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MODULE 3- PART 1

CONTEXT FREE GRAMMARS

3.1 Introduction to Rewrite Systems and Grammars
We'll beginwith a very generalcomputational model: Defina rewrite systemalso calledproduction

systenor arule-based systemd be alist of rules and an algorithm for applyitigem. Each rule has a
left-handside and a right-harglde. For example, tHellowing couldberewrite-systemules:

S aSb

asS

aSb  bSabSa

When a rewrite systeiR is invoked on some initial stringy, it operates as follows:
1. Setworking-string=w.
2. Until told byR to halt do:
2.1 Match the Ihs of some rule against some pastooking-string
2.2 Replace the matched partarking-stringwith the RHS of the rule that was matched.
3. Returnworking-string

A rewrite sytem that is used to define a language is callgtaenmar If G is a grammar, let( G) be

the language thdb generates. Like every rewrite system, every granuuoatains a list (almost always
treated as a set, i.e., as an unordered list)le$.rllso, like every rewrite system, every grammar works
with an alphabet, which we can c¥llin the case of grammars, we will divilénto two subsets:

* atenninal alphabet generally called , which contains the symbols that make up thegdrinL( G),

and

* a nontermlnal alphabetthe elements of which will function as working syt that will be used
while the grammar is operating. These symbols éifappear by the time the grammar finishes its job
and generates a string. One final thing is requicedpecify a grammagEach grammar has a unique
start symbol, often calleg.

To generate strings in L( G), we invogenple-rewrite(G,S). Simple-rewritewill begin with S and will
apply the rules oG, which can be thought of (given the control algorntive just described) as licenses
to replace one string by anothét each step of one of its derivations, some rutese left-hand side
matches somewhere morking-sting is selectedThe substring that matched iplaced by the rule's
right hand sid, generating a new value farorking string

We will use the symbol to indicate steps in a derivatiddo, for example suppose tifathas the start
symbolSand the rule§ aSb |bSa | Then a derivation could begin with:

S aSb aaSbb

At each step, it is possible that more than onesrdéfthand side matches the working striigis also
possible that a rule's left-hand side matches thring string in more than one wan either case, there is a
derivation corresponding to each alternative. Ipiiscisely the existence of these choices thatlesab
grammar to generate more than one string.
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Continung with our example, there are three choices ahéxe step

S aSb aaSbb aaaSbbb (using the first rule),

S aSb aaSbb aabSabb (using the second rule).
S aSb aaSbb aabb (using the third rule)

The derivation process may end whenever one dbthaving things happens:

1. The working string no longer contains any namteal symbols (includingas a special case. when the
working string is ), or

2. There are nonterminal symbols in the working stidug there is no match with the left-hand side of a
rule in the grammaior example,if the working stringwere AaBh this would happen if the only leftand
side wereC.

3.2 Context Free Grammars and Languages

We now define a @ntext Free Grammagjor CFG) to be a grammar in which each rule must:

* have a left-hand side that is a single nontermarad

* have a right-hand side

To simplify the discussion that follows, define Arrule, for any nonterminal symbd|, to be a rule
whose left hand side 5.

A derivation will halt whenever no rule's left-hasale matches againgtorking-string.At every step,
any rule that matches may be chosen.

Context-free grammar rules may have any (possitnlytg) sequence of symbols on the right-baiutk.
Because the rule format is more flexible than ifoisregular grammars. The rules are more powerful.
We will show some examples of languages that cagdoerated with context-free grammars but that
can not be generated with regular ones.

All of the following are allowable context-free gnanar rules (assuming appropriate alphabets):

S aSb

S

T T

S aSbbT

The following are not allowable context-free gramnmaes:
ST aSb

a aSb

a

The name for these grammars, "context-free,” makese because, using these rules, the decision to
replace a nonterminal by some other sequence ie méabout looking at the context in which the non
termnal occurs

Formal definition of CFG:
Formally, a context-free gramm@ris a quadrupleY, ,R,S). where:
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« Vis the rule alphabet, which contains nonternsnalymbols that are used in the grammar but that do
not appear in strings in the language) and termgjnal

* (the set of terminals) is a subseMof

* R (the set of rules) is a finite subset &f{ ) X V*,and

» S(the start symbol) can be any elemenYeof .

