a"bn: n d!!: 0}. We showed in Exa~ple 8.8 that AnB11 is not 
regular. But it is context-free because it can be generated by the grammar 
G = {{S, a , b }. {a, b }. R. S}, where: 

R = {S-+aSb 

S-+e}. 

What is it about context-free grammars that gives them the power to define lan
guages like Bat and A"Bn? 

We can begin answering that question by defining a rule in a grammar G to be 
ncunlve iff it is of the form X-+ w1 Y Wz, where Y ~a• WJX w4 and all of 1Vt. Wz, W], 

and w4 may be any element of v•. A gra~mar is recursive iff it contains at least onere
cursive rule. For example, the grammar we just presented for Balis recursive because it 
contains the rule S- (S). The grammar we presented for A"B" is recursive because it 
contains the rule S- aSb. A grammar that contained the rule S-+ aS would also be 
recursive. So the regular gr~ar whose rules are { S-+ aT, T-+ a W, W-+ aS, W-+ a} 
is recursive. Recursive rules make it possible for a finite grammar to generate an infi
nite set of strings. 

Let's now look at an important property that gives context-free grammars the 
power to define languages that aren't regular. A rule in a gram~ar G is self-embedding 
iff it is of the form X-+ Wt Y Wz, where Y =>a* WJX w4 and both w1w3 and W4Wz are in 
~+. A grammar is self-embedding iff it contains at least one self-embedding rule. So 
now we require that a nonempty string be generated on each side of the nested X. The 
gram~ar we presented for Balis self-e~bedding because it contains the ruleS-+ (S). 
The grammar we presented for Ansn is self-embedding because it contains the rule 
S-+ aSb. The presence of a rule like S-+ aS does not by itself make a grammar self
embedding. But the rule S-+ aT is self-embedding in any grammar G that also con
tains the rule T-+ Sb, since S-+ aT and T ~a• Sb. Self-embedding grammars are 
able to define languages like Bat, AnB~. a~d others whose strings must contain pairs of 
matching regions, often ofthe form uv'xy'z. No regular language can impose such are
quirement on its strings. 

The fact that a grammar G is self -embedding does not guarantee that L( G) isn't regular. 
There might be a different grammar G' that also defines L( G) and that is not self
embedding. For example, G1 = ({S, a}, {a}. {S-+e, S-+a, s-.aSa}. S) is self
embedding. yet it defines the regular language a•. However, we note the following two 
important facts: 

• If a grammar G is not self-embedding then L(G) is regular. Recall that our defini
tion of regular grammars did not allow self-embedding. 
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• If a language L has the property that every g.ramnu•r that Jdines it is self-embedding. 
then L is not regular. 

The rest of the grammars that we will present in this chapt~r arc sdf-cmhcdding. 

EXAMPLE 11.3 Even Length Palindromes 

Consider PalEven -= { wwR : we {a, b} "'}.the language of even-length palindromes 
of a's and b's. We showed in Example H.ll that Pal Even is not regular. But it is context
free .because it can be generated by the grammar G = { { S. a. b}. (a. b} , R, S}. 
where: 

R = {S-aSa 
s-bsb 
s-e}-. 

EXAMPLE 11.4 Equal Numbers of a's and b's 

Let L ={w-e {a, b}*: #a(w) = #b(1v)}. We showed in Example K.l4 that Lis 
not regular, But it is context-free because it can be generated by the grammar 
G = {{S.a,b},{a.b},R,S}.where: 

R = {S_. aSb 
s-bsa 
s-ss 
s-e}. 

These simple examples are interesting hccausc they capture. in il couple of lines. the 
power of the context-free grammar formalism. But our real interest in context-free 
grammars comes from the fact that they can dcscrihc u~dul and puwcrful hmguages 
that are substantia11y more complex. 

It quickly becomes apparent. when we start to build larger grammars. that we need 
a more flexible grammar-writing nutation. wc·ll usc the following lwn extensions when 
they are helpful: 

• The symbol I should be read as ··or". It allows two ()f more ruks tn he collapsed 
into one. So the following single rule is equivalent tu the four rules we wrote in 
Example 11.4: 

S- aSblbSai.SS le· 

• We often require nonterminal alphabets that contain nwrc symhuls thun there are 
letters. To solve that problem. we will allnw a nuntcrminal symht)l to be any se· 
quence or characters surrounded by angle hmckcts. So < program> and 
<:variable> could be nontcrminal symhols using this convention. 
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BNF (or Backus Naur form) is a widely used grammatical formalism that ex
ploits both of these extensions. It was created in the late 1950s as a way to de
scribe the programming language ALGOL 60. It has since been extended 
and several dialects developed. (G.l.l) 

EXAMPLE 11.5 BNF for a Small Java Fragment 

Because BNF was originally designed when only a small character set was avail
able. it uses the three symbol sequence : : • in place of --+. The following BNF
style grammar describes a highly simplified and very small subset of Java: 

<block>::- {<stmt-list>} I {} 
<stmt-list> ::= <stmt> 1 <stmt-list> <stmt> 
<Stmt> ::• <block> I while (<cond>) <stmt> I 

if (<cond>) <stmt> I 
do <stmt> while (<cond>)i I <assignment-stmt>; 
return I return <expression> 1 
<method-invocation>; 

The rules of this grammar make it clear that the following block may be legal in 
Java (assuming that the appropriate declarations have occurred): 

{ while (x < 12) { 

}} 

hippo.pretend(x); 
X • X + 2; 

On the other band, the following block is not legal: 

{ while x < 12}) ( 

}} 

hippo.pretend(x); 
X • X + 2; 

Many other kinds of practical languages are also context-free. For example. 
HTML can be described with a context-free grammar using a BNF-style 
grammar. (Q.l.2) 

EXAMPLE 11.6 A Fragment of an English Grammar 

Much of the structure of an English sentence can be descri~d by a (large) context
free grammar. For historical reasons. linguistic grammars typically use a 
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EXAMPLE 11.6 (Continued) 

slightly different notational convention. Nonterminals will be written as strings 
whose frrst symbol is an upper case letter. So the following grammar describes a 
tiny fragment of English. The symbol NP will derive noun phrases: the symbol VP 
will derive verb phrases: 

S-+NPVP 
NP-+ the Nominal! a NominaiiNmnimrl iPmperNowriNP PP 
Nominal-+ N !Adjs N 
N-+ cat I dogs I bear I girl I choco 1 ate I rifle 
Proper Noun -+ Chris I Fluffy 
Adjs-+ Adj Adjs IAdj 
Adj-+ young I older I smart 
VP-+ v IV NPIVP pp 
V-+ like I likes I thinks I shot I smells 
PP-+Prep NP 
Prep-+ with 

Is English (or German or Chinese) really context-free? {l.3.~) 

11.3 Designing Context-Free Grammars 
In this section. we offer a few simple strategies for design ing straightforward context
free grammars. Later we'll see that some grammars are bctt~r than others (for various 
reasons) and we'll look at techniques for finding ··good" grammars. For now. we will 
focus on finding some grammar. 

The most important rule to remember in designing a cuntcxt-fn:c gmmmar to gen· 
erate a language L is the following: 

• If L bas the property that every string in it hus two n:giun~ and those regions must 
bear some relationship to each other (such as being ur the same length). then the 
two regions must be generated in tandem. Otherwise. there is no way to enforce the 
necessary constraint. 
Keeping that rule in mind, there are two simple ways to generate strings: 

• To generate a string with multiple regions that must nccur in sum~ fixed order but 
do not have to correspond to each other. usc a rule of the furm: 

A-+BC ... 

This rule generates two regions. and the grammar that contains it will then rely on 
additional rules to describe how to form a 8 region and how to rnrm a C region. 
Longer rules. like A- BCD£. can be used if additional rcRiuns arc ncc"'-ssary. 
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• To generate a string with two regions that must occur in some fixed order and that 
must correspond to each other, start at the outside edges of the ~tring and generate 
toward the middle. If there is an unrelated region in between the related ones, it 
must be generated after the related regions have been produced. 

The outside-in structure of context-free grammars makes them well suited to 
describing physical things. like RNA molecules. that fold. (K.4) 

EXAMPLE 11.7 Concatenating Independent Sublanguages 

Let L = { a"b"c"': n, m > 0}. Here. the c'" portion of any string in Lis completely 
independent of the a"b" portion, so we should generate the two portions separately 
and concatenate them together. So let G = ( {S, N, C, a,b,c}, { a,b,c}. R, S} where: 

R = {s~Nc 
N~ aNb 
N~e 

C-+ cC 
c~e}. 

I* Generate the two independent portions. 
1• Generate the a"b" portion, from the outside in. 

I* Generate the em portion. 

EXAMPLE 11.8 The Kleene Star of a Language 

Let L = { a"'b"'a"1b"2 ••• a"tb"• : k ~ 0 and Vi (n; ~ 0)}. For example, the follow
ing strings are in L: s. abab, aabbaaabbbabab. Note that L = { a"b" : n ~ 0} •, 
which gives a clue how to write the grammar we need. We know how to produce 
individual elements of { a"b" : n ~ 0}, and we know how to concatenate regions 
together. So a solution is G = ( {S. M, a, b}, {a, b }, R, S} where: 

R = { S--+ M S I* Each M will generate one { a"b" : n ~ 0} 

s~e 

M-+aMb 
M~e}. 

region. 

I* Generate one region. 

11.4 Simplifying Context-Free Grammars • 
In this section, we present two algorithms that may be useful for simplifying context
free grammars. 

