Nondeterministic Finite State Machines

Nondeterminism

Imagine adding to a programming language the function \textit{choice} in either of the following forms:

1. \textit{choose} (action 1;;
 action 2;;
 ...
 action \(n \))

2. \textit{choose}(x from S: \(P(x) \))
before the first choice \textit{choose} makes

\begin{itemize}
\item first call to \textit{choose} choice 1
\item first call to \textit{choose} choice 2
\item second call to \textit{choose} choice 1
\item second call to \textit{choose} choice 2
\end{itemize}

\section*{Implementing Nondeterminism}

\section*{Nondeterminism}

- What it means\slash implies
 - We could guess and our guesses would lead us to the answer correctly (if there is an answer).
Definition of an NDFSM

\[M = (K, \Sigma, \Delta, s, A), \] where:

- \(K \) is a finite set of states
- \(\Sigma \) is an alphabet
- \(s \in K \) is the initial state
- \(A \subseteq K \) is the set of accepting states, and
- \(\Delta \) is the transition relation. It is a finite subset of

\[
(K \times (\Sigma \cup \{\varepsilon\}) \times K) \times K
\]

\times Cartesian product

Accepting by an NDFSM

\(M \) accepts a string \(w \) iff there exists some path along which \(w \) drives \(M \) to some element of \(A \).

The language accepted by \(M \), denoted \(L(M) \), is the set of all strings accepted by \(M \).
NDFSM and DFSM

Δ is the transition relation. It is a finite subset of

$$(K \times (\Sigma \cup \{\varepsilon\})) \times K$$

Recall the definition of DFSM:

$M = (K, \Sigma, \delta, s, A)$, where:

- K is a finite set of states
- Σ is an alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states, and
- δ is the transition function from $(K \times \Sigma)$ to K

NDFSM and DFSM

$\Delta : (K \times (\Sigma \cup \{\varepsilon\})) \times K$

$\delta : (K \times \Sigma)$ to K

Key difference:

- In every configuration, a DFSM can make exactly one move; this is not true for NDFSM

- M may enter a config. from which two or more competing moves are possible. This is due to (1) ε-transition (2) relation, not function
Sources of Nondeterminism

What differ from determinism?

Two approaches:
• Explore a ε
• Follow all paths in parallel

Analyzing Nondeterministic FSMs
Optional Substrings

$L = \{ w \in \{a, b\}^* : w \text{ is made up of an optional } a \text{ followed by } aa \text{ followed by zero or more } b\text{'s} \}$.

\[q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \]

\[q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{a} \]
Optional Substrings

$L = \{ w \in \{a, b\}^* : w \text{ is made up of an optional } a\text{ followed by } aa\text{ followed by zero or more } b\text{'s}\}.$

$M = (K, \Sigma, \Delta, s, A) = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \Delta, q_0, \{q_3\})$

where

$\Delta = \{((q_0, a), q_1), ((q_0, \epsilon), q_1), ((q_1, a), q_2), ((q_2, a), q_3), ((q_3, b), q_3)\}$

How many elements does Δ have?

Multiple Sublanguages

$L = \{ w \in \{a, b\}^* : w = aba \text{ or } |w| \text{ is even}\}.$
Multiple Sublanguages

\[L = \{ w \in \{a, b\}^* : w = aba \text{ or } |w| \text{ is even}\}. \]
Multiple Sublanguages

\[L = \{w \in \{a, b\}^* : w = aba \text{ or } |w| \text{ is even}\}. \]

\[
M = (K, \Sigma, \Delta, s, A) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a, b\}, \Delta, q_0, \{q_4, q_5\}), \text{ where} \\
\Delta = \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_5), \\
(q_1, a, q_2), (q_2, b, q_3), (q_3, a, q_4), \\
(q_5, a, q_6), (q_5, b, q_6), (q_6, a, q_5), (q_6, b, q_5)\}
\]

Do you start to feel the power of nondeterminism?

The Missing Letter Language

Let \(\Sigma = \{a, b, c, d\} \).

Let \(L_{\text{Missing}} = \{w : \text{there is a symbol } a_i \in \Sigma \text{ not appearing in } w\} \).

Try to make a DFSM for \(L_{\text{missing}} \)

First develop machine for set of strings containing ALL 4 characters, then reverse.
The Missing Letter Language

$$L = \{w \in \{a, b, c\}^* : \exists x, y \in \{a, b, c\}^* (w = xabcabb y)\}.$$

Pattern Matching

A DFSM:
Pattern Matching

\[L = \{ w \in \{ a, b, c \}^* : \exists x, y \in \{ a, b, c \}^* \ (w = x \text{abcabb} y) \}. \]

A DFSM:

An NDFSM:

Pattern Matching with NDFSMs

\[L = \{ w \in \{ a, b \}^* : \exists x, y \in \{ a, b \}^* \ (w = x \text{aabbb} y \text{ or } w = x \text{abbab} y) \} \]
Multiple Keywords

\[L = \{w \in \{a, b\}^* : \exists x, y \in \{a, b\}^* \]
\[((w = x \text{ abbaa } y) \lor (w = x \text{ baba } y)) \}. \]