Given a grammar G. define ¢ Yy (abbreviated whenG is clear from context) to be the binary
relationderives-in-one-steplefined so that:

Vx,ye V*(x=gyiff x = aAB,y = ayB, and there exists a rule A — vy in Rg)

Any sequence of the form wy=; w, = W, =;... =% w, is called a derivation
in G. Let =4* be the reflexive, transitive closure of =;. We'll call =>.* the derives
relation.
The language generated by @enotedL( G). is {wE *:S & * w}. In other words, the language
generated byG is the set of all strings of terminals that candagived fromS using zero or more
applications of rules in G. A languages context-fredff it is generated by some context-free grammar
G. The context-free languages (or CFLs) are a prapgeerset of the regular languages.

Recursive and self embedding grammatr/rules:
A grammar igecursive if it contains at least one production (rule) lod following forms:
S® wSx, w or x may be empty
S® wTx, T® uSv
Any set of rules that begin at terminal S and determinal S and w,x,u,v are elements of V*
e Avruleisrecursive iff itis X® wiYwa, where:
Y *wsXwgs for some w, we, ws, and w in V*.
e A grammar is recursive iff it contains at least oeeursive rule.
 Examples: B (S) VW (T) T® (S)

A grammar isself-embeddingif it contains at least one production (rule) fod following form:
S® wTx, T® uSv where w,x,u,v are elements of
Self embedding grammar allows development of noptgrstrings on both sides of the embedded non-
terminal.
Ex: A non-empty string can be formed on both siofes non-terminal

e S® aSb
e S® aT,T® Sb
Which is equivalentto  ® aSb

e Arulein a grammar G is self-embedding iff it is :
X® wiYwz, where Y *wszXws and
both wiws and ww- are inS*.
* A grammar is self-embedding iff it contains at ke@se self-embedding rule.
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*  Example: W aSa is self-embedding
S® aS is recursive but not self- embedding
S® aT
T® Sa is self-embedding

3.3 Designing CFG

EXAMPLE 11.2 A"B"

Consider A"B" = {a"b": n = 0}. We showed in Example 8.8 that A"B" is not
regular. But it is context-free because it can be generated by the grammar
G = {{S,a,b}, {a,b}, R, §}, where:
R = {S—aSb
S—e}.

EXAMPLE 11.3 Even Length Palindromes

Consider PalEven = {ww® : w e {a,b}*}.the language of even-length palindromes
of a’s and b’s. We showed in Example 8.11 that PalEven is not regular. But it is context-
free because it can be generated by the grammar G = {{5. a. b}. {a. b}. R. S},
where:
R = {S—aSa
§—bSb
S—el.
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BNF(Backus Naur form): A notation for writing practical context-free grarars. The symbol | should
be read as “or”. Allow a nonterminal symbol to &@y sequence of characters surrounded by angle
brackets.

Examples of nonterminals:

<program>
<variable>

Ex 11.5 :BNF for a Java Fragment

<block> ::= {<stmt-list>} | {}

<stmt-list> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> |
if (<cond>) <stmt> |
do <stmt> while (<cond>); |
<assignment-stmt>; |
return | return <expression> |
<method-invocation>;

Ex 11.6: ENGLISH Grammar CFG: (NP will derive noun phases, VP will derive verkaphs.)