Consider the grammar G = ({ S. A. B. C, D. a, b}. {a, b}, R. S). where: 

R = {S-+ABIAC 
A-+aAble 
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B-+bA 
C-+bCa 
D-+AB}. 

G contains two useless variables: C is Useless because it is not able to generate any 
strings in l:•. (Every time a rule is applied to a c. a new Cis added.) D i~ usekss be
cause it is unreachable. via any derivation. from S. So any rull-s that mention either C 
or D can be removed from G without changing the language that is generated. We 
present two algorithms, one to find and remove variables like C that are unproductive, 
and one to find and remove variables like D that arc unreachable. 

Given a grammar G = ( V, ~ . R, S ), we define remo~·etmprotluctive( G) to create a 
new grammar G'. where L ( G') = L (G) and G' does not contain any unproductive sym· 
bol~ Rather than trying to find the unproductive symbols directly. remm•etmfJrotlr~dive will 
find and mark all the productive ones. Any that are left unmarked at the end are unproduc
tive. Initially, all terminal symbols will be marked as prcxluctivc since each of them gener
ates a terminal string (itself). A nonterminal symbol will be marked as productive when it 
is discovered that there is at least nne way to rewrite it as a sequence nf ('rnductive symbols. 
So remover~nproductive effectively moves backwards from terminals. marking nontenni· 
nals along the way. 

removeunproductive( G: CFG) = 

l. G' =G. 
1. Mark every nonterminal symbol in G' as unproductive. 

3. Mark every terminal symbol in G' as productive. 

4. Until one entire pass has been made without any new symbol being 
marked do: 

For each rule X- ex in R do: 

1f every symbol in a has been marked as productive and X has not yet 
been marked as productive, then mark X as productive. 

S. Remove from Vcr every unproductive symbol. 

6. Remove from Ra· every rule with an unproductive symhol on either the left· 
hand side or the right-hand side. 

7. Return G' 

Removeunproductive must halt because there is only some finite numher of nonter
minals that can be marked as productive. So the maximum numbe!r of time!s it can exe
cute step 4 is IV- ~I. Clearly L (G') ~ L (G) since G' can produce no derivations 
that G could not have produced. And L (G') = L (G) because the only derivations 
that G can perform but G' cannot are those that do not end with a terminal string. 

Notice that it is possible that S is unproductive. This will happen precisely in case 
L (G) = 0 . We will use this fact in Se~tion 14.1.2 to show the existence of a procedure 
that decides whether or not a context-free language is empty. 

Next we 11 define an algorithm for getting rid of unreachahlc symbols like D in the 
grammar we presented above. Given a grammar G -= ( V, l:. R. S), we define 
removtunreadwhle(G) to create a new grammar G'. where L (G') = L (G) and G' 
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does not contain any unreachable nonterminal symbols. What removeunreachable does 
is to move forward from S, marking reachable symbols along the way. 

removewzreachable(G: CFG) = 
l. G' =G. 
1. Mark S as reachable. 

3. Mark every other nonterminal symbol as unreachable. 

4. Until one entire pass has been made without any new symbol being marked do: 

For each rule X--+ aA/3 (where A e V - I and a, /3 e V *)in R do: 

If X has been marked as reachable and A has not, then mark A as 
reachable. 

5. Remove from Va· every unreachable symbol. 

6. Remove from Ra· every rule with an unreachable symbol on the left-hand side. 

7. Return G'. 

Removeunreachable must halt because there is only some finite number of nonter
minals that can be marked as reachable. So the maximum number of times it can exe
cute step 4 is IV - II. Clearly L (G' ) {;; L (G) since G' can produce no derivations 
that G could not have produced. And L ( G') = L (G) because every derivation that 
can be produced by G can also be produced by G'. 

11.5 Proving That a Grammar is Correct • 
In the last couple of sections. we described some techniques that are useful in designing 
conteKt-free languages and we argued that the grammars that we built were correct 
(i.e., that they correctly describe languages with certain properties). But, given some 
language L and a grammar G, can we actually prove that G is correct (i.e., that it gen
erates exactly the strings in L)? To do so, we need to prove two things: 

1. G generates only strings in L, and 

z. G generates all the strings in L. 

The most straightforward way to do step 1 is to imagine the process by which G gen
erates a string as the following loop (a version of simple-rewrite, using st in place of 
working-striflg ): 

1. st = S. 
1. Until no nonterminals are left in st do: 

Apply some rule in R to st. 
3. Output st. 

Then we construct a loop invariant I and show that! 

• I is true when the loop begins. 

• I is maintained at each step through the loop (i.e., by each rule application), and 

• I /\ (sr contains only terminal symbols) --+ st e L. 

Step 2 is generally done by induction on the length of the generated strings. 
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EXAMPLE 11.9 The Correctness of the A"B" Grammar 

In Example 11.2. we considered the language A"B". We huih for it tht! grammar 
G = {{S, a.b}, {a.b},R.S} , whcre: 

R = { S- aSb (1) 

s-e}. (2) 

We now show that G is correct. We first show that every string u• in L(G) is in 
A"B": Let st be the working string at any point in a derivation in fi. We need to de
fine I so that it captures the two features of every string in A"B": The number of 
a's equals the number of b's and the letters are in the correct order. So we let I be: 

Now we prove: 

• I is true when st = S: In this case. #a(sl) = #b(.o;r)) = 0 and .til is of the.! correct 
form. 

• If I is true before a rule fires, then it is true after the rule fires: To prove this, 
we consider the rules one at a time and show that each or them preserves /. 
Rule (I) adds one a and one b to st. so it does not change the difference be
tween the number of a's and the number orb's. Further. it adds the a to the left 
of Sand the b to the right of S. so if the form constraint was S<Hisficd hcfore ap
plying the rule it still is afterwards. Rule (2) adds nothing so it dues not change 
either the number of a's orb's or their locations. 

• If 1 is true and st contains only terminal symbols. then ,\·t e A''B": In this case, st 
possesses the three properties required of all strings in A"B": They are com
posed only of a's and b's, (#a(st) = #b(.o;l)), and all a\ come hcforl! all b's. 

Next we show that every string ·w in A"B" can he ~cncratcd by G: Every 
string in A"B" is of even length. so we will prove the claim only for strings of even 
length. The proof is by induction on lwl: 
• Base case: If lwl = 0, then 1v = e. which can be generated hy applying rule 

(2) to S. 

• Prove: If every string in A"B" of length k . where k is even. can he generated by 
G. then every string in A"B" of length k + 2 can also be generated. Notice 
that, for any even k, there is exactly one string in A''B" nf length k : ak'lb'-12. 
There is also only one string of length k + 2. namely aaL~b4'~b. that can be 
generated by first applying rule (I ) to produce aSb. and then applying to S 
whatever rule sequence generated ak12b"'2• By the induction hypothesis, such a 
sequence must exist. 
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EXAMPLE 11.10 The Correctness of the Equal a's and b's Grammar 

In Example 11.4 we considered the language L = {tv e {a, b }*: #a(tv) = #b(w) }. 
We built for it the grammar G = { { S. a, b}, {a. b}, R. S}. where: 

R={S-.aSb (1) 
s-. bSa (2) 
s-.ss (3) 
s-s}. (4) 

This time it is perhaps les~ obvious that G is correct. In particular, does it gen
erate every sequence where the number of a's equals the number of b's? The an
swer is yes, which we now prove. 

To make it easy to describe this proof. we define the following function: 

~(w) = #4(tv) - #b(w). 

Note that a string w is in L iff tve {a, b }*and ~(w} = 0. 
We begin by showing that every string w in L( G) is in L: Again, let st be the 

working string at any point in a derivation in G. Let I be: 

st e {a, b. S}• A ~(sr) = 0. 

Now we prove: 

• I is true when st = S: In this case, #4 (st) = #b(st)) = 0. So A(st) = 0. 

• If I is true before a rule fires. then it is true after the rule fires: The only sym
bols that can be added by any rule are a. b. and S. Rules (1) and (2) each add 
one a and one b to st, so neither of them changes ~(st). Rules (3) and (4) add 
neither a's nor b's to the working string, so ~(st) does not change. 

• If I is true and st contains only terminal symbols, then st e L: In this case, st 
possesses the two properties required of all strings in L! They are composed 
only of a's and b's and ~(st) = 0. 

It is perhaps less obviously true that G generates every string in L. Can we be sure 
that there are no pennutations that it misses? Yes. we can. We next we show that 
every string w in L can be generated by G. Every st.ring in L is of even length, so we 
will prove the claim only for strings of even length. The proof is by induction on lwl. 

• Base case: If lwl = 0, w = e, which can be generated by applying rule (4) to S. 
• Prove that if every string in L of length s k, where k is even, can be generated 

by G, then every string win L of length k + 2 can also be generated: Since w 
has length k + 2, it can be rewritten as one of the following: axb, bxa, axa, or 
bxb, for some x e {a, b} *. !xI = k. We consider two cases: 

• w = a.tb or bxa. If we L, then ~(1v) = 0 and so ~(x) must also be 0. 
lxl = k. So, by the induction hypothesis. G generates x . Thus G can also 
generate w: It first applies either rule ( 1) (if w = axb) or rule (2) (if 1D = 
bxa).lt then applies to S whatever rule sequence generated x. By the induc
tion hypothesis. such a sequence must exist. 
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EXAMPLE 11.10 (Continued) 

• w = axa, or b.tb. We consider the former case. The argument is parallel for 
the latter. Note that any string in L. of either of these forms. must have 
length at least 4. We will show that w = ·11y, where hoth v andy are in L. 
2 < lvl s k, and 2 s lyl s k. lf that is so, then G can generate u1 by first 
applying rule (3) to produce SS, and then generating v from the firstS and 
y from the second S. By the induction hypothesis, it must be possible for it 
to do that since both v and y have length s k. 

