
ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 1

MODULE 3- PART 1

CONTEXT FREE GRAMMARS

3.1 Introduction to Rewrite Systems and Grammars
We'll begin with a very general computational model: Define a rewrite system, also called production
system or a rule-based system) to be a list of rules and an algorithm for applying them. Each rule has a
left-hand side and a right-hand side. For example, the following could be rewrite-system rules:
S� aSb
aS� �
aSb � bSabSa

When a rewrite system R is invoked on some initial string w, it operates as follows:
1. Set working-string = w.
2. Until told by R to halt do:

2.1 Match the lhs of some rule against some part of working-string.
2.2 Replace the matched part of working-string with the RHS of the rule that was matched.

3. Return working-string.

A rewrite system that is used to define a language is called a grammar. If G is a grammar, let L(G) be
the language that G generates. Like every rewrite system, every grammar contains a list (almost always
treated as a set, i.e., as an unordered list) of rules. Also, like every rewrite system, every grammar works
with an alphabet, which we can call V. In the case of grammars, we will divide V into two subsets:
• a tenninal alphabet. generally called � , which contains the symbols that make up the strings in L(G),
and ·
• a nontermlnal alphabet, the elements of which will function as working symbols that will be used
while the grammar is operating. These symbols will disappear by the time the grammar finishes its job
and generates a string. One final thing is required to specify a grammar. Each grammar has a unique
start symbol, often called S.

To generate strings in L(G), we invoke simple-rewrite (G,S). Simple-rewrite will begin with S and will
apply the rules of G, which can be thought of (given the control algorithm we just described) as licenses
to replace one string by another. At each step of one of its derivations, some rule whose left-hand side
matches somewhere in working-string is selected. The substring that matched is replaced by the rule's
right hand side, generating a new value for working string.

We will use the symbol � ��to indicate steps in a derivation. So, for example suppose that G has the start
symbol S and the rules S � aSb | bSa |� Then a derivation could begin with:
S �� aSb �� aaSbb�������
At each step, it is possible that more than one rule's left-hand side matches the working string. It is also
possible that a rule's left-hand side matches the working string in more than one way. In either case, there is a
derivation corresponding to each alternative. It is precisely the existence of these choices that enables a
grammar to generate more than one string.

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 2

Continuing with our example, there are three choices at the next step:

s � ��aSb � ��aaSbb �� aaaSbbb (using the first rule),

S � ��aSb � ��aaSbb � ��aabSabb (using the second rule).
S � ��aSb � ��aaSbb � ��aabb (using the third rule).

The derivation process may end whenever one of the following things happens:
1. The working string no longer contains any non terminal symbols (including, as a special case. when the
working string is �), or
2. There are nonterminal symbols in the working string but there is no match with the left-hand side of any
rule in the grammar. For example, if the working string were AaBb, this would happen if the only left-hand
side were C.

3.2 Context Free Grammars and Languages
We now define a Context Free Grammar (or CFG) to be a grammar in which each rule must:
• have a left-hand side that is a single nonterminal, and
• have a right-hand side.
To simplify the discussion that follows, define an A rule, for any nonterminal symbol A, to be a rule
whose left hand side is A.
A derivation will halt whenever no rule's left-hand side matches against working-string. At every step,
any rule that matches may be chosen.
Context-free grammar rules may have any (possibly empty) sequence of symbols on the right-band side.
Because the rule format is more flexible than it is for regular grammars. The rules are more powerful.
We will show some examples of languages that can be generated with context-free grammars but that
can not be generated with regular ones.
All of the following are allowable context-free grammar rules (assuming appropriate alphabets):
S� aSb
S� �
T� T
S� aSbbT
The following are not allowable context-free grammar rules:
ST� aSb
a� aSb
� � a
The name for these grammars, "context-free," makes sense because, using these rules, the decision to
replace a nonterminal by some other sequence is made without looking at the context in which the non
terminal occurs.