S® NPVP

NP® theNominal| aNominal|Nominal |
ProperNouhNP PP

Nominal ® N |Adjs N

N® cat | dogs | bear | girl | chocolate | rifle

ProperNoun® Chris | Fluffy

Adjs® Adj Adjs|Adj

Adj® young | older | smart

VP® V|V NP|VPPP

V® like | likes | thinks | shots | smells

PP® Prep NP

Prep® with
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Ex 11.7: unequal a’s and b’s
L={@ab™: n? m}
G=WV,S,R 9, where

V={a, b,S A, B}

S ={a, b},

R=
S® A /* more a’s than b’s
S® B /* more b’s than a’s
A® a [* at least one extra a generated
A® aA [* any number of a’s
A® aAb /* equal number of a’s and b’s
B® b [* at least one extra b generated
B® Bb [* any number of b’s
B® aBb /* equal number of a’s and b’s

Ex 11.8: L ={w | number of a’s > number of b’s}

S AB [more ‘a’ at the end]

S BA [more ‘a’ at the begining]
S ABA [more ‘a’ at middle]

A aAb | bAa| AA | [equal a’s and b’s][

B aB|a [one or more a’s]

NOTE: refer class notes for more CFG examples.

3.4 Simplifying CFG
In this sectionwe present two algorithms that may be useful fioydifying context free grammars.
G=({SAB,C,D,a, b} {a b},R S, where
R=
{S® AB|AC

A® aAb |e

B® aA

C® bCa

D® AB}
G contains two useless variabl€sis Useless because it is not able to generatetengsin . (Every
time a rule is applied to@ a new C isadded) D is useless because it is unreachable via any dierva
from S So any rules that mention eith@ror D can be removed froi® without changing the language
that is generated. We present two algorithms, andind and remove variables lik€ that are
unproductive, and one tonftl and remove variables likethat arc unreachable.

Given a gramma6G = (V, , R, S), we defineremoveunproductive(do create a new grammey.
whereL ( G") =L (G) and G' does not contain any unproductive sym®ather than trying to find the
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unproductive symbols directlyemoveunproductive(@will find and mark all the productive ones. Any
that are left unmarked at the end are unproductive.

Initially, all terminal symbols will be marked asgductive sinceeach of them generates a terminal
string (itself). A nonterminal symbol will be markexsproductive when it is discovered that there is at
least one way to rewrite it as a sequence prodaciimbols. Sa@emoveunproductive(Geffectively
moves backwards from terminals marking nontermahahg the way.
removeunproductive(G: CFG) =
1. G¢=G.
2. Mark every nonterminal symbol in @s unproductive.
3. Mark every terminal symbol in @as productive.
4. Until one entire pass has been made without any resimbol being marked do:
For each rule X® ain R do:
If every symbol i@ has been marked as productive and X has not yetnb@marked as
productive then:
Mark X as productive.
5. Remove from @every unproductive symbol.
6. Remove from @every rule that contains an unproductive symbol.

7. Return G¢
removeunproductive(Qpust halt because there is only some finite nurob@onterminals that can be
marked as productiv&o the maximum number of times it can execute 4tigpV- | ClearlyL (G') is

a subset ot (G) sinceG' can produce no derivations thatcould not have produced. And(G') = L

(G) because the only derivations tiatcan perform buG' cannot are those that do not end with a
terminal string.

Notice that it is possible th&is unproductiveThis will happen precisely in cagqG) =

Next we will define an algorithm for getting rid oihreachablesymbolslike D in the grammar we
presented above. Given a gramréai= (V, , R.S), we defingemovtunreachable(@p create a new
grammar G' wherk (G') =L (G) andG' does not contain any unreachable teominal symbols. What
removeunreachabléoes is to move forward fro®, marking reachable symbols along the way
removeunreachable(G: CFG) =
Ge=G.
Mark S as reachable.
Mark every other nonterminal symbol as unreachable.
Until one entire pass has been made without any regsmnbol being marked do:
For each rule X® aAp (where A/ V - S)in R do:
If X has been marked as reachable and A has rwrt:
Mark A as reachable.

