

Module-1: Introduction to Algorithms Review Questions

Intr	oduction		
1	Define algorithm. Discuss the criteria's that an algorithm must satisfy with an example.	6	Jan 18, Jul 18, Jan19
2	Define best case, worst case and average case efficiency. Write the algorithm and give these efficiencies for sequential search.	8	Jan 20
3	Explain space complexity and time complexity with an example.	4	Jun17
4	Explain with an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a particular problem instance.	4	Jul 18
5	Consider the following algorithm. Algorithm GUESS (A[][]) for $i \leftarrow 0$ to $n - 1$ for $j \leftarrow 0$ to i A [i] [j] $\leftarrow 0$ i) What does the algorithm compute? ii) What is basic operation? iii) What is the efficiency of this algorithm?		
Δεν			
6	Explain asymptotic notations Big O, Big Ω and Big θ that are used to compare the order of growth of an algorithm with example.	6	Jul 17, Jul 18, Jan 19, Jul 19, Jan 20
7	Describe various basic efficiency classes.	8	Jul 19
8	Prove the following statements.d. $100n + 5 = O(n2)$ a. $n^2 + 5n + 7 = \Theta(n^2)$ e. $n^2 + n = O(n^3)$ b. $\frac{1}{2}n(n-1) = \Theta(n^2)$ f. $5n^2 + 3n + 20 = O(n^2)$ c. $\frac{1}{2}n^2 + 3n = \Theta(n^2)$ g. $n^3 + 4n^2 = \Omega(n^2)$	6	
9	Define Little Oh. Compare the orders of growth of following functions i) ($\frac{1}{2}$) n (n-1) and n ² ii) 3n+2 and n ²	6	
10	Prove that If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$	6	Jan 18, Jan 19. Jan 20

Prepared by Harivinod N www.techjourney.in P	Page 1
--	--------

Ma	thematical Analysis of Non-Recursive Algorithms		
11	Explain general plan of mathematical analysis of non-recursive algorithms with example.	8	Jul 17 Jul 19
12	Write the algorithm to find maximum element in the given array and explain the mathematical analysis of this non-recursive algorithm.	6	Jul 18, Jul 19,
13	Write the algorithm to check whether all the elements in the given array are distinct and explain the mathematical analysis of this non- recursive algorithm. Derive its worst-case time complexity	6	Jan 18, Jul 19
14	Write the algorithm to perform matrix multiplication and explain the mathematical analysis of this non-recursive algorithm	6	
Ma	thematical Analysis of Recursive Algorithms		
15	Explain general plan of mathematical analysis of recursive algorithms with example.	8	Jan 19
16	Illustrate mathematical analysis of recursive algorithm for Towers of Hanoi OR	8	Jul 17, Jul 19,
	Give the recursive algorithm to solve Tower of Hanoi problem. Show that the efficiency of this algorithm is exponential	6	Jan 20
17	Illustrate mathematical analysis of recursive algorithmto find the factorial of a given number.	6	Jan 19
18	State the recursive algorithm to count the bits of a decimal number in its binary representation. Give its mathematical analysis.	6	
19	Write a recursive function to find and print all possible permutations of a given set of n elements	5	Jul 18
20	Solve the recurrence relation M(n) = 2M(n-1) +1 for n>1; M(1)=1	5	Jul 18
Problem Types and Data structures			
21	Briefly explain the important problem types coming under design and analysis of algorithms.	6	Jun17, Jan 18, Jan 19
22	Explain the following types of problems:	6	Jul 19
	i) Combinatorial problems ii) Graph problems		
23	Briefly explain important fundamental data structures used in algorithm design.	6	Jan 19
24	Explain two common ways to represent the graph with example	4	Jan 18, Jan 19
25	Discuss adjacency matrix and adjucency list representation of a graph with suitable example.	6	Jul 19

Prepared by Harivinod N	www.techjourney.in	Page 2