Formal definition of CFG:
Formally, a context-free grammar G is a quadruple (V, � , R, S). where:

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 3

• Vis the rule alphabet, which contains nonterminals (symbols that are used in the grammar but that do
not appear in strings in the language) and terminals,
• � (the set of terminals) is a subset of V,
• R (the set of rules) is a finite subset of (V- �) X V*, and
• S (the start symbol) can be any element of V - � .
Given a grammar G. define x � G y (abbreviated � when G is clear from context) to be the binary
relation derives-in-one-step, defined so that:

The language generated by G, denoted L(G). is {w€� * : S � G * w}. In other words, the language
generated by G is the set of all strings of terminals that can be derived from S using zero or more
applications of rules in G. A language L is context-free iff it is generated by some context-free grammar
G. The context-free languages (or CFLs) are a proper superset of the regular languages.

Recursive and self embedding grammar/rules:
A grammar is recursive if it contains at least one production (rule) of the following forms:

S ® wSx, w or x may be empty
S ® wTx, T ® uSv
Any set of rules that begin at terminal S and derive terminal S and w,x,u,v are elements of V*

• A rule is recursive iff it is X ® w1Yw2, where:
 Y � * w3Xw4 for some w1, w2, w3, and w in V*.
• A grammar is recursive iff it contains at least one recursive rule.
• Examples: S ® (S) S ® (T) T ® (S)

A grammar is self-embedding if it contains at least one production (rule) of the following form:
S ® wTx, T ® uSv where w,x,u,v are elements of � +

Self embedding grammar allows development of non-empty strings on both sides of the embedded non-
terminal.
Ex: A non-empty string can be formed on both sides of a non-terminal

• S ® aSb
• S ® aT, T ® Sb

Which is equivalent to S ® aSb

• A rule in a grammar G is self-embedding iff it is :
 X ® w1Yw2, where Y � * w3Xw4 and
 both w1w3 and w4w2 are in S+.

• A grammar is self-embedding iff it contains at least one self-embedding rule.

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 4

• Example: S ® aSa is self-embedding
 S ® aS is recursive but not self- embedding
 S ® aT
 T ® Sa is self-embedding

3.3 Designing CFG

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 5

BNF(Backus Naur form): A notation for writing practical context-free grammars. The symbol | should
be read as “or”. Allow a nonterminal symbol to be any sequence of characters surrounded by angle
brackets.

 Examples of nonterminals:

 <program>
 <variable>

Ex 11.5 : BNF for a Java Fragment
<block> ::= {<stmt-list>} | {}
<stmt-list> ::= <stmt> | <stmt-list> <stmt>
<stmt> ::= <block> | while (<cond>) <stmt> |
 if (<cond>) <stmt> |
 do <stmt> while (<cond>); |
 <assignment-stmt>; |
 return | return <expression> |
 <method-invocation>;

 Ex 11.6: ENGLISH Grammar CFG: (NP will derive noun phases, VP will derive verb phases.)
S ® NP VP
NP ® the Nominal | a Nominal | Nominal |
 ProperNoun | NP PP
Nominal ® N | Adjs N
N ® cat | dogs | bear | girl | chocolate | rifle
ProperNoun ® Chris | Fluffy
Adjs ® Adj Adjs | Adj
Adj ® young | older | smart
VP ® V | V NP | VP PP
V ® like | likes | thinks | shots | smells
PP ® Prep NP
Prep ® with

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 6

Ex 11.7: unequal a’s and b’s
L = {anbm : n ¹ m}
G = (V, S, R, S), where
 V = {a, b, S, A, B},
 S = {a, b},
 R =
S ® A /* more a’s than b’s
S ® B /* more b’s than a’s
A ® a /* at least one extra a generated
A ® aA /* any number of a’s
A ® aAb /* equal number of a’s and b’s
B ® b /* at least one extra b generated
B ® Bb /* any number of b’s
B ® aBb /* equal number of a’s and b’s

Ex 11.8: L ={w | number of a’s > number of b’s}
S� AB [more ‘a’ at the end]
S � BA [more ‘a’ at the begining]
S� ABA [more ‘a’ at middle]
A� aAb | bAa| AA | � [equal a’s and b’s][
B� aB | a [one or more a’s]

NOTE: refer class notes for more CFG examples.