5. Remove from @every unreachable symbol.

6. Remove from @every rule with an unreachable symbol on the lafind side.
Return GZRemoveunreachablaust halt because there is only some finite numb&onterminals that
can be marked as reachable. So the maximum nurhkieres it can execute stepsl|V- | ClearlyL
(G) is a subset ofL (G) since G' can produce no derivations tBatould not have produced. And(
G') =L (G) because every derivation that can be produged tan also be produced by G'.

PwnhE

NOTE: Refer class notes for the problems on simighition of CFG.
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3.5 Proving that a grammar is correct

Given some languadeand a gramma@, can we actually prove th& is correct (i.e., that it generates
exactly the strings in L)? To do so, we need tospriovo things
1. G generates only strings in and
z. G generates all the stringslin
The most straightforward way to do step 1 is togima the process by which generates a string as the
following loop (a version o§imple-rewrite usingstin place ofworking-string):
1. st=S.
2. Until no nonterminals are left in st do:
Apply some rule in R to st.
3. Output st
Then we construct a loop invaridrand show that:
* | is true when the loop begins.
* | is maintained at each step through the loop @yeeach rule application), and
* | \ (st contains only terminal symbols) st€L.
Step 2 is generally done by induction on the lemjttine generated strings.

Example: Prove thatG generates only strings ir. = { 3
R={ S® aShb
S® e}.
Let | = (#(st) = #(st)) U (stT a*(SE e) b*).

Example 2: prove that the following grammar is eotr

Prepared By: Roopa G K, Asst. Prof, Dept of CSEEY Puttur Page 8



ATC - MODULE 3-Part1 V CSE 2017-18

L ={wl {a, b}*: #a(w) = th(W)}
G={{S a, b}, {a, b},R S}, where:

R={ S® a¥ (1)

S® b )
S® SS A3)
S® e}. (4)

Prove thaG generates only strings in
Let D(w) = #(W) - #(w).
Letl =sti {a, b,S* UD(st) = 0.
| is true wherst= S: In this casefs(st) = #b(st))= 0. SoA(st) = 0.
« If 1 is true before a rule fires. then it is true after rule fires: The only symbols that can be adued
any rule are a. b. arfsl. Rules (1) and (2) each add one a and onesh $o neither of them changBs
V W Rules (3) and (4) add neither a's nor b's to thekiwg string soD v wdoes not change.
* If 1 is true andst contains only terminadymbols thenste L: In this casest possesses the two
properties required of all strings lin Theyarecomposed only of a's and b's dnd v w= 0.

Prove that generates all the stringslin
Base case:
Induction step: if every string of lengktan be generated, then every stungf lengthk+2 can be.
w is one of: ab, Ixa, aa, or xb.
Supposev is ab or Ixa: Apply rule (1) or (2), then whatever sequenasegate.
Supposev is aa or xb:
Supposevis aa: |3 4. We show that = vy, wherev andy are inL, 2 £ (V| £k, and2 £ |y| £ k.
If that is so, thel&s can generate by first applying rule (3) to produc&S and then generatingfrom
the firstSandy from the secon&. By the induction hypothesis, it must be possibtdt to do that
since bothv andy have lengttf k.
Supposev is aa: we show thatv = vy, wherev andy are inL, 2 £ |v|Ek, and2 £ ly| £ k.
Build upw one character at a time. After one charactehawe a.D(a) = 1. Sincavi L, D(w) = 0.
SoD(ax) = -1. The value oD changes by exactly 1 each time a symbol is aduladstring. Sinc® is
positive when only a single character has beendaddd becomes negative by the time the stnolges
been built, it must at some point before then Heeen 0. Let be the shortest nonempty prefixvoto
have a value of O fdD. Sincev is nonempty and only even length strings can liagqual to 0, Z |v|.
SinceD became 0 sometime befosebecame g v must be at least two characters shorter tiaso Y|
£k. SinceD(v) =0,vi L. Sincew = vy, we know bounds on the lengthyoR2 £ |y| £ k. SinceD(w) = 0
andD(v) = 0,D(y) must also be 0 and gd L.