To find v andy, we can imagine building w (which we've rewritten as axa) 
up by concatenating one character at a time on the right. After adding only 
one character, we have just a. ~(a) = 1. Since tve L. ~(1v) = 0. So ~ 
(ax) = -1 (since it is missing the final a of w). The value of~ changes by ex· 1 

actly 1 each time a symbol is added to a string. Since~ is positive when only a 
single character has been added and becomes negative by the time the string 
ax has been built, it must at some point before then have been 0. Let v be the 
shortest nonempty prefix of w to have a value of 0 for~. Since vis nonempty 
and only even length strings can have ~equal to 0, 2 s I vi. Since 4 became 0 
sometime before tv became at", v must be at least two characters shorter than 
w (it must be missing at least the last character of x plus the final a), so 
I vi s k. Since ~(v) = 0. veL. Since w = ·vy , we know bounds on the 
lengthofy:2 s lyl s k.Since A(w) = Oand A(v) = 0. ~(y) mustalsobeO 
andsoyeL. 

11.6 Derivations and Parse Trees 
Context-free grammars do more than just describe the set of strings in a language. 
They provide a way of assigning an internal structure to the strings that they derive. 
This structure is important because it, in turn. provides the starting point for assigning 
meanings to the strings that the grammar can produce. 

The grammatical structure of a string is captured hy a pars~ lrr~. which records 
which rules were applied to which nonterminals during the string's derivation. ln 
Chapter 15. we will explore the design of programs. called paners. thnt. given a gram
mar G and a string w, decide whether we L (G) and. if it is. create a parse tree that 
captures the process by which G could have derived tll . 

A parse tree, derived by a grammar G = (V. I . R, S). i~ a rooted, ordered tree in which: 

• Every leaf node is labeled with an element uf ! U { •:) , 

• ·The root node is labeled S,. 

• Every other node is labeled with some element of V - I. and 

• If m is a nonleaf node labeled X and the children of marc lahded .r1, x2, .. ... x,., 
then R contains the rule X- x 1• xl. • ... , x,. 
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Define the branching factor of a grammar G to be length (the number of symbols) 
of the longest right-hand side of any rule in G. Then the branching factor of any parse 
tree generated by G is less than or equal to the branching factor of G. 

EXAMPLE 11.11 The Parse Tree of a Simple English Sentence 

Consider again the fragment of an English grammar that we wrote in Example 11.6. 
That grammar can be used to produce the following parse tree for the sentence 
the smart cat smells chocolate: 

s 

NP VP 

~ 
V NP 

Adjs 

A~· 11 

N 

'I 

Noli11al 
I 
I 

the smar~ cat s111el1s chocolate 

Notice that. in Example 11.11, the constituents (the subtrees) correspond to objects 
(like some particular cat) that have meaning in the world that is being described It is 
clear from the tree that this sentence is not about cat smells or smart cat smells. 

Because parse trees matter, it makes sense, given a grammar G, to distinguish between: 

• G's weak generallve capacity, defined to be the set of strings, L(G), that G gen-
erates. and 

• G's strong gtnerotive capacity, defined to be the set of parse trees that G generates. 

When we design grammars it will be important that we consider both their weak and 
their strong generative capacities. 

In our last example, the process of deriving the sentence the smart cat smells 
choco 1 ate began with: 

S~NPVP~ ... 

Looking at the parse tree, it isn't possible to ten which of the following happened next: 

S ===> NP VP =>The Nominal VP ~ 
S===> NP VP=> NPV NP~ 

Parse trees are useful precisely because they capture the important structural facts 
about a derivation but throw away the details of the order in which the nonterminals 
were expanded. 

While it's true that the order in whkh nonterminals are expanded has no bearing 
on the structure that we wish to assign to a string, order will become important when 
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we attempt to define algorithms that work with context-free grammars. For example, 
in Chapter 15 we will consider various parsing algorithms for context-free languages. 
Given an input string w, such algorithms must work systematically through the space 
of possible derivations in search of one that could have generated w. To make it eas· 
ier to describe such algorithms, we will define two useful families of derivations: 

• A left-most deri'Vation is one in which. at each step. the leftmost non terminal in the 
working string is chosen for expansion. 

• A right-most derl'tlation is one in which. at each step. the rightmost non terminal in 
the working string is chosen for expansion. 

R~turning to the smart cat c:xamplt: above: 

• A left-most derivation is: 

s~NPVP~ The Nominal VP~ TheAdjs N VP~ The Adj N VP::$ 
The Sl\art N VP~ the smart cat VP~ the smart catV NP~ 

the smart cat smells NP~ the smart cat smells Nominal~ 
the smart cat smells N~ the smart cat smells chocolate 

• A right-most derivation is: 

s~NPVP~NP V NP~NP V Nominai~NP V N~NP V chocolate~ 
NP smells chocolate =$ the Nominal smells chocolate ~ 

the Adjs N sme 11 s choco 1 ate ~ The Acljs cat sme 11 s choco 1 ate ~ 
the Adj cat sme 11 s choco 1 ate ~ the smart cat sme 11 s choco 1 ate 

11.7 Ambiguity 
Sometimes a grammar may produce more than one parse tree for some (or all) of the 
strings it generates. When this happens, we say that the grammar is ambiguous. More 
precisely. a grammar G is ambiguous iff there is at least one string in L( G) for which G 
produces more than one parse tree. It is easy to write ambiguous grammars if we are 
not careful. In fact, we already have. 

EXAMPLE 11.12 The Balanced Parentheses Grammar is Ambiguous 

Recall the language Bat= {we{), (}•: the parentheses are balanced}, for 
which we wrote the grammar G = { {S. ). (}. {), ( }. R. S). where: 

R = {S-+(S) 
S-+SS 
S-+e}. 

G can produce both of the following parse trees for the string(())(): 



s 
s--------s .............., ~ 

( s ) ( ~ ) 
(~) 8 

I 
f: 
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s 
s--------s 
~ ..........,.... 

s s ( s, ) 
I """" ~ ( s ) 8 

I 
(f) 

e 

In fact, G can produce an infinite number of parse trees for the string(())(). 

A grammar G is unambiguous iff. for all strings w. at every point in a leftmost or 
rightmost derivation of w. only one rule in G can be applied. The grammar that we just 
presented in Example 11.12 clearly fails to meet this requirement. For example, here 
are two leftmost derivations of the string(())(): 

• s~ss~ (S)S~((S))S~ (())S~ (())(S)==>(())(). 

• S ~ SS ==> SSS ~ SS ~ (S)S ==> ((S))S ~ (())S ~ (())(S) ~ (())(). 

11.7 .1 Why Is Ambiguity a Problem? 
Why are we suddenly concerned with ambiguity? Regular grammars can also be am
biguous. And regular expressions can often derive a single string in several distinct ways. 

EXAMPLE 11.13 Regular Expressions and Grammars Can Be Ambiguous 

Let L = {we {a, b} • : w contains at least one a}. L is regular. It can be defined 
with both a regular expression and a regular grammar. We show two ways in 
which the string aaa can be generated from the regular expression we have writ
ten and two ways in which it can be generated by the regular grammar: 

Regular Expression Regular Grammar 

(a U b)*a (aU b)-. 

choose a from (aU b). then 

choose a from (aU b). then 
choose a, then 

choose e from (aU b)•. 

or 

choose e from (aU b)•, then 

choose a. then 

choose a from (aU b), then 

choose a from (aU b). 

s 

s-a 
s- bs 
s- aS 
s-aT 
r-a 
T-b 
r-aT 
r- bT 

s ,. , 
a"''s 

/" 
a s 

I 
a 

a T , ...... 
a T 

I 
a 
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We had no reason to be concerned with ambiguity when we were discussing reg
ular languages because. for most applications of them. we don't care about assigning 
internal structure to strings. With context-free languages. we usually do care about 
internal structure because, given a string U', we want to assign meaning to w. We al
most always want to assign a unique such meaning. It is generally dif£icult, if not im
possible, to assign a unique meaning without a unique parse tree. So an ambiguous 
grammar. which fails to produce a unique parse tree. is a problem. as we'll see in our 
next example. 

EXAMPLE 11.14 An Ambiguous Expression Grammar 

Consider Expr• which we'll define to be the language of simple arithmetic expressions 
of the kind that could be part of anything from a small calculator to a programming 
language. We can defme Expr with the following context-free grammar G = { { £, id, 
+, *, (. )}, {id, +, *, (, )}, R. £},where: 

R = {£.-.£+ E 
E~E*E 

£.-.(£) 

£.-. id}. 

So that we can focus on the issues we care about. we've used the terminal sym
bol i d as a shorthand for any of the numbers or variables that can actually occur 
as the operands in the expressions that G generates. Most compilers and inter
preters for expression languages handle the parsing of individual operands in a 
first pass, called lexical analysis, which can be done with an FSM. We'll return to 
this topic in Chapter 15. 