3.4 Simplifying CFG
In this section, we present two algorithms that may be useful for simplifying context free grammars.
G = ({S, A, B, C, D, a, b}, {a, b}, R, S), where
 R =
 { S ® AB | AC
 A ® aAb | e
 B ® aA
 C ® bCa
 D ® AB }
G contains two useless variables: C is Useless because it is not able to generate any strings in � •. (Every
time a rule is applied to a c. a new C is added.) D is useless because it is unreachable via any derivation
from S. So any rules that mention either C or D can be removed from G without changing the language
that is generated. We present two algorithms, one to find and remove variables like C that are
unproductive, and one to find and remove variables like D that arc unreachable.

Given a grammar G = (V, � , R, S), we define removeunproductive(G) to create a new grammar G'.
where L (G') = L (G) and G' does not contain any unproductive symbols. Rather than trying to find the

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 7

unproductive symbols directly. removeunproductive(G)will find and mark all the productive ones. Any
that are left unmarked at the end are unproductive.

Initially, all terminal symbols will be marked as productive since each of them generates a terminal
string (itself). A nonterminal symbol will be marked as productive when it is discovered that there is at
least one way to rewrite it as a sequence productive symbols. So removeunproductive(G)effectively
moves backwards from terminals marking nonterminal along the way.
removeunproductive(G: CFG) =

1. G¢ = G.
2. Mark every nonterminal symbol in G¢ as unproductive.
3. Mark every terminal symbol in G¢ as productive.
4. Until one entire pass has been made without any new symbol being marked do:

 For each rule X ® a in R do:
 If every symbol in a has been marked as productive and X has not yet been marked as
 productive then:
 Mark X as productive.

5. Remove from G¢ every unproductive symbol.
6. Remove from G¢ every rule that contains an unproductive symbol.
7. Return G¢.

removeunproductive(G) must halt because there is only some finite number of nonterminals that can be
marked as productive. So the maximum number of times it can execute step 4 is |V- � |. Clearly L (G') is
a subset of L (G) since G' can produce no derivations that G could not have produced. And L (G') = L
(G) because the only derivations that G can perform but G' cannot are those that do not end with a
terminal string.
Notice that it is possible that S is unproductive. This will happen precisely in case L (G) = � .

Next we will define an algorithm for getting rid of unreachable symbols like D in the grammar we
presented above. Given a grammar G -= (V, � , R. S), we define removtunreachable(G) to create a new
grammar G' where L (G') = L (G) and G' does not contain any unreachable nonterminal symbols. What
removeunreachable does is to move forward from S, marking reachable symbols along the way.
removeunreachable(G: CFG) =

1. G¢ = G.
2. Mark S as reachable.
3. Mark every other nonterminal symbol as unreachable.
4. Until one entire pass has been made without any new symbol being marked do:

 For each rule X ® aAb (where A Î V - S) in R do:
 If X has been marked as reachable and A has not then:
 Mark A as reachable.

5. Remove from G¢ every unreachable symbol.
6. Remove from G¢ every rule with an unreachable symbol on the left-hand side.

Return G¢.Removeunreachable must halt because there is only some finite number of nonterminals that
can be marked as reachable. So the maximum number of times it can execute step 4 is |V- � |. Clearly L
(G') is a subset of L (G) since G' can produce no derivations that G could not have produced. And L (
G') = L (G) because every derivation that can be produced by G can also be produced by G'.

NOTE: Refer class notes for the problems on simplification of CFG.