3.6 Derivations and parse trees
Derivations: The process of obtaining strings from the start lsyimby applying rules is called
derivation. There are two types of derivations:
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A left-most derivation(LMD)is one in whichat each steghe leftmost non terminal in the
working string is chosen for expansion.
* A right-most derivation(RMD)is one in whichat each step the rightmost non terminal in the
working string is chosen for expansion
NOTE: Refer class notes for the examples.

Parse treesimposes a grammatical structure to the grammar.
A parse tree, derived by a gramn@ar (V, S, R, S), is a rooted, ordered tree in which:
Every leaf node is labeled with an elemenSd& {e},
The root node is labeles)
Every other node is labeled with some elemenVef:S, and
If mis a nonleaf node labelefiand the children ain  are labeleds, x2, ..., X, thenR contains the
rule  X® X1X2 ... X
Because parse trees matter, it makes sense, gyamanarG, to distinguish between:
G's weak generative capacitglefined to be the set of string$G), thatG generates, and
G’s strong generative capacitglefined to be the set of parse trees @generates.

11.7 Ambiguity
Sometimes a grammar may produce more than one paeséor some (or all) of the strings it generates
When this happens, we say that the grammar is arobgy More precisely, a grammf@ris ambiguousff
there is at least one string in L( G) for whiéhproduces more than one parse tree.
Procedure to show that a grammar is ambiguous:

* For the given grammar, select a string.

» Obtain the string by applying LMD(or RMD) twice.

e Construct parse trees for both the derivations.

* Compare the parse trees and conclude that it isgaimits if they are different.
Note: refer class notes for the problems on ambigui

3.7.1 Reqular Expressions and Grammars Can Be Antpious.

Regular Expression Regular Grammar
(aE b)*a (aE b)* S® a

S® bS
choose a from (& b) S® &S
choose a from (& b) S® ar
choose a T® a

T® b
choose a T® al
choose a from (& b) T® bT

choose a from (& b)
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3.7.2___Inherent ambiquity

In many cases, when confronted wéth ambiguous grammaa, it is possible to construct a new grammar
G'that generatels( G) and that has less (or no) ambiguity. Unfortunatielig, not always possible to do this.
There exist context-free languages for which nomiriguous grammar exists. We call such languages
inherently ambiguous.

Ex 1: Write inherently ambiguous grammar for L 2f&™ n, m3 0} E {a"b™c™ n, m3 0}.

S® S |S

SS® SclA [* Generate all strings in {B"c™}.
A® aAb |e
S® a5|B [* Generate all strings in {B™c™}.
B® bBc |e

Consider any string of the fornic", (ex: aabbcc), get 2 derivations and differentsparees.
L is inherently ambiguous.

Ex 2: Write inherently ambiguous grammar for La&dc™d™ n, m3 1} E {a"b™c™d": n, m3 1}.

S AB|C

A aAb |ab
B cBd |cd
C aCd |aDd
D bDc |bc

3.7.3 Techniques for reducing ambiguity
Three grammar structures that often lead to amtyigui
l. s.rules like S

2. Rules likeS SSorE E + E. In other words recursive rules whose right- hadésiare symmetric and

contain at least two copies thfe nonterminalon the left-hand side.
3. Rule sets that lead to ambiguous attachmenptadrmal postfixes.
1. Eliminating -rules:
Nullable variable: A variableX is nullableiff either:
(1) thereisa rulx® e, or
(2) thereisarul¥® PQR.. andP,Q, R, ...
are all nullable.
So computeN, the set of nullable variables, as follows:
1. SetN to the set of variables that satisfy (1).
2. Until an entire pass is made without adding laingt toN do
Evaluate all other variables with resgedR).
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If any variable satisfies (2) and is nolj insert it.
Modifiable variable: a rule ismodifiableiff it is of the form:
P® aQb, for some nullabl&.