Consider the string 2 + 3 * 5, which we will write as id + id • id. Using G. we 
can get two parses for this string: 

E 

id 
2 

E 

+ 

E 

/l"" E E 

I I 
id .., id 
3 s 

£ 

/1"" E £ 

I I 
id + id 
2 3 

£ 

• 

E 

id 
s 

Should an evaluation of this expression return 17 or 25? (See Example 11.19 
for .a different expression grammar that fixes this problem.) 
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Natural languages, like English and Chinese, are not explicitly designed. So it 
isn't possible to go in and remove ambiguity from them. See Example 11.22 
and L.3.4. 

Designers of practical languages must be careful that they create languages for 
which they can write unambiguous grammars. 

11.7.2 Inherent Ambiguity 
In many cases, when confronted with an ambiguous grammar G, it is possible to con
struct a new grammar G' that generates L( G) and that has less (or no) ambiguity. Un
fortunately, it is not always possible to do this. There exist context-free languages for 
which no unambiguous grammar exists. We call such languages inherently ambiguous. 

EXAMPLE 11.15 An Inherently Ambiguous language 

Let L = { aibick: i, j, k ~ 0, i = j or j = k }. An alternative way to describe it is 
{ a"b''c"': n, m ~ 0} U { a"b"'cm: n. m ~ 0}. Every string in L has either (or 
both) the same number of a's and b's or the same number of b's and c's. Lis in
herently ambiguous. One grammar that describes it is G = ( { S, S1, S2, A, B, a, b, 
c}, {a, b, c}, R, S}, where: 

R = {S-.Stl S2 
s, __. s,c I A 
A-.. aAb I e 
S2 -+ aS2 1 B 
B __,. bBc I£}. 

I* Generate all strings in { a"b"cm: n, m 2: 0}. 

!*Generate all strings in { a"bmc"': n, m ;a 0} .. 

Now consider the strings in Ansncn = { a"b"c": n ~ 0}. They have two dis
tinct derivations, one through S1 and the other through S2• It is possible to prove 
that L is inherently ambiguous: Given any grammar G that generates L there is at 
least one string with two derivations in G. 

EXAMPLE 11.16 Another Inherently Ambiguous Language 

Let L = { aibia*b1
: i,j, k, I~ 0. i = k or j' = I}. L is also inherently ambiguous. 

Unfortunately, there are no clean fixes for the ambiguity problem for context-free 
languages. In Section 22.5 we'll see that both of the following problems are undecidable: 

• Given a context-free grammar G, is G ambiguous? 
• Given a context-free language L, is L inherently ambiguous? 
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11.7.3 Techniques for Reducing Ambiguity • 
Despite the negative theoretical results that we have just mentioned. it is usually very 
important, when we arc designing practical languages and their grammars. that we 
come up with a language that is not inher~ntly ambiguous and a grammar for it that is 
unambiguous. Although there exists no general purpose algorithm to test for ambigui
ty in a grammar or to remove it when it is found (since removal is not always possible), 
there do exist heuristics that we can use to find some of the more Ct1mmtm sources of 
ambiguity and remove them. We'll consider here three grammar structures that often 
lead to ambiguity: 

l. s. rules like S-+ e~ 
2. Rules like S-+ SS or E-+ E + E. In other words recursivt rules whose right· 

hand sides are symmetric and contain at least two copies of the nonterminal on 
the left-hand side. 

3. Rule sets that lead to ambiguous attachment of optional postfixes. 

Eliminating £-Rules 
In Example 11.12. we showed a grammar for the balanced parentheses language. That 
grammar is highly ambiguous. Its major problem is that it is possible to apply the rule 
S-+ SS arbitrarily often. generating unnecessary instances of S, which can then be 
wiped out without a trace using the ruleS- e. If we could eliminate the ruleS-+ s., we 
could eliminate that source of ambiguity. We'll call any rule whose right-hand side iss 

an e-rule. 
We'd like to define an algorithm that could remove s.-rules from a grammar G with-

out changing the language that G generates. Clearly if s.e L (G). that won't he possi
ble. Only an s.-rule can generate s.. However. it is possiblc to define an algorithm that 
eliminates e-rules from G ami leaves L( G) unchanged except that. if r. € L (G). it will 
be absent from the language generated by the new grammar. We will show such an al
gorithm. Then we'll show a simple way to add e back in. when ncct.-ssary. without 
adding back the kind of s.-rules that cause ambiguity. 

Let G = ( V, ~. R. S) be any context-free grammar. The following algorithm con
structs a new grammar G' such that L (G') = L (G) - {e} and G' conhtins no e-rules: 

remove Eps ( G: CFG) = 

1. Let G' =G. 

2. Find the set N of nulla hie variables in G'. A variable X is nul/able iff either: 
(1) there is a rule X-+ s., or 
(2) there is a rule X- PQ R ... such that P. Q. R, ... arc all nuUable. 

So compute N as follows: 
2.1. Set N to the set of variables that satisfy ( 1 ). 

2.2. Until an entire pass is made without adding anything toN do: 

Evaluate all other variables with respect to (2). If any vari
able satisfies (2) and is not in N. insert it. 
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3. Define a rule to be modifiable iff it is of the form P-+ aQ/3 for some Q in N 
and any a, f3 in V *. Since Q is nullable. it could be wiped out by the applica
tion of e-rules. But those rules are about to be deleted. So one possibility 
should be that Q just doesn't get generated in the first place. To make that hap
pen requires adding new rules. So, repeat until G' contains no modifiable rules 
that haven't been processed: 

3.1. Given the rule P-+ aQ/3. where Q eN. add the rule P-+ a/3 if it is notal
ready present and if a·/3 :F e and if P -¢. a/3. This last check prevents adding 
the useless rule P-+ P. which would otherwise be generated if the original 
grammar contained, for example, the rule P-+ PQ and Q were nullable. 

4. Delete from G' all rules of the form X- e. 

5. Return G'. 

If removeEp.v halts. L ( G') = L (G) - { e} and G' contains no s-rules. And 
removeEps must halt. Since step 2 must add a non terminal toN at each pass and it can
not add any symbol more than once, it must halt within IV - :£I passes. Step 3 may 
have to be done once for every rule in G and once for every new rule that it adds. But 
note that, whenever it adds a new rule. that rule has a shorter right-hand side than the 
rule from which it came. So the number of new rules that can be generated by some 
original rule in G is finite. So step 3 can execute only a finite number of times. 

EXAMPLE 11.17 Eliminating £-Rules 

Let G = {{S. T, A , B. C, a. b, c }. {a , b, c }, R, S). where: 

R = {S-+ aTa 
T-+ABC 
A-+aAIC 
B-+Bb I c 
C-+ cIs}. 

On input G, removeEps behaves as follows: Step 2 finds the set N of nullable 
variables by initially setting N to { C}. On its first pass through step 2.2 it adds A 
and B toN. On the next pass. it adds T (since now A, B. and Care all inN). On the 
next pass, no new elements are found, so step 2 halts with N = {C. A, B, T}. Step 3 
adds the following new rules toG': 

S-+ aa I* Since Tis nuUable. 
T-+ BC f* Since A is nullable. 
T- AC I* Since 8 is nullable. 
T-AB I* Since Cis nullable. 
T ...... C I* From T-+ BC, since B is nullable. Or from 

T-+AC. 
T-+ B I* From T- BC. since C is nullable. Or from 

T-AB. 
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EXAMPLE 11.17 (Continued) 

T-A f" FromT- AC. since Cis nullable. Orfrom 
T-AB. 

A - a /* Since A is nullable. 
B - b /* Since 8 is nullable. 

Finally, step 4 deletes the rule C-+ e. 

Sometimes L(G) contains e and it is important to retain it. To handle this case, we 
present the following algorithm. which constructs a new grammar G". such that 
L ( G") = L (G). If L( G) contains e, then G" will contain a single t:-rule that can be 
thought of as being .. quarantined".lts sole job is to generate the string e.lt can have no 
interaction with the other rules of the grammar. 

atmostoneEp.'i (G: CFG) = 

1. G" = renwveEps (G). 

2. If Sc is nullable then: I* This means that eeL (G). 
2.1. Create in G" a new start symbolS*. 

2.2. Add to Rc· the two rules: S * _,. e and S *- Sc;. 

3. Return G". 

EXAMPLE 11.18 Eliminating e-Rules from the Balanced Parens Grammar 

We again consider Bal = {we{),{}*: the parentheses are balanced} and the 
grammar G = { { S, ), (}, {), (}, R. S). where: 

R = { S __. (S) (I) 
s-ss (2) 
s-e}. (3) 

We would like to eliminate the ambiguity in G. Since e e L (G), we caU 
atmostoneEps{G), which begins by applying removeEps toG: 

• In step 2, N = { S}. 

• In step 3, rule (1) causes us to add the rule S-+ (). Rule (2) causes us to con
sider adding the rule S- S, but we omit adding rules whose right-hand sides 
and left-hand sides are the same. 

• In step 4, we delete the rule S __,. e. 

So removeEps( G) returns the grammar G' = { { S. ), (}, { ), (}, R. S), where R = 

{S __. (S) 

s-o 
s-ss}. 
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In ib step 2, atmostoneEps creates the new start symbol S •. In step 3, it adds 
the two rules S • --+ s, S * --+ S. So atmostoneEps returns the grammar G" = 
{ {S*,S, ), (}, {), (}, R, S*), where: 

R = {S*--+e 
s•---. s 
S--+ (S) 
S--+() 
S--+ SS}. 

The string(())() has only one parse in G ". 