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 8

3.5 Proving that a grammar is correct
Given some language L and a grammar G, can we actually prove that G is correct (i.e., that it generates
exactly the strings in L)? To do so, we need to prove two things:
1. G generates only strings in L, and
z. G generates all the strings in L.
The most straightforward way to do step 1 is to imagine the process by which G generates a string as the
following loop (a version of simple-rewrite, using st in place of working-string):
1. st = S.
2. Until no nonterminals are left in st do:
 Apply some rule in R to st.
3. Output st.
Then we construct a loop invariant I and show that:
• I is true when the loop begins.
• I is maintained at each step through the loop (i.e., by each rule application), and
• I /\ (st contains only terminal symbols) � st € L.
Step 2 is generally done by induction on the length of the generated strings.
Example: Prove that G generates only strings in L = {� � � � ����� � � � �	�� �³ �
����� � ���
� � ����������������� � ��� ��
 R = { S ® a S b
 S ® e }.
 Let I = (#a(st) = #b(st)) Ù (st Î a*(S È e) b*).

Example 2: prove that the following grammar is correct.

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 9

L = {w Î {a, b}*: #a(w) = #b(w)}
G = {{ S, a, b}, {a, b}, R, S}, where:

 R = { S ® aSb (1)
 S ® bSa (2)
 S ® SS (3)
 S ® e }. (4)
� Prove that G generates only strings in L:
Let D(w) = #a(w) - #b(w).
Let I = st Î {a, b, S}* Ù D(st) = 0.

I is true when st = S: In this case, #4 (st) = #b(st)) = 0. So A(st) = 0.
• If I is true before a rule fires. then it is true after the rule fires: The only symbols that can be added by
any rule are a. b. and S. Rules (1) and (2) each add one a and one b to st, so neither of them changes D��
���V�W������Rules (3) and (4) add neither a's nor b's to the working string, so D�����V�W����does not change.
• If I is true and st contains only terminal symbols, then st e L: In this case, st possesses the two
properties required of all strings in L. They are composed only of a's and b's and D�����V�W����= 0.

� Prove that G generates all the strings in L:
Base case:
Induction step: if every string of length k can be generated, then every string w of length k+2 can be.
w is one of: axb, bxa, axa, or bxb.
Suppose w is axb or bxa: Apply rule (1) or (2), then whatever sequence generates x.
Suppose w is axa or bxb:
Suppose w is axa: |w| ³ 4. We show that w = vy, where v and y are in L, 2 £ |v| £ k, and 2 £ |y| £ k.
If that is so, then G can generate w by first applying rule (3) to produce SS, and then generating v from
the first S and y from the second S. By the induction hypothesis, it must be possible for it to do that
since both v and y have length £ k.
Suppose w is axa: we show that w = vy, where v and y are in L, 2 £ |v| £ k, and 2 £ |y| £ k.
Build up w one character at a time. After one character, we have a. D(a) = 1. Since w Î L, D(w) = 0.
So D(ax) = -1. The value of D changes by exactly 1 each time a symbol is added to a string. Since D is
positive when only a single character has been added and becomes negative by the time the string ax has
been built, it must at some point before then have been 0. Let v be the shortest nonempty prefix of w to
have a value of 0 for D. Since v is nonempty and only even length strings can have D equal to 0, 2 £ |v|.
Since D became 0 sometime before w became ax, v must be at least two characters shorter than w, so |v|
£ k. Since D(v) = 0, v Î L. Since w = vy, we know bounds on the length of y: 2 £ |y| £ k. Since D(w) = 0
and D(v) = 0, D(y) must also be 0 and so y Î L.

3.6 Derivations and parse trees
Derivations: The process of obtaining strings from the start symbol by applying rules is called
derivation. There are two types of derivations:

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 10

· A left-most derivation(LMD) is one in which at each step the leftmost non terminal in the
working string is chosen for expansion.