A General Technigue for Getting Rid ofe-Rules :
removeEps(G: CFG) =

1. LetG¢=G.

2. Find the set N of nullable variables in @

3. Repeat until Gcontains no modifiable rules that haven’t been mcessed:

Given the rule RR aQb, where QT N, add the rule P® ab, if it is not already present and ifab ! e

andif Pt ab.

4, Delete from Qall rules of the form X® e

5. Return Gt
Therefore, L(G¢ = L(G) — {€}.

Example:S aTa

T ABC
A aA|C
B Bb|C
C c|}

On inputG, removeEpsehaves as follows: Step 2 finds the Netf nullable variables by initially setting
N to { C}. On its first pass through ste®22t addsA andB to N. On the next pass. it adfigsince nowA, B.
and Care all in N)On the next pass, no new elements are found, p@dtalts withN = {C. A, B, T}. Step 3
adds the following new rules to G":

S aa ¥ Since T is nullable.

T BC F SinceA s nullable

T- AC /* SinceD is nullable.

T AB /* Since C is nullable

T C /* FromT BC,sinceB is nullable. Or froml' AC.
T B /* FromT  BC.since C is nullableOr fromT  AB.
T A /* FromT AC.sinceC is nullable. Or froli  AB

A a /* SinceA is nullable.

B b [* SinceD is nullable.

C ¢

Finally, step4 deletes the rul€

What If e/ L?
Sometimes L(G) containsand it isimportant to retain it. To handle this case, we gmeshe following

algorithm which constructa newgrammarG", suchthatL ( G") = L (G). If L( G) contains , then G"will
contin a single -rule that can be thought of as being “quarantiriedSole job is to generate the strindt
can have no interaction with the other rules ofgtaammar.

atmostoneEps(G: cfg) =
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1. G#= removeEps(G).
2. If Sz is nullable then I*i.e.el L(G)
2.1 Create in @a new start symbol S*.
2.2 Add to Rethe two rules:
S*® e
S*® .
3. Return G#
Ex: Remove- rule from balanced parentheses grammar S | (S) |
S*® e
S*® S
S® SS
S® (S)
S® ()
2. Eliminating symmetric rules:
The new grammar that we just built for Bal is betten our original one. But it is still ambiguoU$e
string()()() has two parses shown in Figure. Thebfam now is the rul&  SSwhich must be applied
n - 1 times to generate a sequenca bhlanced parentheses substrings. But, at eachafterethe first,
there is a choice of which existiiggo split.

The solution to this problem is to rewrite the graan so that there is no longer a choice. We replaee
rule S--+ SSwith one of the following rules:

S® SS [* force branching to the left

S® SS [* force branching to the right
Then we add the rules S1 and replace the rul8s (S)andS ()with the rulesS1  (S) and
S ().What we have done is to change the gramménadoranching can occur only in one direction.
EverySthat is generated can branch, but no S1 can. Whérearanching has happen&ewrites to
S1 and the rest of the derivation can occur.
So one unambiguous grammar for Ba@ls { {S, ), ¢}, {), (}, R,S), where:

S*® e S® SS

S*® S @ S
S® (S)
S® ()