Eliminating Symmetric Recursive Rules 
The new grammar that we just built for Bal is better than our original one. But it is still 
ambiguous. The string()()() has two parses. shown in Figure 11.1. The problem now is 
the rule S--+ SS, which must be applied n - 1 times to generate a sequence of n bal
anced parentheses substrings. But, at each time after the first, there is a choice of which 
existing S to split. 

~ s-
1 I 
s s 
~ ~ 
s s s s 

t"t-. A A "~" () () () () () () 
FIGURE 11.1 1Wo parse trees for the 
string ()()(). 

The solution to this problem is to rewrite the grammar so that there is no longer a 
choice. We replace the rule S--+ SS with one of the following rules: 

S- SS1 I* [orce branching to the left. 

S ...... S1S I* force branching to the right. 
Then we add the ruleS--+ S1 and replace the rules S--+ (S) and S--+ ()with the rules 

S1 --+ (S) and St--+ ().What we have done is to change the grammar so that branching can 
occur only in one direction. Every S that is generated can branch, but no S1 can. When all 
the branching has happened, S rewrites to S1 and the rest of the derivation can occur. 

So one unambiguous grammar for Balis G = { {S, ), (}, {), (}, R, S), where: 

R = {S* --+e (1) 
s• .... s (2) 
S ...... SSt (3) /*Force branching to the left. 
s-...st (4) 
S1 ...... (S) (5) 
s,-...cn. ~~\ 
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The technique that we just used for Balis useful in any ~ituation in which ambi
guity arises from a recursive rule whose right-hand side contains two or more 
copies of the left-hand side. An important applicatit)n of this idea is to expression 
languages. like the language of arithmetic cxprc~sions that we intruduced in 
Example 11.14. 

EXAMPLE 11.19 An Unambiguous Expression Grammar 

Consider again the language Expr• which we defined with the following context
free grammar G = { { £, i d, +, *. (, ) } . { i d. +. *. (. ) } . R. £ l· where: 

R={E~E+£ 

E~E*E 

£~(£) 

E .... i d }. 

G is ambiguous in two ways: 

1. It fails to specify associativity. So, for example. there arc two parses for the 
string id + id + id. corresponding to thl! brackctings (id + id) + id and 

id + (id + id). 

2. It fails to define a precedence hierarchy for the operators +and*. So, for ex
ample, there are two parses for the string i d + i d • i d, corresponding to the 
bracketings (id + id) • id and id + (id * id). 

The first of these problems is analogous to the one we just solved for Bal. We 
could apply that solution here. but then we'd still have the second problem. We 
can solve both of them with the following gra1nmar G' = { { £, T, F. i d, 
+, •. (, )} . {id, +, *, (, )}. R. £}.where: 

R= {E~E+T 
£--.T 
T~T*F 

T~F 

F~(£) 

F~id}. 

Just as we did for Bal. we have forced branching to g.o in a single direction (to 
the left) when identical operators are involved. And. hy adding the l~vcls T (for 
term) and F (for factor) we have defined a precedence hierarchy: Times has 
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higher precedence than plus does. Using G '. there is now a single parse for the 
string id + id • id: 

E 

E T 

I 
T T 

I I 
F F 

I I 

F 

id + id •• id 

Ambiguous Attachment 
111c third snurce of ambiguity that we will consider arises when constructs with option· 
al fragments are nested. TI1e problem in such cases is then. ··Given an instance of the 
optional fragment. at what level of the parse tree should it be attached?'' 

Probably the most often described instance of this kind of ambiguity is known as the 
dangling else problem. Suppose that we define a programming language with an if 
statement that can have either of the following forms: 

<stmt> ::= if <cond> then <stmt> 
<stmt> ::= if <cond> then <stmt> e 1 se <stmt> 

In other words. the e 1 se clause is optional. Then the following statement. with just a 
single e 1 se clause. has two parses: 

if cmu/1 then if cmu/2 then st1 e 1 se st2 

In the first parse. the single e 1 se clause goes with the first; f. (So it attaches high in 
the parse tree.) In the second parse. the single e1 se clause goes with the second if. (In 
this case. it attaches lower in the parse tree.) 

EXAMPLE 11.20 The Dangling Else Problem in Java 

Most programming languages that have the dangling else problem (including C, 
C++. and Java) specify that each e 1 se goes with the innermost if to which it can 
be attached. The Java grammar forces this to happen by changing the rules to 
something like these (presented here in a simplified form that omits many of the 
statement types that are allowed): 

<Statement> ::= <lfThenStatement> I <IIThenElseStatement> I 
<lffhenEiseStatementNoShortlf> 1 ... 

<StatcmentNoShortlf> ::=<block> I <lfThenEiseStatementNoShortlf> I··· 
<InllcnSlatement> ::=if ( <Expression> ) <Statement> 
<lrThenElscStatement> ::=if (<Expression>) <StatementNoShortlf> e 1 se 

<Statement:> 
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EXAMPLE 11.20 (Continued) 

<lffhenEJseStatementNoShorllf> ::= if (<Expression> ) 
<StatementNoShortlf> e 1 se <SlatcmcntNoShortH> 

In this grammar. there is a special class of statcm<:nt~ called < Statement 
NoShortlf>. These are statements that are guarant\!ed nut to cnll with a short 
(i.e .. else-less if statement). The grammar uses this class to g.uaranlc\! that, if a 
top-level if statement has an else clause. then any emhclldcd if must ulso have 
one. To see how this works. consider the following rarsc tree: 

<Sintcmcnt> 

<lfl'hcn EiscStalcmcnl> 

if (cund) <Statcnl\:ntNuShort lb e 1 se <Siill~·mcnl > 

The top-level if statement claims the e 1 se clause l'or it~df hy guaranteeing 
that there will not be an embedded if that is missing an e 1 se. tr there were. then 
that embedded ; f would grab the one else clause there is. 

For a discussion of other ways in which prugramming hmgu<~gcl> can solve 
this probl\!m. sec G.3. 

Attachment ambiguity is also a pmbh:m for parser~ l'ur natural langua!!cs such as 
English. as we'll sec in Example 11.22 

Proving that a Grammar is Unambiguous 
While it is undecidable.;, general. whether a grammar is amhlgUI •u~ ur unambiguous. it 
may be possihlc to prove that a parlimlar grammar is either amhiguc,us or unambigu
ous. A grammar G can he shown to he amhiguuus hy cxhihiting " single string for 
which G produces two parse trees. 'ftJ sec huw it might he pc)~sihlc tu pru\'c that G is 
unambiguous. recall that G is unambiguous iff every string dcrivahlc in G has a single 
leftmost derivation. So. if we can show that. during. any leftmost dcri\tttiun of any string 
we L (G). exactly nne rule can he applied. then (i i!\ unamhig.uou~. 

EXAMPLE 11.21 The Final Balanced Parens Grammar is Unambiguous 

We return to the final grammar G that we produced for Bal. G = { { S. ). (}. {). 
(} , R. S), where: 



R = { s• --. s < 1 > 
s*~s (2) 
s-ss, (3) 
s-s, (4) 
S1-+ (S) (5) 
s,-+ () }. (6) 
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We prove that G is unambiguous. Given the leftmost derivation of any string 
·win L( G). there is. at each step of the derivation, a unique symbol, which we'll 
call X. that is the leftmost nonterminal in the working string. Whatever X is, it 
must be expanded by the next rule application. so the only rules that may be 
applied next are those with X on the l·eft-hand side. There are three non termi
nals in G. We show. for each of them, that the rules that expand them never 
compete in the leftmost derivation of a particular string w. We do the two easy 
cases first: 

• S *: l11e only place that S* may occur in a derivation is at the beginning.lf w = e, 
then rule ( t) is the only one that can be applied. if w ¢ s. then rule (2) is the only 
one that can be applied. 

• S1: If the next two characters to be derived are(). S1 must expand by rule (6). 
Otherwise. it must expand by rule (5). 

[n order discuss S, we first define. for any matched set of parentheses m, the 
sibli11gs of m to be the smallest set that includes any matched set p adjacent. on 
the right, tom and all of p's siblings. So, for example, consider the string: 

(Uil) < > o l 2 --3 4 ---
5 

1l1e set () labeled 1 has a single sibling. 2. The set(()()) labeled 5 has two sib
lings. 3 and 4. Now we can considerS. We observe that: 

• S must generate a string in Bal and so it must generate a matched set. possibly 
with siblings. 

• So the rirst terminal character in any string that S generales is(. Call the string 
that starts with that ( and ends with the ) that matches it. s. 

• 1l1e only thing that S1 can generate is a single matched set of parentheses that 
has no siblings. 

• Let n be the number of siblings of s. In order to generate those siblings. S must 
expand by rule (3) exactly n times (producing n copies of S1) before it expands 
by rule (4) to produce a single S1• which will produces. So, at every step in a 
dcrivation.lct f' he the number of occurrences of S1 to the right of S. If p < n, 
S must expanJ by rule (3). If p = n. S must expand by rule (4). 
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Going Too Far 
We must be careful. in getting rid of ambiguity. that we don't do so at the expense of 
being able to generate the parse trees that we want. In both the arithm\!tic expression 
example and the dangling else case. we were willing to force one interpretation. Some
times, however, that is not an acceptable solution. 

EXAMPLE 11.22 Throwing Away The Parses That We Want 

Let's return to the small F.nglish grammar that we showed in Example 11.6. That 
grammar is ambiguous. [t has an ambiguous attachment problem. similar to tbe 
dangling else problem. Consider the following two sentences: 

Chris likes the girl with a cat. 