• A right-most derivation(RMD) is one in which at each step the rightmost non terminal in the
working string is chosen for expansion.

NOTE: Refer class notes for the examples.

Parse trees: imposes a grammatical structure to the grammar.
A parse tree, derived by a grammar G = (V, S, R, S), is a rooted, ordered tree in which:
� Every leaf node is labeled with an element of S È {e},
 � The root node is labeled S,
� Every other node is labeled with some element of: V – S, and
� If m is a nonleaf node labeled X and the children of m are labeled x1, x2, …, xn, then R contains the
rule X ® x1 x2 … xn.
Because parse trees matter, it makes sense, given a grammar G, to distinguish between:
 � G’s weak generative capacity, defined to be the set of strings, L(G), that G generates, and
 � G’s strong generative capacity, defined to be the set of parse trees that G generates.

11.7 Ambiguity
Sometimes a grammar may produce more than one parse tree for some (or all) of the strings it generates.
When this happens, we say that the grammar is ambiguous. More precisely, a grammar G is ambiguous iff
there is at least one string in L(G) for which G produces more than one parse tree.
Procedure to show that a grammar is ambiguous:

• For the given grammar, select a string.
• Obtain the string by applying LMD(or RMD) twice.
• Construct parse trees for both the derivations.

• Compare the parse trees and conclude that it is ambiguous if they are different.
Note: refer class notes for the problems on ambiguity.

3.7.1 Regular Expressions and Grammars Can Be Ambiguous.
Regular Expression Regular Grammar
(a È b)*a (a È b)* S ® a
 S ® bS
choose a from (a È b) S ® aS
choose a from (a È b) S ® aT
choose a T ® a
 T ® b
choose a T ® aT
choose a from (a È b) T ® bT
choose a from (a È b)

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 11

3.7.2 Inherent ambiguity
In many cases, when confronted with an ambiguous grammar G, it is possible to construct a new grammar
G' that generates L(G) and that has less (or no) ambiguity. Unfortunately, it is not always possible to do this.
There exist context-free languages for which no unambiguous grammar exists. We call such languages
inherently ambiguous.
Ex 1: Write inherently ambiguous grammar for L = {anbncm: n, m ³ 0} È {anbmcm: n, m ³ 0}.
S ® S1 | S2
S1 ® S1c | A /* Generate all strings in {anbncm}.
A ® aAb | e
S2 ® aS2 | B /* Generate all strings in {anbmcm}.
B ® bBc | e
Consider any string of the form anbncn, (ex: aabbcc), get 2 derivations and different parse trees.
L is inherently ambiguous.

Ex 2: Write inherently ambiguous grammar for L = {anbncmdm: n, m ³ 1} È {anbmcmdn : n, m ³ 1}.
S� AB | C
A� aAb |ab
B� cBd |cd
C� aCd |aDd
D� bDc |bc

3.7.3 Techniques for reducing ambiguity
Three grammar structures that often lead to ambiguity:
l. s. rules like S� � ��

2. Rules like S� SS or E� E + E. In other words recursive rules whose right· hand sides are symmetric and

contain at least two copies of the nonterminal on the left-hand side.
3. Rule sets that lead to ambiguous attachment of optional postfixes.
1. Eliminating � -rules:
Nullable variable: A variable X is nullable iff either:
 (1) there is a rule X ® e, or
 (2) there is a rule X ® PQR… and P, Q, R, …
 are all nullable.
So compute N, the set of nullable variables, as follows:
1. Set N to the set of variables that satisfy (1).
2. Until an entire pass is made without adding anything to N do
 Evaluate all other variables with respect to (2).

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 12

 If any variable satisfies (2) and is not in N, insert it.
Modifiable variable: a rule is modifiable iff it is of the form:
 P ® aQb, for some nullable Q.