There exists single parse tree for the string())(
3. Ambiguous Attachment
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Third source of ambiguityhat we will consider arises when constructs with opdidinagmentsare
nested. Probablythe most ofterdescribednstance of thikind of ambiguity isknown asthe dangling
elseproblem Supposehatwe definea programmindanguagewith anif statementhatcanhawe either
of the followingforms
<stmt> := if <cond>then<stmt>
<stmt>::= if <cond>then<stmt>else<stmt>
In other words the else clauses optional. Thenthe following statementwvith just a singleelse clause
has two parses:
if cond1then ifcond2thenstmtlelsesmt2
In thefirst parsethe singleelse clausgoes with the firstfi (So it attachekighin the parsetree.)In the
second parsdhe singleelseclause goes witthe secondif. (In this casat attaches lower in the parse
tree.)
Ex: dangling else problem in Java:
<Statement> ::= <IfThenStatement> | <IfThenElsehtant> |
<IfThenElseStatementNoShortIf>
<StatementNoShortIf> ::= <block> |
<IfThenElseStatementNoShortlf> | ...
<IfThenStatement> ::= if ( <Expression>) <Statethe
<IfThenElseStatement> ::= if ( <Expression>)
<StatementNoShortlf> else <Statement>
<IfThenElseStatementNoShortlf> ::=
if ( <Expression> ) <StatementNoShortIf>
else <StatementNoShortIf>

Note: Refer class notes for the problems on elintina of -rules.

3.8 Normal forms

Let C be any set of data objects. For exam@lenight be the set of context-free grammars. Or utld¢o
bethe set of syntactically valid logical expressions ®eh of database queries. We will say that d&set
is anormal formfor C iff it possesses the following two properties

* For every element of C, except possibly a finite set of special cafiesre exists some elemdraf F
such thaf is equivalent ta with respect to some set of tasks.

* F is simpler than the original form in which the eksmts ofC are written. By "simpler" we mean that
at least some tasks are easier to perform on etsmwieRthan they would be on elements of C

Prepared By: Roopa G K, Asst. Prof, Dept of CSEEVY Puttur Page 14



ATC - MODULE 3-Part1 V CSE 2017-18

3.8.1 normal forms for grammatrs:

We will define the following two useful normal fostior context-free grammars:

* Chomsky Normal Formin a Chomsky normal form gramm& = (V, R, S),vall rules have one of
the following two forms:

*X a,wherea€,or

X BC,whereB and Care elements bf-

* Greibuch Normal formin a Grcibach normal form grammar S(V, R, S), all rules have the
following form:

* X (where € and € (V- )*

3.8.2 Converting to a normal form:

Algorithms to convert grammars into normal forma@ally begin with ngrammar G and then operate
in a series of steps &ollows:

1. Apply sone transformation to G to get rid of undesirable propel. Show that the language
generated b isunchanged.

2. Apply another transformation t& get rid of undesirable property 2. Show that the lzamge
generated by Gsiunchange@ndthat undesirable property 1 has not been reintrediuc

3. Continue until tagrammar is in the desired form

3.8.3 Converting to Chomsky Normal Form
Thereexists a straightforwarfbur-sep algorithmthat convertsagrammarG = (V. , R.S)into anew
grammarGc suchthatGcis in Chomskynormal formandL (Gc) =L (G)- { }. Define:

Prepared By: Roopa G K, Asst. Prof, Dept of CSEEVY Puttur Page 15



ATC - MODULE 3-Part1 V CSE 2017-18

converttotoChomskyG: CFG) =

1. Let Gcbethe resultof removing from G all -rules, using thealgorithm removeEps( )

2. Let Gc be the result d removing from Gc all unit productions (rules of the form A B)
using the algorithm removelhits defined below. It is important to remove -rules first,
before applying removeUnits( ). Once this step has been completed, all rules whosght-
hand sides have length 1 are in Chomsky normal forni.e . they are composed of a single
terminal symbol).

3. Let Gc be the result of removing from Gc all rules whose right-hand sides have length
greater than 1 and include a terminal (e.g A aBor A BaC). This step is simple and
can be performed by the algorithmremove Mixedgiven below. Once this step has been
completed all rules whose right-hand sides have Igth 1 or 2 are in Chomsky normal form.

4. Let Gc be the result of removing from Gc all rules whose right-hand sides have length
greater than 2 (e.g :A BCDE£). This step too is simple. It can be performed by the
algorithm remove Longgiven below.