Chris shot the bear with a rifle. 

Each of these sentences has two parse trees because. in each case. the preposi
tional phrase with aN. can be attached either to the immediately preceding NP 
(the girl or the bear) or to the V P. The correct interpretation for the first sen
tence is that there is a girl with a cat and Chris likes her. In other words, the prepo
sitional phrase attaches to the NP. Almost certainly. the correct interpretation for 
the second sentence is that there is a bear (with no rifle) and Chris used a rifle lo 
shoot it. In other words. the prepositional phrase attaches to the VP. See L.3.4 for 
additional discussion of this example. 

For now, the key point is that we could solve the ambiguity problem by elimi
nating one of the choices for PP attachment. But then, for one of our two sen
tences, we'd get a parse tree that corresponds to nonsense. In other words. we 
might still have a grammar with the required weak generative capacity. but we 
would no longer have one with the required strong generative capacity. The solu
tion to this problem is to add some additional mechanism to the context-free 
framework. That mechanism must be able to choose the parse that corresponds to 
the most likely meaning. 

English parsers must have ways to handle various kinds of attachment am
biguities. including those caused by prepositional phrases and relative 
clauses. (L.3.4) 

11.8 Norma I Forms • 
So far. we've imposed no restrictions on the form nf the right-hand sides of our gram
mar rules. although we have seen that some kinds of rules. like those whose right·hand 
side iss. can make grammars harder to use. In this section. we cnnsidcr what happens 
if we carry the idea of getting rid of s-productions a few steps farther. 
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Normal forms for queries and data can simplify database processing. (H.S) 
Normal forms for logical formulas can simplify automated reasoning in arti
ficial intelligence systems (M.2) and in program verification systems. (H.l.l) 

Let C be any set of data objects. For example, C might be the set of context-free 
grammars. Or it could be the set of syntactically valid logical expressions or a set of 
database queries. We '11 say that a set F is a normal form for C iff it possesses the follow
ing two properties: 

• For every element c of C, except possibly a finite set of special cases, there exists 
some element f of F such that f is equivalent to c with respect to some set of tasks. 

• F is simpler than the original form in which the elements of C are written. By ''sim
pler" we mean that at least some tasks are easier to perform on elements ofF than 
they would be on elements of C. 

We define normal forms in order to make other tasks easier. For example, it might 
be easier to build a parser if we could make some assumptions about the form of the 
grammar rules that the parser will use. Recall that, in Section 5.8, we introduced the 
notion of a canonical form for a set of objects. A normal form is a weaker notion, since 
it does not require that there be a unique representation for each object in C, nor does 
it require that ''equivalent" objects map to the same representation. So it is sometimes 
possible to define useful normal forms when no useful canonical form exists. We'll now 
do that for context-free grammars. 

11.8.1 Normal Forms for Grammars 
We'll define the following two useful normal forms for context-free grammars: 

• Chomsky Normal Form: In a Chomsky normal form grammar G = (V, l:, R, S), 
all rules have one of the following two forms: 

• X ....... a, where ae l:, or 

• X ....... BC, where B and Care elements of V - l:. 

Every parse tree that is generated by a grammar in Chomsky normal form has a 
branching factor of exactly 2, except at the branches that lead to the terminal 
nodes, where the branching factor is 1. This property makes Chomsky normal form 
grammars useful in several ways. including: 

• Parsers can exploit efficient data structures for storing and manipulating binary 
trees. 

• Every derivation of a string w contains lwl - 1 applications of some rule of the 
form X ....... BC, and lwl applications of some rule of the form X_. a. So it is 
straightforward to define a decision procedure to determine whether w can be 
generated by a Chomsky normal form grammar G. 
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In addition. because the form of all th~ rule~ is so restricted. ,it is easier than it 
would otherwise be to ddinc other algorithms that manipulate grammars. 

• Greibuch Normal form: In a Grcihach normal l'urm gr:tmnHtr G = ( \.', I. R. S), 
all rules have the following form: 

• X-+a(J.wherea e Yanc.JfJ e- (\1 - ~)* . 

In every derivation that is proc.Juccll hy a grammar in Greibach normal form. pre
cisely one terminal is gcncratcc.J for ~.:ach rule application.llli~ property is useful in 
several ways. including: 

• Every derivation of a string 74' contains I u'l rule appli\:ations. So again it is 
straightforward to ddinc a Jedsiun procedure to uclcrminc whcthcr tv can be 
generated hy a Grcihuch norm<~l furm grammar G. 

• As we'll see in Theorem 14.2. Grcibm:h normal form grammars can easily be 
converted to pushc.Juwn automatn with "'·' f:-transitit.m~. 'l11is is useful hecause 
such PDAs are guaranteed to halt. 

THEOREM 11.1 Chomsky Normal Form 

Theorem: Given a context-free grammar G. there cxbt.s a Chomsky normal form 
grammar Gc such that L (Gd = L (Gc) - {f:}. 

Proof: l11e proof is by construction. using the algorithm cmll't'rttoCJwmsky pre
sented below. 

THEOREM 11.2 Greibach Normal Form 

I Theorem: Given a context-free grammar G, there exists " Grcibach normal form 
grammar GG such that/. ( G(;) ~ L (G ) - { ,.; ). 

Proof: The proof is also by construction. We pn:scnr it in D. I . 

11.8.2 Converting to a Normal Form 
Normal forms nre useful if there exists ~~ proccc.Jurc I'M ccmvcrting an nrbitnary object 
into a corresponding object that meets the requirements of thl.' normal form. Algo
rithms to convert grammars into normall'onn!-. generally hcgin with n grammar G and 
then operate in a series of steps as follows: 

1. Apply some transformation toG to get ric.J of und~:slr;thlc property 1. Show that 
the language genemtc<.l by G is unchang.cd. 

2. Apply another transfmmation to (j tu get rid of unc.Jcs•rahlc prupcrty 2. Show 
that the language g.~ncratcd by G is um:hangcu and that unucsir<thle Jlroperty 1 
has not been reintroduced. • 

3. Continue until the grammar is in the dl.'sircu rorm. 

Because it is possible for one transformation to undo the work of an cal'lil.~r one. the 
order in which the transformation steps arc pcrrl)rntt:u i~ often critic<~l w the co rrect
ness of the transformation algorithm. 
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One transformation that we will exploit in converting grammars both to Chomsky 
normal form and to Greibach normal form is based on the following observation. Con
sider a grammar that contains the three rules: 

X-+aYc 
Y-+ b 

Y-+ZZ 

We can construct an equivalent grammar by replacing the X rule with the rules: 

x-abc 
x-azzc 

Instead of letting X generate an instance of Y, X immediately generates whatever Y 
could have generated. The following theorem generalizes this claim. 

THEOREM 11.3 Rule Substitution 

Theorem: Let G = (V.I. R, S) be a context-free grammar that contains a ruler of 
the form X-+aY/3. where a and /3 are elements of v• and Ye(V- :I). Let 
Y-+ 'YI h21 .. . 1-y, be all of G's rules whose left-hand side is Y. And let G ' be the 
resull of removing from R the rule r and replacing it by the rules 
X-+ay1{3 . X-+ay2{3 . ... ,X-+a-y11/3.ThenL (G') = L (G). 

Proof: We first show that every string in L( G) is also in L ( G' ): Suppose that 1v is in 
L( G). If G can derive w without using rule r, then G' can do so in exactly the 
same way. If G can derive w using rule r. then one of its derivations has the fol
lowing form. for some value of k between 1 and n: 

S ~ . .. ~ 8X c/> ~ 8a Y {3c/> ~ 8ay~.;{3c/> ,... ... .,. w. 

Then G' can derive w with the derivation: 

Next we show that only strings in L( G) can be in L( G'). This must be so be
en use the action of every new rule X-+ aykf:J could have been performed in G by 
applying the rule X-+ a Y 13 and then the rule Y-+ 'Y k· 

11.8.3 Converting to Chomsky Normal Form 
There exists a straightforward four-step algorithm that converts a grammar 
G = ( V. I , R. S) into a new grammar Gc such that Gc is in Chomsky normal form and 
L (Gc:) = L (G)- {e}. Define: 

conwmtoCiwmsky( G: CFG) = 
1. Let Gc be the result of removing from G all e-rutes, using the algorithm 

rc•nwveEps. defined in Section 11.7.4. 

2. Let Gc: be the result of removing from Gc all unit productions (rules of the 
form A -+ 8). using the algorithm removeUnits defined below. It is important 
that removt•llniH· """ ... l'. -- ·· - .... • 
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productions. Once this step has been completed, all rules whose right-hand 
sides have length 1 are in Chomsky normal form (i.e .• they are composed of a 
single terminal symbol). 

3. Let Gc be the result of removing from Gc all rules whose right-hand sides 
have length greater than 1 and include a terminal (e.g .• A- aB or A ...... BaC). 
This step is simple and can be performed by the algorithm remove Mixed given 
below. Once this step has been completed. all rules whose right-hand sides 
have length 1 or 2 are in Chomsky normal form. 

4. Let Gc be the result of removing from Gc all rules whose right-hand sides 
have length greater than 2 (e.g .. A - BCD£). This step too is simple. It can be 
performed by the algorithm remove Long given helow. 