Checking from the End

\[L = \{w \in \{a, b\}^* : \text{the fourth to the last character is } a \} \]
Checking from the End

\[L = \{ w \in \{a, b\}^* : \text{the fourth to the last character is } a \} \]

Another Pattern Matching Example

\[L = \{ w \in \{0, 1\}^* : w \text{ is the binary encoding of a positive integer that is divisible by 16 or is odd} \} \]
Another NDFSM

$L_1 = \{ w \in \{a, b\}^*: \text{aa occurs in } w \}$

$L_2 = \{ x \in \{a, b\}^*: \text{bb occurs in } x \}$

$L_3 = \{ y : \in L_1 \text{ or } L_2 \}$

$L_4 = L_1 L_2$

$M_1 = \quad M_2 = \quad$

$M_3 = \quad$

$M_4 = \quad$

A “Reel” Example

[Diagram showing a state transition diagram with states such as Hiding, Running, Pick up laser, and outcomes like see enemy, see laser, enemy dies, etc.]
ε Transitions – eps function

\[\text{eps}(q) = \{ p \in K : (q, w) \vdash^*_{M} (p, w) \}. \]

\(\text{eps}(q) \) is the closure of \(\{q\} \) under the relation \(\{(p, r) : \text{there is a transition } (p, \varepsilon, r) \in \Delta \} \).

How shall we compute \(\text{eps}(q) \)?

It simply means the states reachable without consuming input.

An Algorithm to Compute \(\text{eps}(q) \)

\(\text{eps}(q; \text{state}) = \)

\[\text{result} = \{ q \}. \]

While there exists some \(p \in \text{result} \) and some \(r \notin \text{result} \) and some transition \((p, \varepsilon, r) \in \Delta \) do:

Insert \(r \) into \(\text{result} \).

Return \(\text{result} \).
An Example of ε

\begin{align*}
\varepsilon(q_0) &= \\
\varepsilon(q_1) &= \\
\varepsilon(q_2) &= \\
\varepsilon(q_3) &=
\end{align*}

Simulating a NDFSM

$$\text{ndfsmsimulate}(M: \text{NDFSM}, w: \text{string}) =$$

1. current-state = $\varepsilon(s)$.
2. While any input symbols in w remain to be read do:
 1. $c = \text{get-next-symbol}(w)$.
 2. next-state = \emptyset.
 3. For each state q in current-state do:
 For each state p such that $(q, c, p) \in \Delta$ do:
 next-state = next-state \cup $\varepsilon(p)$.
 4. current-state = next-state.
Nondeterministic and Deterministic FSMs

Clearly: \(\{ \text{Languages accepted by a DFSM} \} \subseteq \{ \text{Languages accepted by a NDFSM} \} \)

More interestingly:

Theorem:

For each NDFSM, there is an equivalent DFSM.

Proof: By construction:

Given a NDFSM \(M = (K, \Sigma, \Delta, s, A) \), we construct \(M' = (K', \Sigma, \delta', s', A') \), where

- \(K' = \mathcal{P}(K) \)
- \(s' = \text{eps}(s) \)
- \(A' = \{ Q \subseteq K : Q \cap A \neq \emptyset \} \)
- \(\delta'(Q, a) = \bigcup \{ \text{eps}(p) : p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q \} \)

May create many unreachable states
An Algorithm for Constructing the Deterministic FSM

1. Compute the $\text{eps}(q)$’s.
2. Compute $s' = \text{eps}(s)$.
3. Compute δ'.
4. Compute $K' = \text{a subset of } \mathcal{P}(K)$.
5. Compute $A' = \{Q \in K': Q \cap A \neq \emptyset\}$.

The algorithm
1. Proves NDFSM \equiv DFSM
2. Allows us to solve problems using NDFSM then construct equivalent DFSM

The Algorithm ndfsmtodfsm

$\text{ndfsmtodfsm}(M: \text{NDFSM}) =$

1. For each state q in K_M do:
 1.1 Compute $\text{eps}(q)$.
2. $s' = \text{eps}(s)$
3. Compute δ':
 3.1 active-states $= \{s\}$.
 3.2 $\delta' = \emptyset$.
 3.3 While there exists some element Q of active-states for which δ' has not yet been computed do:
 For each character c in Σ_M do:
 new-state $= \emptyset$.
 For each state q in Q do:
 For each state p such that $(q, c, p) \in \Delta$ do:
 new-state $= \text{new-state } \cup \text{eps}(p)$.
 Add the transition $(Q, c, \text{new-state})$ to δ'.
 If new-state \notin active-states then insert it.
4. $K' = \text{active-states}$.
5. $A' = \{Q \in K': Q \cap A \neq \emptyset\}$.
For each of the following NDFSMs, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of \(eps(q) \) for each state \(q \):

(a)

(b)
For each of the following NDFSMs, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of $\text{eps}(q)$ for each state q.