5. Return Gc.

A unit productionis a rule whose right-hand side consists of a simginterminal symbol. The job of

remove Unitsis to remove all unit productions and to replacenthby a set of other rules that
accomplish the job previously done by the unit piiobns. So, for example, suppose that we staht wit
a grammaiG that contains the following rules:

S XY
X A
A Bla
B b

Once we get rid of unit productions, it will no per be possible foX to becomeA (and then B) and
thus to go on to generate a or b. ¥avill need the ability to go directly to a and b,tlout any
intermediate steps. We can defreenoveUnits( as follows:
removeUnits(GCFG) =
1. LetG' =G.
2. Until no unit productions remaining G' do:
2.1. Choose some unit productioX Y.
2.2. Remove it from G'.
2.3. Consider only rules that still remain in G'. For every ruleY  where €V*, do:
Add to G'the rule X unless that is a rule that has already been removezhce.
3. Return G'.
EXAMPLE : Removing Unit Productions
S XY
X A
A Bla
B b
Y T
T Y|c
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The order in whiclremoveUnitchooses unit productions to remove doesn't matfefll consider one
order it could choose

RemoveX A. SinceA BJ|a,addX B]|a.

RemoveX B. Add X b.

RemoveY T. AddY Y] c. Notice that we've add&d Y,which is useless, but it will be
removed later

Remove Y Y. Consider adding Y T, but don't since it has previously been removed

RemoveA B. AddA b.

RemoveT Y. Add T c, but with no effect since it was already present.

At this point, the rules of are

S XY

A alb

B b

T c

X alb

Y c

No unit productions remain, semove Unitdalts.

removeMixed(G):

removeMixedG: CFG) =

1. LetG' =G.

2. Create a new nonterminalT a ,for each terminal ain

3. Modify each rule in G' whose right-hand side has legth greater than 1 and that contains a
terminal symbol by substituting Ta, for each occurrence of the terminak.
4. Add to G, for eachTa, therule T a.

5.Return G'.

EXAMPLE: Removing Mixed Productions from

A a

A aB

A BaC

A BbC

The result of applyingemove Mixedo the above grammar produces:

A a

A TB

A BT.C

A BT,.C

Ta a

To b
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EXAMPLE: Removing Rules with Long Right-hand Sides

The result of applyingemove Longdo the single rule gramm& BCDEF is the grammar with rules:
A BM2

M2 CM3

M3 DM4

M4  EF

Problem: convert the following grammar into CNF.

S aACa

A Bla

B Clc

C Cc|

Step 1: ApplyremoveEps( ), N={C, A, B}

Grammar becomes

S .aAca|aAa|aCa]aa

A Bla

B Cjc

C cCjlc

Step 2: Next we applyremove Units:

RemoveA B.AddA C|c.

RemoveB C. AddB cC (andB c, but it was already there).
Remove A C.Add A cC (and A c, but it was already there).
Soremove Unitgeturns the rule set:

S aAca|aAalaca| aa

A ajc|cC

B c|cC

C cCjc

Step 3: Next we applyremoveMixedwhich returns the rule set:
S TAACT,, | Ta,ATa| TaCTa| TaTa

A a|c|TC

S ¢|T.C

C T¢|c

Ta a

Tc ¢
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Step 4: Finally, we applyremoveLong, which returns the rule set:
S TS S TaSs S Tax S Tala

S AS S ATa S CTa
S CTa

A ajc|TC

B c|TC

C TLC|c

Ta a

Tc C

Note: Refer class notes for problems on CNF.

Proving that a Grammar is Unambiguous

While it is undecidable igeneralwhether a grammas ambiguous or unambiguous. It may be possible
to prove that garticular grammar is either ambiguousanambigwus.

A grammarG canbheshown to be ambiguous by exhibitingingle string for which G produce two
parsetrees.

EXAMPLE: The Final Balanced Parens Grammsdagnambiguous

We return to théinal grammar G:

S* (1)
S* S ()
S ss (3)
S S (4)
S (S) ()
S () (6)
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