5. Return Gc. 

A unit production is a rule whose right-hand side consists of a single nonterminal 
symbol. The job of remove Units is to remove all unit productions and to replace them by 
a set of other rules that accomplish the job previously done by the unit productions. So, 
for example, suppose that we start with a grammar G that contains the following rules: 

s ...... xy 
X-+A 
A-+Bia 
B- b 
Once we get rid of unit productions, it will no longer be possible for X to become A 

(and then B) and thus to go on to generate a or b. So X will need the ability to go directly 
to a and b, without any intermediate steps. We can define removeUnit.'i as follows: 

removeUnits(G: CFG) = 
1. Let G' =G. 
2. Until no unit productions remaininG' do: 

2.1. Choose some unit production X-+ Y. 
2.2. Remove it from G'. 
2.3. Consider only rules that still remain in G'. For every rule Y- {3, where 

f3 e V*, do: 

Add to G' the rule X-+ {3 unless that js a rule that has already been 
removed once. 

3. Return G'. 

Notice that we have not bothered to check to make sure that we don't insert a rule 
that is already present. Since R. the set of rules. is a set. inserting an element that is al
ready in the set has no effect. 

At each step of its operation, removeUnits is performing the kind of rule substitution 
described in Theorem 11.3. (It happens that both a and {3 are empty.) So that theorem 
tells us that, at each step. the language generated by G' is unchanged from the previous 
step. If removeUnits halts, it is clear that all unit productions have been removed. It is 
less obvious that remove Units can be guaranteed to halt. At each step, one unit produc
tion is removed, but several new rult:s may be addi!d, including new unit proouctions. To 
see that remove Unit must halt, we observe that there is a bound = I v - I r~ on the 
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number of unit productions that can be formed from a fixed set V - ~ of non terminals. 
At each step, removeUnits removes one element from that set and that element can 
never be reinserted. So remove Units must halt in at most IV - I-12 steps. 

' 

EXAMPLE 11.23 Removing Unit Productions 

Let G = (V, ~. R, S), where: 

R = {S-+XY 
X-+A 
A-+B I a 
B-+b 
Y-+T 
T-+Y I c}. 

-
The order in which removeUnits chooses unit productions to remove doesn't 

matter. We'll consider one order it could choose: 

Remove X-+ A. Since A-+ B I a, add X-+ B I a. 
Remove X-+ B. Add X-+ b. , 
Remove Y-+ T. Add Y-+ Y I c. Notice that we've added Y-+ Y, which is 

useless, but it will be removed later; 
RemoveY -+Y. Consider addingY-+ T, but don't since it has previously been 

removed 
Remove A-+ B. Add A -+b. 
Remove T-+ Y. Add T-+ c, but with no effect since it was already present. 

At this point, the rules of G are: 

S-+XY 
A-+a I b 
B-+b 
T-+c 
X-+a I b 
Y-+c 

No unit productions remain, so remove Units halts. J . 
We must now define the two straightforward algorithms that are required by steps 3 

and 4 of the conversion algorithm that we sketched above. We begin by defming: 

removeMixed (G: CFG) = 

1. LetG' =G. 

Z. Create a new nonterminal T, for each terminal a in ~. 

3. Modify each rule in G' whose right-hand side has length greater than 1 and that 
contains a terminal symbol by substituting T, for each occurrence of the terminal a. 

4. Add toG', for each T,, the rule T,-+ a. 
5. Return G'. 
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EXAMPLE 11.24 Removing Mixed Productions 

The result of applying remove Mixed to the grammar: 

A-a 
A-aB 
A-BaC 
A-BbC 

is the grammar: 

A-a 
A-TuB 
A-BTaC 
A-BTbC 
Ta-a 
rh-b 

Finally we define renwveLong. The idea for remm·eLmrg is simple. If there is a rule 
with n symbols on its right-hand side. replace it with a set of rules. The first rule gener
ates the first symbol followed by a new symhol that will corn.:spmu.l to "the rest". The 
next rule rewrites that symbol as the second of the original symhols. followed by yet 
another new one. again corresponding to "the rest". and so forth. until there are only 
two symbols left to generate. So we define: 

removeLong (G: CFG) = 
1. Let G' =G. 

2. For each G' rule r" of the form A - N1~N:~oN~ ... N,, , ,; > 2, create new non· 
• 1 Mk M" MJ.: termmas 2• )···· ,. _ , , 

3. In G', replacer" with the rule A -N1M"1• 

4. To G '. add the rules M ~ - N2M '-3• M k3 - ~M k_. •. •. M ~' l- N,,_ 1 N,.. 

S. Return G' .. 

When we illustrate this algorithm. we typically omit the superscripts on the M's.and, 
instead. guarantee that we use distinct nonterminals by using distinct suhscripts. 

EXAMPLE 11.25 Removing Rules with Long Right-hand Sides 

The result of applying remove Long to the single rule grammar: 

is the grammar with rules: 

A-BCDEF 

A-BM~ 
M2-CM3 
M3 -DM" 
M~-EF 
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We can now illustrate the four steps of converttoChomsky. 

EXAMPLE 11.26 Converting a Grammar to Chomsky Normal Form 

Let G = ( { S, A, B, C, a, c}, {A, B, C}, R, S), where: 

R = {S-.aACa 

A-.B I a 
B-.c 1 c 
c~cc I e}. 

We convert G to Chomsky normal form. Step 1 applies removeEps to eliminate 
e-productions. We compute N, the set of nullable variables. Initially N = {C }. 
Because of the rule B--. C, we add B. Then, because of the rule A_. B, we add A. 
SoN= {A, B, C}. Since both A and Care nullable, we derive three new rules 
from the first original rule, giving us: 

s-. aACa I aAa I aCa I aa 

We add A __. e and B __. e, but both of them will disappear at the end of this 
step. We also add C--. c. So removeEps returns the rule set: 

s-.aAca I aAa I aCa I aa 
A-.Bia 
B_.C I c 
c~cc I c 

Next we apply remove Units: 

Remove A __.B. Add A--. C I c. 
Remove B ~ C. Add B __. cC (and B--. c, but it was already there). 
Remove A~ C. Add A~ cC (and A~ c, but it was already there). 

So remove Units returns the rule set: 

s~aAca I aAa I aca I aa 
A-.a I c IcC 
B_.c IcC 
c-.ccl c 

Next we apply removeMixed, which returns the rule set: 

S_.TaACT, I T,AT, I TaCT11 1 T,T" 
A_.a I C I TcC 

s-.c I T,C 
c-.T,c 1 c 
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EXAMPLE 11.26 (Continued) 

Tu-+a 
~-+c 

Finally, we apply remove Long. which returns the rule set: 

S-+ TuS1 S-+ Tu53 
S1 -+ AS2 S3-+ A 7;, 
s2 ---)> CT;, 

A-+a I c I r~c 
8-+c I TcC 
c-r,.c 1 c 
T0 -+a 
Tc-+C 

From Example 11.26 we see that the Chomsky normal form version of a grammar 
may be longer than the original grammar was. How much longer'! And how much time 
may be required to execute the conversion algorithm'? We can answer both of these 
questions by answering them for each of the steps that the conversion nlgorithm exe
cutes. Let n be the length of an original grammar G. Then we have: 

1. Use removeEps to remove E-rules: Suppose that G contains a rule of the form 
X-+ A 1A2A3 ••• Ak· If all of the variables A1 through Ak arc nulla hie. this single 
rule will be rewritten as 2k-l rules (since each of the k nonterm innis can either 
be present or not. except that they cannot a11 be absent). Since k can grow as 11. 

we have that the length of the grammar that removc:Eps produces (and thus the 
amount of time that removeEp.'i requires) is 0 (2") In this worst case, the con
version algorithm becomes impractical for all hut toy grammars. We can prevent 
this worst case from occurring though. Suppose that all right-hand sides can be 
guaranteed to be short. For example. suppose they all h;1vc length at most 2. 
Then no rule will be rewritten as more than 3 rules. We can make this guarantee 
if we modify converttoCJwmsky slightly. We will run rei1UJ\.'t•Long as step 1 
rather than as step 4. Note that none of the other steps can crc&~tc a rule whose 
right-hand side is longer than the right-hand sidt of l\omc rule that already ex
ists. So it is not necessary to rerun remm·eLmrg later. With this change, 
renroveEps runs in linear time. 

2. Use renwveUnits to remove unit productions: We've already shown that this step 
must halt in at most IV - ~ 12 steps. Each of those steps takes constant time and 
may create one new rule. So the length of the grammar that retWJ\'t.>Units pro· 
duces. as well as the time required for it to run, is 0 (n2) . 

3. Use remove Mixed to remove rules with right-hand sides of length greater than i 
and that contain a terminal symbol: This step runs '" linear time and constructs a 
grammar whose size grows linearly. 



11.9 Island Grammars 241 

4. Use remove Long to remove rules with long right-hand sides: This step runs in lin
ear time and constructs a grammar whose size grows linearly. 

So. if we change converttoChomsky so that it does step 4 first. its time complexity is 
0 (n2) and the size of the grammar that it produces is also 0 (n2). 

11.8.4 The Price of Normal Forms 
While normal forms are useful for many things, as we will see over the next few chap
ters. it is important to keep in mind that they exact a price and it's one that we may or 
may not be willing to pay. depending on the application. If G is an arbitrary context-free 
grammar and G' is an equivalent grammar in Chomsky (or Greibach) normal form. 
then G and G' generate the same set of strings. but only in rare cases (for example if G 
happened already to be in normal form) do they assign to those strings the same parse 
trees. nlUs. while converting a grammar to a normal form has no effect on its weak gen
erative capacity. it may have a significant effect on its strong generative capacity. 