A General Technique for Getting Rid of e-Rules :
removeEps(G: CFG) =
 1. Let G¢ = G.
 2. Find the set N of nullable variables in G¢.
 3. Repeat until G¢ contains no modifiable rules that haven’t been processed:
 Given the rule P ® aQb, where Q Î N, add the rule P ® ab, if it is not already present and if ab ¹ e
and if P ¹ ab.
 4. Delete from G¢ all rules of the form X ® e.
 5. Return G¢.
Therefore, L(G¢) = L(G) – {e}.

Example: S� aTa

T� ABC
A� aA| C
B� Bb | C
C� c | � }.

On input G, removeEps behaves as follows: Step 2 finds the set N of nullable variables by initially setting

N to { C} . On its first pass through step 2.2 it adds A and B to N. On the next pass. it adds T (since now A, B.
and Care all in N). On the next pass, no new elements are found, so step 2 halts with N = {C. A, B, T}. Step 3
adds the following new rules to G':
S� aa /* Since T is nullable.

T� BC /* Since A is nullable.
T-� AC /* Since D is nullable.
T� AB /* Since C is nullable.

T � C /* From T� BC, since B is nullable. Or from T� AC.
T� B /* From T� BC. since C is nullable. Or from T� AB.
T� A /* FromT� AC. since C is nullable. Or from T� AB
A � a /* Since A is nullable.
B � b /* Since D is nullable.
C� c
Finally, step 4 deletes the rule C� � .

What If e Î L?
Sometimes L(G) contains � and it is important to retain it. To handle this case, we present the following
algorithm which constructs a new grammar G", such that L (G") = L (G). If L(G) contains � , then G" will
contain a single � -rule that can be thought of as being “quarantined".lts sole job is to generate the string � . lt
can have no interaction with the other rules of the grammar.
atmostoneEps(G: cfg) =

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 13

 1. G¢¢ = removeEps(G).
 2. If SG is nullable then /* i. e., e Î L(G)
 2.1 Create in G¢¢ a new start symbol S*.
 2.2 Add to RG¢¢ the two rules:
 S* ® e
 S* ® SG.
 3. Return G¢¢.
Ex: Remove � - rule from balanced parentheses grammar S � SS | (S) |�

S* ® e
 S* ® S
 S ® SS
 S ® (S)
 S ® ()
2. Eliminating symmetric rules:
The new grammar that we just built for Bal is better than our original one. But it is still ambiguous. The
string()()() has two parses shown in Figure. The problem now is the rule S� SS, which must be applied
n - 1 times to generate a sequence of n balanced parentheses substrings. But, at each time after the first,
there is a choice of which existing S to split.

The solution to this problem is to rewrite the grammar so that there is no longer a choice. We replace the
rule S--+ SS with one of the following rules:
 S ® SS1 /* force branching to the left
 S ® S1S /* force branching to the right
Then we add the rules� S1 and replace the rules S� (S) and S� ()with the rules S1 � (S) and
S� ().What we have done is to change the grammar so that branching can occur only in one direction.
Every S that is generated can branch, but no S1 can. When all the branching has happened, S rewrites to
S1 and the rest of the derivation can occur.
So one unambiguous grammar for Bals G = { {S,), (}, {) , (}, R, S), where:
 S* ® e S ® SS1
 S* ® S S ® S1
 S1 ® (S)
 S1 ® ()
There exists single parse tree for the string ()()()
3. Ambiguous Attachment