Another Example
An Example – Optional Substrings

\[L = \{ w \in \{a, b\}^* : w \text{ is made up of 0 to 2 } a\text{'s followed by zero or more } b\text{'s} \}. \]

\[
q_0 \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} q_2
\]

The Number of States May Grow Exponentially

\[|\Sigma| = n \]

No. of states after 0 chars: \(1\)
No. of new states after 1 char: \(\binom{n}{n-1} = n\)
No. of new states after 2 chars: \(\binom{n}{n-2} = n(n-1)/2\)
No. of new states after 3 chars: \(\binom{n}{n-3} = n(n-1)(n-2)/6\)
Total number of states after \(n\) chars: \(2^n\)
If the Original FSM is Deterministic

1. Compute the \(\varepsilon(q) \)s:
2. \(s' = \varepsilon(q_0) = \)
3. Compute \(\delta' \)
 - \((\{q_0\}, \text{odd}, \{q_1\}) \)
 - \((\{q_1\}, \text{odd}, \{q_1\}) \)
4. \(K' = \{\{q_0\}, \{q_1\}\} \)
5. \(A' = \{\{q_1\}\} \)

\(M' = M \)

A Deterministic FSM Interpreter

\(\text{dfsmsimulate}(M: \text{DFSM}, w: \text{string}) = \)
1. \(st = s. \)
2. Repeat
 2.1 \(c = \text{get-next-symbol}(w). \)
 2.2 If \(c \neq \text{end-of-file} \) then
 2.2.1 \(st = \delta(st, c). \)
 until \(c = \text{end-of-file}. \)
3. If \(st \in A \) then accept else reject.
A NDFSM Interpreter

\[ndfsmsimulate(M = (K, \Sigma, \Delta, s, A): \text{NDFSM}, w: \text{string}) = \]

1. Declare the set \(st \).
2. Declare the set \(st1 \).
3. \(st = \text{eps}(s) \).
4. Repeat
 4.1 \(c = \text{get-next-symbol}(w) \).
 4.2 If \(c \neq \text{end-of-file} \) then do
 \(st1 = \emptyset \).
 For all \(q \in st \) do
 For all \(r \in \Delta(q, c) \) do
 \(st1 = st1 \cup \text{eps}(r) \).
 \(st = st1 \).
 If \(st = \emptyset \) then exit.
 until \(c = \text{end-of-file} \).
5. If \(st \cap A \neq \emptyset \) then accept else reject.

Nondeterministic FSMs as Algorithms

Real computers are deterministic, so we have three choices if we want to execute an NDFSM:

1. Convert the NDFSM to a deterministic one:
 • Conversion can take time and space \(2^{|K|} \).
 • Time to analyze string \(w \): \(O(|w|) \)
2. Simulate the behavior of the nondeterministic one by constructing sets of states "on the fly" during execution
 • No conversion cost
 • Time to analyze string \(w \): \(O(|w| \times |K|^2) \)
3. Do a depth-first search of all paths through the nondeterministic machine.
Finite State Transducers

- A finite state transducer (FST) is a finite state machine, that transduces (translates) an input string into an output string.
 - instead of \{0,1\} as in FSMs (acceptors / recognizers)
 - input tape, output tape
 - Moore machine and Mealy machine

- Moore machine: outputs are determined by the current state alone (and do not depend directly on the input)
 - Advantage of the Moore model is a simplification of the behavior

- Mealy machine: output depends on current state and input
Moore and Mealy

Edward F. Moore (1925 – 2003)
- Professor of Math and CS in UW-madison
- [Memorial resolution](http://boards.ancestry.com/surnames.mealy/56.1.1/mb.ashx)

George H. Mealy (1927 – 2010)
worked at the Bell Laboratories in 1950’s and was a Harvard University professor in 1970’s

http://boards.ancestry.com/surnames.mealy/56.1.1/mb.ashx

Moore Machine

A *Moore machine* $M = (K, \Sigma, O, \delta, D, s, A)$, where:

- K is a finite set of states
- Σ is an input alphabet
- O is an output alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states, *(not important for some app.)*
- δ is the transition function from $(K \times \Sigma)$ to K,
- D is the output function from K to O^*.

M outputs each time it lands in a state.

A Moore machine M computes a function $f(w)$ iff, when it reads the input string w, its output sequence is $f(w)$.
A Simple US Traffic Light Controller

A Mealy machine $M = (K, \Sigma, O, \delta, s, A)$, where:

- K is a finite set of states
- Σ is an input alphabet
- O is an output alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states (not important for some app.)
- δ is the transition function from $(K \times \Sigma)$ to $(K \times O^*)$

M outputs each time it takes a transition.

A Mealy machine M computes a function $f(w)$ iff, when it reads the input string w, its output sequence is $f(w)$.
An Odd Parity Generator

After every four bits, output a fifth bit such that each group of five bits has odd parity.

\[0 \ 0 \ 0 \ 0 \quad 1 \ 0 \ 0 \ 0 \quad 1 \ 1 \ 1 \ 1\]

A Bar Code Scanner
A Bar Code Scanner