11.9 Island Grammars • 
Suppose that we want to parse strings that possess one or more of the following 
properties: 

• Some (perhaps many) of them are ill-formed. In other words, while there may be a 
grammar that describes what strings are .. supposed to look like" , there is no guar
antee that the actual strings we'll see conform to those rules. Consider. for example, 
any grammar you can imagine for English. Now imagine picking up the phone and 
hearing something like ... Urn. I uh need a copy of uh my bill for er Ap, no May. I 
think. or June, maybe aiJ of them uh.l guess that would work." Or consider a gram
mar for HTML. It will require that tags be properly nested. But strings like 
<b><i >bo 1 d ita 1 i C</b></i > show up not infrequently in HTML documents. 
Most browsers will do the right thing with them, so they never get debugged. 

• We simply don't know enough about them to build an exact model, although we do 
know something about some patterns that we think the strings will contain. 

• They may contain substrings in more than one language. For example, bi(multi)lin
gual people often mix their speech. We even give names to some of the resulting hy
brids: Spanglish, Japlish. Hinglish, etc. Or consider a typical Web page. It may 
contain fragments of HTML. Java script, or other languages, interleaved with each 
other. Even when parsing strings that are all in the same "language", dialectical is
sues may arise. For example, in response to the question. "'Are you going to fix din
ner tonight?" an American speaker of English might say, .. 1 could," while a British 
speaker of English might say. "I could do." Similarly, in analyzing legacy software, 
there are countless dialects of languages like Fortran and Cobol. 

• They may contain some substrings we care about. interleaved with other substrings 
we don't care about and don't want to waste time parsing. For example, when pars
ing an XML document to determine its top level structure. we may have no interest 
in the text or even in many of the tags. 
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Then the sentence s that is most likely to have been generated, given the obser
vation o, is the one with the highest conditional probability given o. Recall that 
argmax of w returns the value of the argument w that maximizes the value of the 
function it is given. So the highest probability sentence s is: 

s = argmax Pr ( wlo) 
.-x 

Pr (olw)Pr (w) 
= argmax Pr (o) . 

.-x 

Stochastic context-free grammars can be used model the three-dimensional 
structure of RNA. (K.4) 

In Chapter 15, we will discuss techniques for parsing context-free languages that are 
defined by standard (i.e., without probabilistic information) context-free grammars. 
Those techniques can be extended to create techniques for parsing using stochastic 
grammars. So they can be used to answer both of the questions that we just presented. 

Exercises 
1. Let l: = {a. b}. For the languages that are defined by each of the following 

grammars, do each of the following: 
i. List five strings that are in L. 
ii. List five strings that are not in L (or as many as there are, whichever is 

greater). 

iii. Describe L concisely. You can use regular expressions, expressions using 
variables (e.g., a"b", or set theoretic expressions (e.g., {x: ... } ). 

iv. Indicate whether or not L is regular. Prove your answer. 
L S-+ aS I Sb I e 
b. s-+ aS a I bSb I a I b 
c. S-+ aS I bS I 8 

c1. s-+ aS I aSbS I 8 

2. Let G be the grammar of Example 11.12. Show a third parse tree that G can pro
duce for the string ( () ){). 

3. Consider the following grammar G: 

S-+ OSliSSilO 

Show a parse tree produced by G for each of the following strings: 
L 010110. 
b. 00101101. 

4. Consider the following context free grammar G: 

s-aSa 
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S.....,.T 
s-e 
T-bT 
T-"'cT 
T-~:: 

One of tht:sc rules is redundant and could b~ removed without altering L(G). 
Which one? 

S. Using the simple English grammar that we showed in Example 11.6. show two 
parse trees for each of the following sentences. In each case. inllicatc which parse 
tree almost certainly corresponds to the intended meaning uf the sentence: 
a. The bear shot Fl uff)• with the rifle. 
b. Fluffy likes the girl with the chocolate. 

6. Show a context-free grammar for each of the t'ullowing languages L: 
a. BalDelim = { w: where 'li' is a string of delimiters:(. ).1.1. {. }.that are 

properly balanced}. 
b. { a;bi : 2i = 3j + 1}. 
c. { a'b' : 2i "# 3j + .1 } • 

d. {1lJe{a.b}*:#il(w) = 2·#b(wH.}. 
e. L = { 1v e {a. b} * : w = wR}. 
r. { a;bic'': i.j, k ~ 0 and (i "# j or j * k)}. 
g. {aibick:i,j, k ~ Oand(k s iork sj)). 

h. { tV e {a. b} * : every prefix of 'W has at least as many a's as b 's ~. 
i. { a"b"' : m ~ n, m-n is even}. 
j. { a"'b"cPd": m. "· p.q ~ 0 and m + n = p + q} . 
k. {xc":xe{a,b}*and(#01(x) = 11or#b(x) = 11)} . 

I. { l>;#l>i+ r : b, is the binary representation nf some integer i. i 2:: 0. without 
leading zeros}. (For example 101#011 e L.) 

m. {xR#y: x. y e { 0.1}* and xis a suhstring of)' }. 

7. Le.t G be the ambiguous expression grammar ot' Exampl&: 11.14. Show at least 
three difl'l!rent parse trees that can be gcncratt:d from G for the string 
i d+i d'ffi d*i d. 

8. Consider the unambiguous expression grammar G' of Exam pi&: 11 .1 <>. 
a. Trace a derivation of the string i d + i d*i d*i d in G'. 
b. Add exponentiation (*") and unary minus ( - ) to G'. assigning the highest 

precedence to unary minus. followed l:ly ~xponentintion, multiplication, and 
addition, in that order. 

9. Let L = {we {a, b. U. e. (, ). • . ' } * : 'W is a syntactically legal regular 
expression}. 
a. Write an unaml:liguous context-free grammar that generates L. Your gram

mar should have a structure similar to the arithmetic expression grammar G' 
that we prcst:nted in Example 1 1.19. It should create parse tree~ that: 
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• Associate left given operators of equal precedence, and 
• Correspond to assigning the following precedence levels to the operators 

(from highest to lowest): 
• • and+ 

• concatenation 
• u 

b. Show the parse tree that your grammar will produce for the string (aU b) ba*. 

10. Let L = {w e {A - Z, ..., A, V,-, (,) }*: w is a syntactically legal Boolean 
expression} . 
a. Write an unambiguous context-free grammar that generates L and that cre

ates parse trees that: 
• Associate left given operators of equal precedence, and 

• Correspond to assigning the following precedence levels to the operators 
(from highest to lowest):-,, I\, v, and _. , 

b. Show the parse tree that your grammar will produce for the string: 

~PvR-Q-s 

11. In 1.3.1. we present a simplified grammar for URis (Uniform Resource Identi
fiers) . the names that we use to refer to objects on the Web. 

a. Using that grammar, show a parse tree for: 

https://www.mystuff.wow/widgets/fradgitlsword 
b. Write a regular expression that is equivalent to the grammar that we present. 

12. Prove that each of the following grammars is correct: 

a. The grammar, shown in Example 11.3, for the language Pal Even. 

b. l11e grammar, shown in Example 11.1 , for the language Bal. 

13. For each of the following grammars G. show that G is ambiguous. Then find an 
equivalent grammar that is not ambiguous. 

a. ( {S. A. 8, T. a. c}. {a. c}. R.S), where R = {S-- AB. s-. BA, A- aA, 
A_. ac. B __. Tc, T_. aT, r-. a}. 

b. ({S,a.b}.{a,b}.R,S),whereR= {S--e,S_. aSa, s-- bSb,S_. aSb, 
s- bSa.s -ss}. 

c. {{S, A.B, T, a, c} . {a. c}. R. S), where R = {S--AB,A-AA, A-. a, 
8- Tc, r-. aT, T- a}. 

d. ({S.a.b},{a.b},R,S),whereR = {S-- aSb.s-- bSa,s-.ss.s_.e}. (G 
is the grammar that we presented in Example 11.10 for the language 
L = {we {a.b}*: #a(w) = #b(w)}.) 

e. ({S,a,b} , {a, b},R. S).where R = {S_. aSb,S-+ aaSb,S-e}. 

14. Let G be any context-free grammar. Show that the number of strings that have a 
derivation in G of length 11 or less. for any 11 > 0, is finite. 

15. Consider the fragment of a Java grammar that is presented in Example 11.20. 
How could it be changed to force each e 1 se clause to be attached to the outer
most possible if statement? 
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16. How docs the COND form in Lisp. as described in G.S. ;svnid the dangling else 
problem'? 

17. Consider the grammar G' of Example 11 .19. 
a. Convert G' to Chomsky normaJ form . 
b. Consider the string id*id+id. 

i. Show the parse tree that G ' produces for it. 
ii. Show the parse tree that your Chomsky normal form grammar pro

duces for it. 
18. Convert each of the following grammars to Chomsky normal fmm: 

a. S--+aSa 
S--+8 
8-+bbC 
8--+bb 
C--+e 
C-+cC 

b. S-+ ABC 
A-+ aC I D 
8-+ bB It: I A 
C-+ Ac I e I Cc 
D-+ aa 

c. S-+aTVa 
T-+aTal b7blel V 
V-+cVcle 


	CH1 Why study the Theory of Computation?
	1.1 The Shelf Life of Programming Tools
	1.2 Applications of the Theory Ard Everywhere

	CH2 languages and Strings
	2.1 Strings
	2.1.2 Functions on Strings
	2.1.3 Relations on strings


	2.2 Languages
	2.2.2 Techniques for Defining Languages