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 14

 Third source of ambiguity that we will consider arises when constructs with optional fragments are
nested. Probably the most often described instance of this kind of ambiguity is known as the dangling
else problem. Suppose that we define a programming language with an if statement that can have either
of the following forms:
<stmt> ::= if <cond> then <stmt>
<stmt> ::= if <cond> then <stmt> e1se <stmt>
In other words. the e1se clause is optional. Then the following statement with just a single e1se clause
has two parses:
if cond1 then if cond2 then stmt1 e1se smt2
In the first parse, the single e1se clause goes with the first if. (So it attaches high in the parse tree.) In the
second parse, the single e1se clause goes with the second if. (In this case it attaches lower in the parse
tree.)
Ex: dangling else problem in Java:
<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |
 <IfThenElseStatementNoShortIf>
<StatementNoShortIf> ::= <block> |
 <IfThenElseStatementNoShortIf> | …
<IfThenStatement> ::= if (<Expression>) <Statement>
<IfThenElseStatement> ::= if (<Expression>)
 <StatementNoShortIf> else <Statement>
<IfThenElseStatementNoShortIf> ::=
 if (<Expression>) <StatementNoShortIf>
 else <StatementNoShortIf>

Note: Refer class notes for the problems on elimination of � -rules.

3.8 Normal forms
Let C be any set of data objects. For example, C might be the set of context-free grammars. Or it could
be the set of syntactically valid logical expressions or a set of database queries. We will say that a set F
is a normal form for C iff it possesses the following two properties:
• For every element c of C, except possibly a finite set of special cases, there exists some element f of F
such that f is equivalent to c with respect to some set of tasks.
• F is simpler than the original form in which the elements of C are written. By ''simpler" we mean that
at least some tasks are easier to perform on elements of F than they would be on elements of C.

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 15

3.8.1 normal forms for grammars:
We will define the following two useful normal forms for context-free grammars:
• Chomsky Normal Form: In a Chomsky normal form grammar G = (V, � R, S),vall rules have one of
the following two forms:
• X � a, where a €� , or
• X � BC, where B and Care elements of V -�
• Greibuch Normal form: In a Grcibach normal form grammar G = (V, � R, S), all rules have the
following form:
• X� �� (where � €� and � € (V-�) *

3.8.2 Converting to a normal form:
Algorithms to convert grammars into normal forms generally begin with n grammar G and then operate
in a series of steps as follows:
1. Apply some transformation to G to get rid of undesirable property 1. Show that the language
generated by G is unchanged.
2. Apply another transformation to G get rid of undesirable property 2. Show that the language
generated by G is unchanged and that undesirable property 1 has not been reintroduced.
3. Continue until the grammar is in the desired form.

3.8.3 Converting to Chomsky Normal Form
There exists a straightforward four-step algorithm that converts a grammar G = (V. � , R. S) into a new
grammar Gc such that Gc is in Chomsky normal form and L (Gc) = L (G)- {� }. Define:

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 16

converttotoChomsky(G: CFG) =
1. Let Gc be the result of removing from G all � -rules, using the algorithm removeEps()
2. Let Gc be the result of removing from Gc all unit productions (rules of the form A � B)

using the algorithm removeUnits defined below. It is important to remove � -rules first,
before applying removeUnits(). Once this step has been completed, all rules whose right-
hand sides have length 1 are in Chomsky normal form (i.e . they are composed of a single
terminal symbol).

3. Let Gc be the result of removing from Gc all rules whose right-hand sides have length
greater than 1 and include a terminal (e.g : A� aB or A � BaC). This step is simple and
can be performed by the algorithm remove Mixed given below. Once this step has been
completed all rules whose right-hand sides have length 1 or 2 are in Chomsky normal form.

4. Let Gc be the result of removing from Gc all rules whose right-hand sides have length
greater than 2 (e.g : A � BCD£). This step too is simple. It can be performed by the
algorithm remove Long given below.

5. Return Gc.
A unit production is a rule whose right-hand side consists of a single nonterminal symbol. The job of
remove Units is to remove all unit productions and to replace them by a set of other rules that
accomplish the job previously done by the unit productions. So, for example, suppose that we start with
a grammar G that contains the following rules:
S� XY
X� A
A� B | a
B� b
Once we get rid of unit productions, it will no longer be possible for X to become A (and then B) and
thus to go on to generate a or b. So X will need the ability to go directly to a and b, without any
intermediate steps. We can define removeUnits() as follows:
removeUnits(G: CFG) =
1. Let G' =G.
2. Until no unit productions remaining G' do:

2.1. Choose some unit production X� Y.
2.2. Remove it from G'.
2.3. Consider only rules that still remain in G'. For every rule Y� � where � € V*, do:
Add to G' the rule X� � unless that is a rule that has already been removed once.

3. Return G'.
EXAMPLE : Removing Unit Productions:
S� XY
X� A
A� B | a
B� b
Y� T
T� Y | c

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 17

The order in which removeUnits chooses unit productions to remove doesn't matter. We'll consider one
order it could choose:
Remove X� A. Since A� B | a, add X� B | a.
Remove X� B. Add X� b.
Remove Y� T. Add Y� Y | c. Notice that we've added Y� Y, which is useless, but it will be
 removed later;
Remove Y � Y. Consider adding Y� T, but don't since it has previously been removed
Remove A� B. Add A � b.
Remove T� Y. Add T� c, but with no effect since it was already present.
At this point, the rules of G are:
S� XY
A� a | b
B� b
T� c
X� a | b
Y� c
No unit productions remain, so remove Units halts.

removeMixed(G):
removeMixed (G: CFG) =
1. LetG' =G.
2. Create a new nonterminal Ta , for each terminal a in � ����
3. Modify each rule in G' whose right-hand side has length greater than 1 and that contains a
terminal symbol by substituting Ta, for each occurrence of the terminal a.
4. Add to G', for each Ta, the rule T� a.
5. Return G'.
EXAMPLE: Removing Mixed Productions from
A� a
A� aB
A� BaC
A� BbC
The result of applying remove Mixed to the above grammar produces:
A� a
A� TaB
A� BTaC
A� BTbC
Ta� a
Tb� b

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 18

EXAMPLE: Removing Rules with Long Right-hand Sides
The result of applying remove Long to the single rule grammar A� BCDEF is the grammar with rules:
A� BM2
M2� CM3
M3� DM4
M4� EF

Problem: convert the following grammar into CNF.
S� aACa
A� B | a
B� C | c
C� Cc | �
Step 1: Apply removeEps(), N={C, A, B}
Grammar becomes
S� .aAca | aAa | aCa | aa
A� B | a
B� C | c
C� cC | c
Step 2: Next we apply remove Units:
Remove A � B. Add A� C | c.
Remove B � C. Add B� cC (and B� c, but it was already there).
Remove A� C. Add A� cC (and A� c, but it was already there).
So remove Units returns the rule set:
S� aAca | aAa| aca | aa
A� a | c | cC
B� c | cC
C � cC | c
Step 3: Next we apply removeMixed, which returns the rule set:
S � TaACTa, | Ta,ATa,| TaCTa | TaTa
A� a | c| TcC
S� c | TcC
C� Tc | c
Ta� a
Tc� c

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 19

Step 4: Finally, we apply remove Long, which returns the rule set:
S� TaS1 S� TaS3 S� TaS4 S� TaTa
S1 � AS2 S3� ATa S4� CTa
S2� CTa
A� a | c | TcC
B� c | TcC
C� TcC | c
Ta� a
Tc� c

Note: Refer class notes for problems on CNF.

Proving that a Grammar is Unambiguous
While it is undecidable in general whether a grammar is ambiguous or unambiguous. It may be possible
to prove that a particular grammar is either ambiguous or unambiguous.
A grammar G canbhe shown to be ambiguous by exhibiting single string for which G produces two
parse trees.
EXAMPLE: The Final Balanced Parens Grammar is Unambiguous
We return to the final grammar G:
S*� � (1)
S*� S (2)
S� SS1 (3)
S� S1 (4)
S1� (S) (5)
S1� () (6)

ATC - MODULE 3-Part 1 V CSE 2017-18

�

Prepared By: Roopa G K , Asst. Prof, Dept of CSE, VCET Puttur Page 20

*** *********************************

